Bug 953296 - Implement mozilla::UniquePtr. r=jcranmer

--HG--
extra : rebase_source : 76dadc240c40d1ffbd2f3a0414c3667ff2d6706d
This commit is contained in:
Jeff Walden 2013-12-30 13:34:15 -06:00
parent a43f2603d8
commit 5322819749
4 changed files with 1137 additions and 0 deletions

574
mfbt/UniquePtr.h Normal file
View File

@ -0,0 +1,574 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Smart pointer managing sole ownership of a resource. */
#ifndef mozilla_UniquePtr_h
#define mozilla_UniquePtr_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/Move.h"
#include "mozilla/NullPtr.h"
#include "mozilla/Pair.h"
#include "mozilla/TypeTraits.h"
namespace mozilla {
template<typename T> class DefaultDelete;
template<typename T, class D = DefaultDelete<T>> class UniquePtr;
} // namespace mozilla
namespace mozilla {
/**
* UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
* transferred out of a UniquePtr through explicit action, but otherwise the
* resource is destroyed when the UniquePtr is destroyed.
*
* UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
* in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
* obviously *can't* copy ownership of its singly-owned resource. So what
* happens if you try to copy one? Bizarrely, ownership is implicitly
* *transferred*, preserving single ownership but breaking code that assumes a
* copy of an object is identical to the original. (This is why auto_ptr is
* prohibited in STL containers.)
*
* UniquePtr solves this problem by being *movable* rather than copyable.
* Instead of passing a |UniquePtr u| directly to the constructor or assignment
* operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
* ownership out of |u|, into the target of the construction/assignment. After
* the transfer completes, |u| contains |nullptr| and may be safely destroyed.
* This preserves single ownership but also allows UniquePtr to be moved by
* algorithms that have been made move-safe. (Note: if |u| is instead a
* temporary expression, don't use |Move()|: just pass the expression, because
* it's already move-ready. For more information see Move.h.)
*
* UniquePtr is also better than std::auto_ptr in that the deletion operation is
* customizable. An optional second template parameter specifies a class that
* (through its operator()(T*)) implements the desired deletion policy. If no
* policy is specified, mozilla::DefaultDelete<T> is used -- which will either
* |delete| or |delete[]| the resource, depending whether the resource is an
* array. Custom deletion policies ideally should be empty classes (no member
* fields, no member fields in base classes, no virtual methods/inheritance),
* because then UniquePtr can be just as efficient as a raw pointer.
*
* Use of UniquePtr proceeds like so:
*
* UniquePtr<int> g1; // initializes to nullptr
* g1.reset(new int); // switch resources using reset()
* g1 = nullptr; // clears g1, deletes the int
*
* UniquePtr<int> g2(new int); // owns that int
* int* p = g2.release(); // g2 leaks its int -- still requires deletion
* delete p; // now freed
*
* struct S { int x; S(int x) : x(x) {} };
* UniquePtr<S> g3, g4(new S(5));
* g3 = Move(g4); // g3 owns the S, g4 cleared
* S* p = g3.get(); // g3 still owns |p|
* assert(g3->x == 5); // operator-> works (if .get() != nullptr)
* assert((*g3).x == 5); // also operator* (again, if not cleared)
* Swap(g3, g4); // g4 now owns the S, g3 cleared
* g3.swap(g4); // g3 now owns the S, g4 cleared
* UniquePtr<S> g5(Move(g3)); // g5 owns the S, g3 cleared
* g5.reset(); // deletes the S, g5 cleared
*
* struct FreePolicy { void operator()(void* p) { free(p); } };
* UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
* int* ptr = g6.get();
* g6 = nullptr; // calls free(ptr)
*
* Now, carefully note a few things you *can't* do:
*
* UniquePtr<int> b1;
* b1 = new int; // BAD: can only assign another UniquePtr
* int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
*
* UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
* UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
*
* A few miscellaneous notes:
*
* UniquePtr, when not instantiated for an array type, can be move-constructed
* and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
* instantiations where U converts to T and E converts to D. If you want to use
* this, you're going to have to specify a deletion policy for both UniquePtr
* instantations, and T pretty much has to have a virtual destructor. In other
* words, this doesn't work:
*
* struct Base { virtual ~Base() {} };
* struct Derived : Base {};
*
* UniquePtr<Base> b1;
* // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
* UniquePtr<Derived> d1(Move(b));
*
* UniquePtr<Base> b2;
* UniquePtr<Derived, DefaultDelete<Base>> d2(Move(b2)); // okay
*
* UniquePtr is specialized for array types. Specializing with an array type
* creates a smart-pointer version of that array -- not a pointer to such an
* array.
