Bug 519873 - NJ merge: lirasm --random mode. r=graydon.

This commit is contained in:
Nicholas Nethercote 2009-10-12 08:48:13 +11:00
parent 12e43d492a
commit 48efd3883f
8 changed files with 954 additions and 78 deletions

View File

@ -0,0 +1,117 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=0 ft=C:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is SpiderMonkey nanojit.
*
* The Initial Developer of the Original Code is
* the Mozilla Corporation.
* Portions created by the Initial Developer are Copyright (C) 2009
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Nicholas Nethercote <nnethercote@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* LIns classes, as required for --random mode. Includers must define a CLASS
* macro of the following form:
*
* #define CLASS(name, only64bit, relFreq) ...
*
* Selected arguments can be used within the macro expansions.
*
* Field Description
* ----- -----------
* name Name of the instruction class. The types are B (boolean), I
* (32-bit integer), Q (64-bit integer), F (64-bit float), N
* (null). A name of the form LOP_Z_XY means that it takes
* arguments of type X and Y and produces a result of type Z.
*
* only64bit 1 if the instruction class is only used on 64-bit platforms, 0
* otherwise.
*
* relFreq We weight each class differently, so that some classes are more
* common than others. This field gives the relative frequency of
* the instruction class. All the relFreqs together can sum up to
* any number, but it's easier to think about if the sum is a
* round number. (That's why the relFreqs add up to 100%; the
* running total is shown in comments.) The sum also shouldn't be
* too big, as we generate a table with that many elements in it.
*
* Note that we want a decent number of value sinks (eg.
* stores, calls, guards) and not too many value sources (eg.
* immediates, loads) so that the amount of dead code generated is
* reasonable.
*/
CLASS( LFENCE, 0, 1) // 1% LIR_regfence, LIR_xbarrier
CLASS( LIMM_I, 0, 4) // 5% LIR_imm
CLASS( LIMM_Q, 1, 3) // 8% LIR_quad
CLASS( LIMM_F, 0, 4) // 12% LIR_float
CLASS( LOP_I_I, 0, 2) // 14% LIR_neg, LIR_not
CLASS( LOP_Q_Q, 1, 0) // 14% (none)
CLASS( LOP_F_F, 0, 2) // 16% LIR_fneg
CLASS( LOP_I_II, 0, 16) // 32% LIR_add, LIR_and, LIR_eq, etc.
CLASS( LOP_Q_QQ, 1, 9) // 41% LIR_qiadd, LIR_qiand, LIR_qeq, etc.
CLASS( LOP_F_FF, 0, 10) // 51% LIR_fadd, etc.
// cmov has a low weight because is also used with LIR_div/LIR_mod.
CLASS( LOP_I_BII, 0, 1) // 52% LIR_cmov
CLASS( LOP_Q_BQQ, 1, 2) // 54% LIR_qcmov
CLASS( LOP_B_II, 0, 3) // 57% LIR_eq, LIR_lt, etc
CLASS( LOP_B_QQ, 1, 3) // 60% LIR_qeq, LIR_qlt, etc
CLASS( LOP_B_FF, 0, 3) // 63% LIR_feq, LIR_flt, etc
CLASS( LOP_Q_I, 1, 2) // 65% LIR_i2q, LIR_u2q
CLASS( LOP_F_I, 0, 2) // 67% LIR_i2f, LIR_u2f
CLASS( LOP_I_F, 0, 2) // 69% LIR_qlo, LIR_qhi
CLASS( LOP_F_II, 0, 1) // 70% LIR_qjoin
// XXX: "QorF" because the same opcode is used for both 64-bit int and
// 64-bit float loads. Ditto for stores. That should be fixed, see
// bug 520714.