*
* UniquePtr<int[]> arr(new int[5]);
* arr[0] = 4;
*
* What else is different? Deletion of course uses |delete[]|. An operator[]
* is provided. Functionality that doesn't make sense for arrays is removed.
* The constructors and mutating methods only accept array pointers (not T*, U*
* that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
*
* It's perfectly okay to return a UniquePtr from a method to assure the related
* resource is properly deleted. You'll need to use |Move()| when returning a
* local UniquePtr. Otherwise you can return |nullptr|, or you can return
* |UniquePtr(ptr)|.
*
* UniquePtr will commonly be a member of a class, with lifetime equivalent to
* that of that class. If you want to expose the related resource, you could
* expose a raw pointer via |get()|, but ownership of a raw pointer is
* inherently unclear. So it's better to expose a |const UniquePtr&| instead.
* This prohibits mutation but still allows use of |get()| when needed (but
* operator-> is preferred). Of course, you can only use this smart pointer as
* long as the enclosing class instance remains live -- no different than if you
* exposed the |get()| raw pointer.
*
* To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
* argument. To specify an inout parameter (where the method may or may not
* take ownership of the resource, or reset it), or to specify an out parameter
* (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
* argument. To unconditionally transfer ownership of a UniquePtr
* into a method, use a |UniquePtr| argument. To conditionally transfer
* ownership of a resource into a method, should the method want it, use a
* |UniquePtr&&| argument.
*/
template<typename T, class D>
class UniquePtr
{
public:
typedef T* Pointer;
typedef T ElementType;
typedef D DeleterType;
private:
Pair<Pointer, DeleterType> tuple;
Pointer& ptr() { return tuple.first(); }
const Pointer& ptr() const { return tuple.first(); }
DeleterType& del() { return tuple.second(); }
const DeleterType& del() const { return tuple.second(); }
public:
/**
* Construct a UniquePtr containing |nullptr|.
*/
MOZ_CONSTEXPR UniquePtr()
: tuple(static_cast<Pointer>(nullptr), DeleterType())
{
static_assert(!IsPointer<D>::value, "must provide a deleter instance");
static_assert(!IsReference<D>::value, "must provide a deleter instance");
}
/**
* Construct a UniquePtr containing |p|.
*/
explicit UniquePtr(Pointer p)
: tuple(p, DeleterType())
{
static_assert(!IsPointer<D>::value, "must provide a deleter instance");
static_assert(!IsReference<D>::value, "must provide a deleter instance");
}
UniquePtr(Pointer p,
typename Conditional<IsReference<D>::value,
D,
const D&>::Type d1)
: tuple(p, d1)
{}
// If you encounter an error with MSVC10 about RemoveReference below, along
// the lines that "more than one partial specialization matches the template
// argument list": don't use UniquePtr<T, reference to function>! Ideally
// you should make deletion use the same function every time, using a
// deleter policy:
//
// // BAD, won't compile with MSVC10, deleter doesn't need to be a
// // variable at all
// typedef void (&FreeSignature)(void*);
// UniquePtr<int, FreeSignature> ptr((int*) malloc(sizeof(int)), free);
//
// // GOOD, compiles with MSVC10, deletion behavior statically known and
// // optimizable
// struct DeleteByFreeing
// {
// void operator()(void* ptr) { free(ptr); }
// };
//
// If deletion really, truly, must be a variable: you might be able to work
// around this with a deleter class that contains the function reference.
// But this workaround is untried and untested, because variable deletion
// behavior really isn't something you should use.
UniquePtr(Pointer p,
typename RemoveReference<D>::Type&& d2)
: tuple(p, Move(d2))
{
static_assert(!IsReference<D>::value,
"rvalue deleter can't be stored by reference");
}
UniquePtr(UniquePtr&& other)
: tuple(other.release(), Forward<DeleterType>(other.getDeleter()))
{}
template<typename N>
UniquePtr(N,
typename EnableIf<IsNullPointer<N>::value, int>::Type dummy = 0)
: tuple(static_cast<Pointer>(nullptr), DeleterType())
{
static_assert(!IsPointer<D>::value, "must provide a deleter instance");
static_assert(!IsReference<D>::value, "must provide a deleter instance");
}
template<typename U, class E>
UniquePtr(UniquePtr<U, E>&& other,
typename EnableIf<IsConvertible<typename UniquePtr<U, E>::Pointer,
Pointer>::value &&
!IsArray<U>::value &&
(IsReference<D>::value
? IsSame<D, E>::value
: IsConvertible<E, D>::value),
int>::Type dummy = 0)
: tuple(other.release(), Forward<E>(other.getDeleter()))
{
}
~UniquePtr() {
reset(nullptr);
}
UniquePtr& operator=(UniquePtr&& other) {
reset(other.release());
getDeleter() = Forward<DeleterType>(other.getDeleter());
return *this;
}
template<typename U, typename E>
UniquePtr& operator=(UniquePtr<U, E>&& other)
{
static_assert(IsConvertible<typename UniquePtr<U, E>::Pointer, Pointer>::value,
"incompatible UniquePtr pointees");
static_assert(!IsArray<U>::value,
"can't assign from UniquePtr holding an array");
reset(other.release());
getDeleter() = Forward<E>(other.getDeleter());
return *this;
}
UniquePtr& operator=(NullptrT n) {
MOZ_ASSERT(n == nullptr);
reset(nullptr);
return *this;
}
T& operator*() const { return *get(); }
Pointer operator->() const {
MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr");
return get();
}
Pointer get() const { return ptr(); }
DeleterType& getDeleter() { return del(); }
const DeleterType& getDeleter() const { return del(); }
private:
typedef void (UniquePtr::* ConvertibleToBool)(double, char);
void nonNull(double, char) {}
public:
operator ConvertibleToBool() const {
return get() != nullptr ? &UniquePtr::nonNull : nullptr;
}
Pointer release() {
Pointer p = ptr();
ptr() = nullptr;
return p;
}
void reset(Pointer p = Pointer()) {
Pointer old = ptr();
ptr() = p;
if (old != nullptr)
getDeleter()(old);
}
void swap(UniquePtr& other) {
tuple.swap(other.tuple);
}
private:
UniquePtr(const UniquePtr& other) MOZ_DELETE; // construct using Move()!
void operator=(const UniquePtr& other) MOZ_DELETE; // assign using Move()!
};
// In case you didn't read the comment by the main definition (you should!): the
// UniquePtr<T[]> specialization exists to manage array pointers. It deletes
// such pointers using delete[], it will reject construction and modification
// attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
template<typename T, class D>
class UniquePtr<T[], D>
{
public:
typedef T* Pointer;
typedef T ElementType;
typedef D DeleterType;
private:
Pair<Pointer, DeleterType> tuple;
public:
/**
* Construct a UniquePtr containing nullptr.
*/
MOZ_CONSTEXPR UniquePtr()
: tuple(static_cast<Pointer>(nullptr), DeleterType())
{
static_assert(!IsPointer<D>::value, "must provide a deleter instance");
static_assert(!IsReference<D>::value, "must provide a deleter instance");
}
/**
* Construct a UniquePtr containing |p|.
*/
explicit UniquePtr(Pointer p)
: tuple(p, DeleterType())
{
static_assert(!IsPointer<D>::value, "must provide a deleter instance");
static_assert(!IsReference<D>::value, "must provide a deleter instance");
}
private:
// delete[] knows how to handle *only* an array of a single class type. For
// delete[] to work correctly, it must know the size of each element, the
// fields and base classes of each element requiring destruction, and so on.