CLASS( LLD_I, 0, 4) // 74% LIR_ld
CLASS( LLD_QorF, 0, 4) // 78% LIR_ldq
CLASS( LST_I, 0, 7) // 85% LIR_sti
CLASS( LST_QorF, 0, 7) // 92% LIR_stqi
CLASS( LCALL_I_I1, 0, 1) // 93% LIR_icall
CLASS( LCALL_I_I6, 0, 1) // 94% LIR_icall
CLASS( LCALL_Q_Q2, 1, 1) // 95% LIR_qcall
CLASS( LCALL_Q_Q7, 1, 1) // 96% LIR_qcall
CLASS( LCALL_F_F3, 0, 1) // 97% LIR_fcall
CLASS( LCALL_F_F8, 0, 1) // 98% LIR_fcall
CLASS( LCALL_N_IQF, 1, 1) // 99% LIR_icall or LIR_qcall
CLASS( LLABEL, 0, 1) //100% LIR_label

View File

@ -104,11 +104,11 @@ nanojit::LirNameMap::formatGuard(LIns *i, char *out)
x = (LasmSideExit *)i->record()->exit;
sprintf(out,
"%s: %s %s -> line=%d (GuardID=%03d)",
"%s: %s %s -> line=%ld (GuardID=%03d)",
formatRef(i),
lirNames[i->opcode()],
i->oprnd1() ? formatRef(i->oprnd1()) : "",
x->line,
(long)x->line,
i->record()->profGuardID);
}
#endif
@ -134,10 +134,12 @@ enum ReturnType {
#define DEBUG_ONLY_NAME(name)
#endif
#define CI(name, args) \
{(uintptr_t) (&name), args, /*_cse*/0, /*_fold*/0, nanojit::ABI_CDECL \
DEBUG_ONLY_NAME(name)}
#define FN(name, args) \
{#name, \
{(uintptr_t) (&name), args, 0, 0, nanojit::ABI_CDECL \
DEBUG_ONLY_NAME(name)}}
{#name, CI(name, args)}
const int I32 = nanojit::ARGSIZE_LO;
const int I64 = nanojit::ARGSIZE_Q;
@ -254,6 +256,7 @@ public:
~Lirasm();
void assemble(istream &in);
void assembleRandom(int nIns);
void lookupFunction(const string &name, CallInfo *&ci);
LirBuffer *mLirbuf;
@ -285,6 +288,8 @@ public:
bool implicitBegin,
const LirToken *firstToken);
void assembleRandomFragment(int nIns);
private:
static uint32_t sProfId;
// Prohibit copying.
@ -325,6 +330,24 @@ private:
void endFragment();
};
// Meaning: arg 'm' of 'n' has size 'sz'.
static int argMask(int sz, int m, int n)
{
// Order examples, from MSB to LSB:
// - 3 args: 000 | 000 | 000 | 000 | 000 | arg1| arg2| arg3| ret
// - 8 args: arg1| arg2| arg3| arg4| arg5| arg6| arg7| arg8| ret
// If the mask encoding reversed the arg order the 'n' parameter wouldn't
// be necessary, as argN would always be in the same place in the
// bitfield.
return sz << ((1 + n - m) * ARGSIZE_SHIFT);
}
// Return value has size 'sz'.
static int retMask(int sz)
{
return sz;
}
// 'sin' is overloaded on some platforms, so taking its address
// doesn't quite work. Provide a do-nothing function here
// that's not overloaded.
@ -334,10 +357,10 @@ double sinFn(double d) {
#define sin sinFn
Function functions[] = {
FN(puts, I32 | (PTRARG<<2)),
FN(sin, F64 | (F64<<2)),
FN(malloc, PTRRET | (PTRARG<<2)),
FN(free, I32 | (PTRARG<<2))
FN(puts, argMask(PTRARG, 1, 1) | retMask(I32)),
FN(sin, argMask(F64, 1, 1) | retMask(F64)),
FN(malloc, argMask(PTRARG, 1, 1) | retMask(PTRRET)),
FN(free, argMask(PTRARG, 1, 1) | retMask(I32))
};
template<typename out, typename in> out
@ -466,7 +489,8 @@ uint32_t
FragmentAssembler::sProfId = 0;
FragmentAssembler::FragmentAssembler(Lirasm &parent, const string &fragmentName)
: mParent(parent), mFragName(fragmentName)
: mParent(parent), mFragName(fragmentName),
mBufWriter(NULL), mCseFilter(NULL), mExprFilter(NULL), mVerboseWriter(NULL)
{
mFragment = new Fragment(NULL verbose_only(, (mParent.mLogc.lcbits &
nanojit::LC_FragProfile) ?