// So forbid all overloads which would end up invoking delete[] on a pointer
// of the wrong type.
template<typename U>
UniquePtr(U&& u,
typename EnableIf<IsPointer<U>::value &&
IsConvertible<U, Pointer>::value,
int>::Type dummy = 0)
MOZ_DELETE;
public:
UniquePtr(Pointer p,
typename Conditional<IsReference<D>::value,
D,
const D&>::Type d1)
: tuple(p, d1)
{}
// If you encounter an error with MSVC10 about RemoveReference below, along
// the lines that "more than one partial specialization matches the template
// argument list": don't use UniquePtr<T[], reference to function>! See the
// comment by this constructor in the non-T[] specialization above.
UniquePtr(Pointer p,
typename RemoveReference<D>::Type&& d2)
: tuple(p, Move(d2))
{
static_assert(!IsReference<D>::value,
"rvalue deleter can't be stored by reference");
}
private:
// Forbidden for the same reasons as stated above.
template<typename U, typename V>
UniquePtr(U&& u, V&& v,
typename EnableIf<IsPointer<U>::value &&
IsConvertible<U, Pointer>::value,
int>::Type dummy = 0)
MOZ_DELETE;
public:
UniquePtr(UniquePtr&& other)
: tuple(other.release(), Forward<DeleterType>(other.getDeleter()))
{}
template<typename N>
UniquePtr(N,
typename EnableIf<IsNullPointer<N>::value, int>::Type dummy = 0)
: tuple(static_cast<Pointer>(nullptr), DeleterType())
{
static_assert(!IsPointer<D>::value, "must provide a deleter instance");
static_assert(!IsReference<D>::value, "must provide a deleter instance");
}
~UniquePtr() {
reset(nullptr);
}
UniquePtr& operator=(UniquePtr&& other) {
reset(other.release());
getDeleter() = Forward<DeleterType>(other.getDeleter());
return *this;
}
UniquePtr& operator=(NullptrT) {
reset();
return *this;
}
T& operator[](decltype(sizeof(int)) i) const { return get()[i]; }
Pointer get() const { return tuple.first(); }
DeleterType& getDeleter() { return tuple.second(); }
const DeleterType& getDeleter() const { return tuple.second(); }
private:
typedef void (UniquePtr::* ConvertibleToBool)(double, char);
void nonNull(double, char) {}
public:
operator ConvertibleToBool() const {
return get() != nullptr ? &UniquePtr::nonNull : nullptr;
}
Pointer release() {
Pointer p = tuple.first();
tuple.first() = nullptr;
return p;
}
void reset(Pointer p = Pointer()) {
Pointer old = tuple.first();
tuple.first() = p;
if (old != nullptr)
tuple.second()(old);
}
private:
// Kill off all remaining overloads that aren't true nullptr (the overload
// above should handle that) or emulated nullptr (which acts like int/long
// on gcc 4.4/4.5).
template<typename U>
void reset(U,
typename EnableIf<!IsNullPointer<U>::value &&
!IsSame<U,
Conditional<(sizeof(int) == sizeof(void*)),
int,
long>::Type>::value,
int>::Type dummy = 0)
MOZ_DELETE;
public:
void swap(UniquePtr& other) {
tuple.swap(other.tuple);
}
private:
UniquePtr(const UniquePtr& other) MOZ_DELETE; // construct using Move()!
void operator=(const UniquePtr& other) MOZ_DELETE; // assign using Move()!
};
/** A default deletion policy using plain old operator delete. */
template<typename T>
class DefaultDelete
{
public:
MOZ_CONSTEXPR DefaultDelete() {}
template<typename U>
DefaultDelete(const DefaultDelete<U>& other,
typename EnableIf<mozilla::IsConvertible<U*, T*>::value,
int>::Type dummy = 0)
{}
void operator()(T* ptr) const {
static_assert(sizeof(T) > 0, "T must be complete");
delete ptr;
}
};
/** A default deletion policy using operator delete[]. */
template<typename T>
class DefaultDelete<T[]>
{
public:
MOZ_CONSTEXPR DefaultDelete() {}
void operator()(T* ptr) const {
static_assert(sizeof(T) > 0, "T must be complete");
delete[] ptr;
}
private:
template<typename U>
void operator()(U* ptr) const MOZ_DELETE;
};
template<typename T, class D>
void
Swap(UniquePtr<T, D>& x, UniquePtr<T, D>& y)
{
x.swap(y);
}
template<typename T, class D, typename U, class E>
bool
operator==(const UniquePtr<T, D>& x, const UniquePtr<U, E>& y)
{
return x.get() == y.get();
}
template<typename T, class D, typename U, class E>
bool
operator!=(const UniquePtr<T, D>& x, const UniquePtr<U, E>& y)
{
return x.get() != y.get();
}
template<typename T, class D>
bool
operator==(const UniquePtr<T, D>& x, NullptrT n)
{
MOZ_ASSERT(n == nullptr);
return !x;
}
template<typename T, class D>
bool
operator==(NullptrT n, const UniquePtr<T, D>& x)
{
MOZ_ASSERT(n == nullptr);
return !x;
}
template<typename T, class D>
bool
operator!=(const UniquePtr<T, D>& x, NullptrT n)
{
MOZ_ASSERT(n == nullptr);
return bool(x);
}
template<typename T, class D>
bool
operator!=(NullptrT n, const UniquePtr<T, D>& x)
{
MOZ_ASSERT(n == nullptr);
return bool(x);
}
// No operator<, operator>, operator<=, operator>= for now because simplicity.
} // namespace mozilla
#endif /* mozilla_UniquePtr_h */

View File

@ -69,6 +69,7 @@ EXPORTS.mozilla = [
'TypedEnumInternal.h',
'Types.h',
'TypeTraits.h',
'UniquePtr.h',
'Vector.h',
'WeakPtr.h',
]

View File

@ -0,0 +1,561 @@
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "mozilla/Compiler.h"
#include "mozilla/Move.h"
#include "mozilla/NullPtr.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Vector.h"
#include <stddef.h>
using mozilla::DefaultDelete;
using mozilla::IsNullPointer;
using mozilla::IsSame;
using mozilla::Swap;
using mozilla::UniquePtr;
using mozilla::Vector;
#define CHECK(c) \
do { \
bool cond = (c); \
MOZ_ASSERT(cond, "Failed assertion: " #c); \
if (!cond) \
return false; \
} while (false)
typedef UniquePtr<int> NewInt;
static_assert(sizeof(NewInt) == sizeof(int*),
"stored most efficiently");
static size_t ADestructorCalls = 0;
struct A
{
public:
A() : x(0) {}
virtual ~A() {
ADestructorCalls++;
}
int x;
};
static size_t BDestructorCalls = 0;
struct B : public A
{
public:
B() : y(1) {}
~B() {
BDestructorCalls++;
}
int y;
};
typedef UniquePtr<A> UniqueA;
typedef UniquePtr<B, UniqueA::DeleterType> UniqueB; // permit interconversion
static_assert(sizeof(UniqueA) == sizeof(A*),
"stored most efficiently");
static_assert(sizeof(UniqueB) == sizeof(B*),
"stored most efficiently");
struct DeleterSubclass : UniqueA::DeleterType {};
typedef UniquePtr<B, DeleterSubclass> UniqueC;
static_assert(sizeof(UniqueC) == sizeof(B*),