@ -475,19 +499,15 @@ FragmentAssembler::FragmentAssembler(Lirasm &parent, const string &fragmentName)
mFragment->root = mFragment;
mParent.mFragments[mFragName].fragptr = mFragment;
mBufWriter = new LirBufWriter(mParent.mLirbuf);
mCseFilter = new CseFilter(mBufWriter, mParent.mAlloc);
mExprFilter = new ExprFilter(mCseFilter);
mVerboseWriter = NULL;
mLir = mExprFilter;
mLir = mBufWriter = new LirBufWriter(mParent.mLirbuf);
mLir = mCseFilter = new CseFilter(mLir, mParent.mAlloc);
mLir = mExprFilter = new ExprFilter(mLir);
#ifdef DEBUG
if (mParent.mVerbose) {
mVerboseWriter = new VerboseWriter(mParent.mAlloc,
mExprFilter,
mLir = mVerboseWriter = new VerboseWriter(mParent.mAlloc, mLir,
mParent.mLirbuf->names,
&mParent.mLogc);
mLir = mVerboseWriter;
}
#endif
@ -941,6 +961,678 @@ FragmentAssembler::assembleFragment(LirTokenStream &in, bool implicitBegin, cons
endFragment();
}
/* ------------------ Support for --random -------------------------- */
// Returns a positive integer in the range 0..(lim-1).
static inline size_t
rnd(size_t lim)
{
size_t i = size_t(random());
return i % lim;
}
// Returns an int32_t in the range -RAND_MAX..RAND_MAX.
static inline int32_t
rndI32()
{
return (rnd(2) ? 1 : -1) * random();
}
// The maximum number of live values (per type, ie. B/I/Q/F) that are
// available to be used as operands. If we make it too high we're prone to
// run out of stack space due to spilling. If the stack size increases (see
// bug 473769) this situation will improve.
const size_t maxLiveValuesPerType = 20;
// Returns a uint32_t in the range 0..(RAND_MAX*2).
static inline uint32_t
rndU32()
{
return uint32_t(rnd(2) ? 0 : RAND_MAX) + uint32_t(random());
}
template<typename t> t
rndPick(vector<t> &v)
{
assert(!v.empty());
return v[rnd(v.size())];
}
// Add the operand, and retire an old one if we have too many.
template<typename t> void
addOrReplace(vector<t> &v, t x)
{
if (v.size() > maxLiveValuesPerType) {
v[rnd(v.size())] = x; // we're full: overwrite an existing element
} else {
v.push_back(x); // add to end
}
}
// Returns a 4-aligned address within the scratch space.
static int32_t rndOffset32(size_t scratchSzB)
{
return int32_t(rnd(scratchSzB)) & ~3;
}
// Returns an 8-aligned address within the scratch space.
static int32_t rndOffset64(size_t scratchSzB)
{
return int32_t(rnd(scratchSzB)) & ~7;
}
static int32_t f_I_I1(int32_t a)
{
return a;
}
static int32_t f_I_I6(int32_t a, int32_t b, int32_t c, int32_t d, int32_t e, int32_t f)
{
return a + b + c + d + e + f;
}
static uint64_t f_Q_Q2(uint64_t a, uint64_t b)
{
return a + b;
}
static uint64_t f_Q_Q7(uint64_t a, uint64_t b, uint64_t c, uint64_t d,
uint64_t e, uint64_t f, uint64_t g)
{
return a + b + c + d + e + f + g;
}
static double f_F_F3(double a, double b, double c)
{
return a + b + c;
}
static double f_F_F8(double a, double b, double c, double d,
double e, double f, double g, double h)
{
return a + b + c + d + e + f + g + h;
}
static void f_N_IQF(int32_t a, uint64_t b, double c)
{
return; // no need to do anything