"stored most efficiently");
static UniqueA
ReturnUniqueA()
{
return UniqueA(new B);
}
static UniqueA
ReturnLocalA()
{
UniqueA a(new A);
return Move(a);
}
static bool
TestDefaultFreeGuts()
{
static_assert(IsSame<NewInt::DeleterType, DefaultDelete<int> >::value,
"weird deleter?");
NewInt n1(new int);
CHECK(n1);
CHECK(n1.get() != nullptr);
n1 = nullptr;
CHECK(!n1);
CHECK(n1.get() == nullptr);
int* p1 = new int;
n1.reset(p1);
CHECK(n1);
NewInt n2(Move(n1));
CHECK(!n1);
CHECK(n1.get() == nullptr);
CHECK(n2.get() == p1);
Swap(n1, n2);
CHECK(n1.get() == p1);
CHECK(n2.get() == nullptr);
n1.swap(n2);
CHECK(n1.get() == nullptr);
CHECK(n2.get() == p1);
delete n2.release();
CHECK(n1.get() == nullptr);
CHECK(n2 == nullptr);
CHECK(nullptr == n2);
int* p2 = new int;
int* p3 = new int;
n1.reset(p2);
n2.reset(p3);
CHECK(n1.get() == p2);
CHECK(n2.get() == p3);
n1.swap(n2);
CHECK(n2 != nullptr);
CHECK(nullptr != n2);
CHECK(n2.get() == p2);
CHECK(n1.get() == p3);
UniqueA a1;
CHECK(a1 == nullptr);
a1.reset(new A);
CHECK(ADestructorCalls == 0);
CHECK(a1->x == 0);
B* bp1 = new B;
bp1->x = 5;
CHECK(BDestructorCalls == 0);
a1.reset(bp1);
CHECK(ADestructorCalls == 1);
CHECK(a1->x == 5);
a1.reset(nullptr);
CHECK(ADestructorCalls == 2);
CHECK(BDestructorCalls == 1);
B* bp2 = new B;
UniqueB b1(bp2);
UniqueA a2(nullptr);
a2 = Move(b1);
CHECK(ADestructorCalls == 2);
CHECK(BDestructorCalls == 1);
UniqueA a3(Move(a2));
a3 = nullptr;
CHECK(ADestructorCalls == 3);
CHECK(BDestructorCalls == 2);
B* bp3 = new B;
bp3->x = 42;
UniqueB b2(bp3);
UniqueA a4(Move(b2));
CHECK(b2.get() == nullptr);
CHECK((*a4).x == 42);
CHECK(ADestructorCalls == 3);
CHECK(BDestructorCalls == 2);
UniqueA a5(new A);
UniqueB b3(new B);
a5 = Move(b3);
CHECK(ADestructorCalls == 4);
CHECK(BDestructorCalls == 2);
ReturnUniqueA();
CHECK(ADestructorCalls == 5);
CHECK(BDestructorCalls == 3);
ReturnLocalA();
CHECK(ADestructorCalls == 6);
CHECK(BDestructorCalls == 3);
UniqueA a6(ReturnLocalA());
a6 = nullptr;
CHECK(ADestructorCalls == 7);
CHECK(BDestructorCalls == 3);
UniqueC c1(new B);
UniqueA a7(new B);
a7 = Move(c1);
CHECK(ADestructorCalls == 8);
CHECK(BDestructorCalls == 4);
c1.reset(new B);
UniqueA a8(Move(c1));
CHECK(ADestructorCalls == 8);
CHECK(BDestructorCalls == 4);
// These smart pointers still own B resources.
CHECK(a4);
CHECK(a5);
CHECK(a7);
CHECK(a8);
return true;
}
static bool
TestDefaultFree()
{
CHECK(TestDefaultFreeGuts());
CHECK(ADestructorCalls == 12);
CHECK(BDestructorCalls == 8);
return true;
}
static size_t FreeClassCounter = 0;
struct FreeClass
{
public:
FreeClass() {}
void operator()(int* ptr) {
FreeClassCounter++;
delete ptr;
}
};
typedef UniquePtr<int, FreeClass> NewIntCustom;
static_assert(sizeof(NewIntCustom) == sizeof(int*),
"stored most efficiently");
static bool
TestFreeClass()
{
CHECK(FreeClassCounter == 0);
{
NewIntCustom n1(new int);
CHECK(FreeClassCounter == 0);
}
CHECK(FreeClassCounter == 1);
NewIntCustom n2;
{
NewIntCustom n3(new int);
CHECK(FreeClassCounter == 1);
n2 = Move(n3);
}
CHECK(FreeClassCounter == 1);
n2 = nullptr;
CHECK(FreeClassCounter == 2);
n2.reset(nullptr);
CHECK(FreeClassCounter == 2);
n2.reset(new int);
n2.reset();
CHECK(FreeClassCounter == 3);