}
const CallInfo ci_I_I1 = CI(f_I_I1, argMask(I32, 1, 1) |
retMask(I32));
const CallInfo ci_I_I6 = CI(f_I_I6, argMask(I32, 1, 6) |
argMask(I32, 2, 6) |
argMask(I32, 3, 6) |
argMask(I32, 4, 6) |
argMask(I32, 5, 6) |
argMask(I32, 6, 6) |
retMask(I32));
const CallInfo ci_Q_Q2 = CI(f_Q_Q2, argMask(I64, 1, 2) |
argMask(I64, 2, 2) |
retMask(I64));
const CallInfo ci_Q_Q7 = CI(f_Q_Q7, argMask(I64, 1, 7) |
argMask(I64, 2, 7) |
argMask(I64, 3, 7) |
argMask(I64, 4, 7) |
argMask(I64, 5, 7) |
argMask(I64, 6, 7) |
argMask(I64, 7, 7) |
retMask(I64));
const CallInfo ci_F_F3 = CI(f_F_F3, argMask(F64, 1, 3) |
argMask(F64, 2, 3) |
argMask(F64, 3, 3) |
retMask(F64));
const CallInfo ci_F_F8 = CI(f_F_F8, argMask(F64, 1, 8) |
argMask(F64, 2, 8) |
argMask(F64, 3, 8) |
argMask(F64, 4, 8) |
argMask(F64, 5, 8) |
argMask(F64, 6, 8) |
argMask(F64, 7, 8) |
argMask(F64, 8, 8) |
retMask(F64));
const CallInfo ci_N_IQF = CI(f_N_IQF, argMask(I32, 1, 3) |
argMask(I64, 2, 3) |
argMask(F64, 3, 3) |
retMask(ARGSIZE_NONE));
// Generate a random block containing nIns instructions, plus a few more
// setup/shutdown ones at the start and end.
//
// Basic operation:
// - We divide LIR into numerous classes, mostly according to their type.
// (See LInsClasses.tbl for details.) Each time around the loop we choose
// the class randomly, but there is weighting so that some classes are more
// common than others, in an attempt to reflect the structure of real code.
// - Each instruction that produces a value is put in a buffer of the
// appropriate type, for possible use as an operand of a later instruction.
// This buffer is trimmed when its size exceeds 'maxLiveValuesPerType'.
// - If not enough operands are present in a buffer for the particular
// instruction, we don't add it.
// - Skips aren't explicitly generated, but they do occcur if the fragment is
// sufficiently big that it's spread across multiple chunks.
//
// The following instructions aren't generated yet:
// - dbreak (hard to test, and not implemented in NJ)
// - iparam/qparam (hard to test beyond what is auto-generated in fragment
// prologues)
// - ialloc/qalloc (except for the load/store scratch space; hard to do so
// long as the stack is only 1024 bytes, see bug 473769)
// - live/flive
// - callh
// - x/xt/xf/xtbl (hard to test without having multiple fragments; when we
// only have one fragment we don't really want to leave it early)
// - ret/fret (hard to test without having multiple fragments)
// - j/jt/jf/ji/label (ji is not implemented in NJ)
// - ov (takes an arithmetic (int or FP) value as operand, and must
// immediately follow it to be safe... not that that really matters in
// randomly generated code)
// - file/line (#ifdef VTUNE only)
// - fmod (not implemented in NJ)
//
void
FragmentAssembler::assembleRandomFragment(int nIns)
{
vector<LIns*> Bs;
vector<LIns*> Is;
vector<LIns*> Qs;
vector<LIns*> Fs;
vector<LOpcode> I_I_ops;
I_I_ops.push_back(LIR_neg);
I_I_ops.push_back(LIR_not);
// Nb: there are no Q_Q_ops.