NewIntCustom n4(new int, FreeClass());
CHECK(FreeClassCounter == 3);
n4.reset(new int);
CHECK(FreeClassCounter == 4);
n4.reset();
CHECK(FreeClassCounter == 5);
FreeClass f;
NewIntCustom n5(new int, f);
CHECK(FreeClassCounter == 5);
int* p = n5.release();
CHECK(FreeClassCounter == 5);
delete p;
return true;
}
typedef UniquePtr<int, DefaultDelete<int>&> IntDeleterRef;
typedef UniquePtr<A, DefaultDelete<A>&> ADeleterRef;
typedef UniquePtr<B, DefaultDelete<A>&> BDeleterRef;
static_assert(sizeof(IntDeleterRef) > sizeof(int*),
"has to be heavier than an int* to store the reference");
static_assert(sizeof(ADeleterRef) > sizeof(A*),
"has to be heavier than an A* to store the reference");
static_assert(sizeof(BDeleterRef) > sizeof(int*),
"has to be heavier than a B* to store the reference");
static bool
TestReferenceDeleterGuts()
{
DefaultDelete<int> delInt;
IntDeleterRef id1(new int, delInt);
IntDeleterRef id2(Move(id1));
CHECK(id1 == nullptr);
CHECK(nullptr != id2);
CHECK(&id1.getDeleter() == &id2.getDeleter());
IntDeleterRef id3(Move(id2));
DefaultDelete<A> delA;
ADeleterRef a1(new A, delA);
a1.reset(nullptr);
a1.reset(new B);
a1 = nullptr;
BDeleterRef b1(new B, delA);
a1 = Move(b1);
BDeleterRef b2(new B, delA);
ADeleterRef a2(Move(b2));
return true;
}
static bool
TestReferenceDeleter()
{
ADestructorCalls = 0;
BDestructorCalls = 0;
CHECK(TestReferenceDeleterGuts());
CHECK(ADestructorCalls == 4);
CHECK(BDestructorCalls == 3);
ADestructorCalls = 0;
BDestructorCalls = 0;
return true;
}
// MSVC10 miscompiles mozilla::RemoveReference<reference to function>, claiming
// that the partial specializations RemoveReference<T&&> and RemoveReference<T&>
// both match RemoveReference<FreeSignature> below. Thus in Mozilla code using
// UniquePtr with a function reference deleter is forbidden. But it doesn't
// hurt to run these tests when the compiler doesn't have problems with this, so
// do so for anything non-MSVC.
#if MOZ_IS_MSVC
// Technically this could be MOZ_MSVC_VERSION_AT_LEAST(11), but we're not
// going to support function deleters as long as we support MSVC10, so it
// hardly matters. In the meantime it's not worth the potential trouble (and
// potential for bustage) to run these tests on MSVC>=11.
# define SHOULD_TEST_FUNCTION_REFERENCE_DELETER 0
#else
# define SHOULD_TEST_FUNCTION_REFERENCE_DELETER 1
#endif
#if SHOULD_TEST_FUNCTION_REFERENCE_DELETER
typedef void (&FreeSignature)(void*);
static size_t DeleteIntFunctionCallCount = 0;
static void
DeleteIntFunction(void* ptr)
{
DeleteIntFunctionCallCount++;
delete static_cast<int*>(ptr);
}
static void
SetMallocedInt(UniquePtr<int, FreeSignature>& ptr, int i)
{
int* newPtr = static_cast<int*>(malloc(sizeof(int)));
*newPtr = i;
ptr.reset(newPtr);
}
static UniquePtr<int, FreeSignature>
MallocedInt(int i)
{
UniquePtr<int, FreeSignature> ptr(static_cast<int*>(malloc(sizeof(int))), free);
*ptr = i;
return Move(ptr);
}
static bool
TestFunctionReferenceDeleter()
{
// Look for allocator mismatches and leaks to verify these bits
UniquePtr<int, FreeSignature> i1(MallocedInt(17));
CHECK(*i1 == 17);
SetMallocedInt(i1, 42);
CHECK(*i1 == 42);
// These bits use a custom deleter so we can instrument deletion.
{
UniquePtr<int, FreeSignature> i2 =
UniquePtr<int, FreeSignature>(new int(42), DeleteIntFunction);
CHECK(DeleteIntFunctionCallCount == 0);
i2.reset(new int(76));
CHECK(DeleteIntFunctionCallCount == 1);
}
CHECK(DeleteIntFunctionCallCount == 2);
return true;
}
#endif // SHOULD_TEST_FUNCTION_REFERENCE_DELETER
template<typename T, bool = IsNullPointer<decltype(nullptr)>::value>
struct AppendNullptrTwice;
template<typename T>
struct AppendNullptrTwice<T, false>
{
AppendNullptrTwice() {}
bool operator()(Vector<T>& vec) {
CHECK(vec.append(static_cast<typename T::Pointer>(nullptr)));
CHECK(vec.append(static_cast<typename T::Pointer>(nullptr)));
return true;
}
};
template<typename T>
struct AppendNullptrTwice<T, true>
{
AppendNullptrTwice() {}
bool operator()(Vector<T>& vec) {
CHECK(vec.append(nullptr));
CHECK(vec.append(nullptr));
return true;
}
};
static size_t AAfter;
static size_t BAfter;
static bool
TestVectorGuts()
{
Vector<UniqueA> vec;
CHECK(vec.append(new B));
CHECK(vec.append(new A));
CHECK(AppendNullptrTwice<UniqueA>()(vec));
CHECK(vec.append(new B));
size_t initialLength = vec.length();
UniqueA* begin = vec.begin();
bool appendA = true;
do {
CHECK(appendA ? vec.append(new A) : vec.append(new B));
appendA = !appendA;
} while (begin == vec.begin());
size_t numAppended = vec.length() - initialLength;
BAfter = numAppended / 2;
AAfter = numAppended - numAppended / 2;
CHECK(ADestructorCalls == 0);
CHECK(BDestructorCalls == 0);
return true;
}
static bool
TestVector()
{
ADestructorCalls = 0;
BDestructorCalls = 0;
CHECK(TestVectorGuts());
CHECK(ADestructorCalls == 3 + AAfter + BAfter);
CHECK(BDestructorCalls == 2 + BAfter);
return true;
}
typedef UniquePtr<int[]> IntArray;
static_assert(sizeof(IntArray) == sizeof(int*),
"stored most efficiently");
static bool
TestArray()
{
static_assert(IsSame<IntArray::DeleterType, DefaultDelete<int[]> >::value,
"weird deleter?");
IntArray n1(new int[5]);
CHECK(n1);
CHECK(n1.get() != nullptr);
n1 = nullptr;
CHECK(!n1);
CHECK(n1.get() == nullptr);
int* p1 = new int[42];
n1.reset(p1);
CHECK(n1);
IntArray n2(Move(n1));
CHECK(!n1);
CHECK(n1.get() == nullptr);
CHECK(n2.get() == p1);
Swap(n1, n2);
CHECK(n1.get() == p1);
CHECK(n2.get() == nullptr);
n1.swap(n2);
CHECK(n1.get() == nullptr);
CHECK(n2.get() == p1);
delete[] n2.release();
CHECK(n1.get() == nullptr);
CHECK(n2.get() == nullptr);
int* p2 = new int[7];
int* p3 = new int[42];
n1.reset(p2);
n2.reset(p3);
CHECK(n1.get() == p2);
CHECK(n2.get() == p3);
n1.swap(n2);
CHECK(n2.get() == p2);
CHECK(n1.get() == p3);
n1 = Move(n2);
CHECK(n1.get() == p2);
n1 = Move(n2);
CHECK(n1.get() == nullptr);
UniquePtr<A[]> a1(new A[17]);
static_assert(sizeof(a1) == sizeof(A*),
"stored most efficiently");
UniquePtr<A[]> a2(new A[5], DefaultDelete<A[]>());
a2.reset(nullptr);
a2.reset(new A[17]);
a2 = nullptr;
UniquePtr<A[]> a3(nullptr);
a3.reset(new A[7]);
return true;
}
int
main()
{
if (!TestDefaultFree())
return 1;
if (!TestFreeClass())
return 1;
if (!TestReferenceDeleter())
return 1;
if (!TestFunctionReferenceDeleter())
return 1;
if (!TestVector())
return 1;
if (!TestArray())
return 1;
}

View File

@ -25,6 +25,7 @@ CPP_UNIT_TESTS += [
'TestSHA1.cpp',
'TestTypedEnum.cpp',
'TestTypeTraits.cpp',
'TestUniquePtr.cpp',
'TestWeakPtr.cpp',
]