vector<LOpcode> F_F_ops;
F_F_ops.push_back(LIR_fneg);
vector<LOpcode> I_II_ops;
I_II_ops.push_back(LIR_add);
I_II_ops.push_back(LIR_iaddp);
I_II_ops.push_back(LIR_sub);
I_II_ops.push_back(LIR_mul);
I_II_ops.push_back(LIR_div);
#if defined NANOJIT_IA32 || defined NANOJIT_X64
I_II_ops.push_back(LIR_mod);
#endif
I_II_ops.push_back(LIR_and);
I_II_ops.push_back(LIR_or);
I_II_ops.push_back(LIR_xor);
I_II_ops.push_back(LIR_lsh);
I_II_ops.push_back(LIR_rsh);
I_II_ops.push_back(LIR_ush);
vector<LOpcode> Q_QQ_ops;
Q_QQ_ops.push_back(LIR_qiadd);
Q_QQ_ops.push_back(LIR_qaddp);
Q_QQ_ops.push_back(LIR_qiand);
Q_QQ_ops.push_back(LIR_qior);
Q_QQ_ops.push_back(LIR_qxor);
Q_QQ_ops.push_back(LIR_qilsh);
Q_QQ_ops.push_back(LIR_qirsh);
Q_QQ_ops.push_back(LIR_qursh);
vector<LOpcode> F_FF_ops;
F_FF_ops.push_back(LIR_fadd);
F_FF_ops.push_back(LIR_fsub);
F_FF_ops.push_back(LIR_fmul);
F_FF_ops.push_back(LIR_fdiv);
vector<LOpcode> I_BII_ops;
I_BII_ops.push_back(LIR_cmov);
vector<LOpcode> Q_BQQ_ops;
Q_BQQ_ops.push_back(LIR_qcmov);
vector<LOpcode> B_II_ops;
B_II_ops.push_back(LIR_eq);
B_II_ops.push_back(LIR_lt);
B_II_ops.push_back(LIR_gt);
B_II_ops.push_back(LIR_le);
B_II_ops.push_back(LIR_ge);
B_II_ops.push_back(LIR_ult);
B_II_ops.push_back(LIR_ugt);
B_II_ops.push_back(LIR_ule);
B_II_ops.push_back(LIR_uge);
vector<LOpcode> B_QQ_ops;
B_QQ_ops.push_back(LIR_qeq);
B_QQ_ops.push_back(LIR_qlt);
B_QQ_ops.push_back(LIR_qgt);
B_QQ_ops.push_back(LIR_qle);
B_QQ_ops.push_back(LIR_qge);
B_QQ_ops.push_back(LIR_qult);
B_QQ_ops.push_back(LIR_qugt);
B_QQ_ops.push_back(LIR_qule);
B_QQ_ops.push_back(LIR_quge);
vector<LOpcode> B_FF_ops;
B_FF_ops.push_back(LIR_feq);
B_FF_ops.push_back(LIR_flt);
B_FF_ops.push_back(LIR_fgt);
B_FF_ops.push_back(LIR_fle);
B_FF_ops.push_back(LIR_fge);
vector<LOpcode> Q_I_ops;
Q_I_ops.push_back(LIR_i2q);
Q_I_ops.push_back(LIR_u2q);
vector<LOpcode> F_I_ops;
F_I_ops.push_back(LIR_i2f);
F_I_ops.push_back(LIR_u2f);
vector<LOpcode> I_F_ops;
I_F_ops.push_back(LIR_qlo);
I_F_ops.push_back(LIR_qhi);
vector<LOpcode> F_II_ops;
F_II_ops.push_back(LIR_qjoin);
vector<LOpcode> I_loads;
I_loads.push_back(LIR_ld); // weight LIR_ld the heaviest
I_loads.push_back(LIR_ld);
I_loads.push_back(LIR_ld);
I_loads.push_back(LIR_ldc);
I_loads.push_back(LIR_ldcb);
I_loads.push_back(LIR_ldcs);
vector<LOpcode> QorF_loads;
QorF_loads.push_back(LIR_ldq); // weight LIR_ldq the heaviest
QorF_loads.push_back(LIR_ldq);
QorF_loads.push_back(LIR_ldqc);
enum LInsClass {
#define CLASS(name, only64bit, relFreq) name,
#include "LInsClasses.tbl"
#undef CLASS
LLAST
};
int relFreqs[LLAST];
memset(relFreqs, 0, sizeof(relFreqs));
#if defined NANOJIT_64BIT
#define CLASS(name, only64bit, relFreq) relFreqs[name] = relFreq;
#else
#define CLASS(name, only64bit, relFreq) relFreqs[name] = only64bit ? 0 : relFreq;
#endif
#include "LInsClasses.tbl"
#undef CLASS
int relFreqsSum = 0; // the sum of the individual relative frequencies
for (int c = 0; c < LLAST; c++) {
relFreqsSum += relFreqs[c];
}
// The number of times each LInsClass value appears in classGenerator[]
// matches 'relFreqs' (see LInsClasses.tbl). Eg. if relFreqs[LIMM_I] ==
// 10, then LIMM_I appears in classGenerator[] 10 times.
LInsClass* classGenerator = new LInsClass[relFreqsSum];
int j = 0;
for (int c = 0; c < LLAST; c++) {
for (int i = 0; i < relFreqs[c]; i++) {
classGenerator[j++] = LInsClass(c);
}
}
// An area on the stack in which we do our loads and stores.
// NJ_MAX_STACK_ENTRY entries has a size of NJ_MAX_STACK_ENTRY*4 bytes, so
// we use a quarter of the maximum stack size.
const size_t scratchSzB = NJ_MAX_STACK_ENTRY;
LIns *scratch = mLir->insAlloc(scratchSzB);
int n = 0;
while (n < nIns) {
LIns *ins;
switch (classGenerator[rnd(relFreqsSum)]) {
case LFENCE:
if (rnd(2)) {
mLir->ins0(LIR_regfence);
} else {
mLir->insGuard(LIR_xbarrier, NULL, createGuardRecord(createSideExit()));
}
n++;
break;
// For the immediates, we bias towards smaller numbers, especially 0
// and 1 and small multiples of 4 which are common due to memory
// addressing. This puts some realistic stress on CseFilter.
case LIMM_I: {
int32_t imm32 = 0; // shut gcc up
switch (rnd(5)) {
case 0: imm32 = 0; break;
case 1: imm32 = 1; break;
case 2: imm32 = 4 * (rnd(256) + 1); break; // 4, 8, ..., 1024
case 3: imm32 = rnd(19999) - 9999; break; // -9999..9999
case 4: imm32 = rndI32(); break; // -RAND_MAX..RAND_MAX
}
ins = mLir->insImm(imm32);
addOrReplace(Is, ins);
n++;
break;
}
case LIMM_Q: {
uint64_t imm64 = 0;
switch (rnd(5)) {
case 0: imm64 = 0; break;
case 1: imm64 = 1; break;
case 2: imm64 = 4 * (rnd(256) + 1); break; // 4, 8, ..., 1024
case 3: imm64 = rnd(19999) - 9999; break; // -9999..9999
case 4: imm64 = uint64_t(rndU32()) << 32 | rndU32(); break; // possibly big!
}
ins = mLir->insImmq(imm64);
addOrReplace(Qs, ins);
n++;
break;
}
case LIMM_F: {
// We don't explicitly generate infinities and NaNs here, but they
// end up occurring due to ExprFilter evaluating expressions like
// fdiv(1,0) and fdiv(Infinity,Infinity).
double imm64f = 0;
switch (rnd(5)) {
case 0: imm64f = 0.0; break;
case 1: imm64f = 1.0; break;
case 2:
case 3: imm64f = double(rnd(1000)); break; // 0.0..9999.0
case 4:
union {
double d;
uint64_t q;
} u;
u.q = uint64_t(rndU32()) << 32 | rndU32();
imm64f = u.d;
break;
}
ins = mLir->insImmf(imm64f);
addOrReplace(Fs, ins);
n++;
break;
}
case LOP_I_I:
if (!Is.empty()) {
ins = mLir->ins1(rndPick(I_I_ops), rndPick(Is));
addOrReplace(Is, ins);
n++;
}
break;
// case LOP_Q_Q: no instruction in this category
case LOP_F_F:
if (!Fs.empty()) {
ins = mLir->ins1(rndPick(F_F_ops), rndPick(Fs));
addOrReplace(Fs, ins);
n++;
}
break;
case LOP_I_II:
if (!Is.empty()) {
LOpcode op = rndPick(I_II_ops);
LIns* lhs = rndPick(Is);
LIns* rhs = rndPick(Is);
if (op == LIR_div || op == LIR_mod) {
// XXX: ExprFilter can't fold a div/mod with constant
// args, due to the horrible semantics of LIR_mod. So we
// just don't generate anything if we hit that case.
if (!lhs->isconst() || !rhs->isconst()) {
// If the divisor is positive, no problems. If it's zero, we get an
// exception. If it's -1 and the dividend is -2147483648 (-2^31) we get
// an exception (and this has been encountered in practice). So we only
// allow positive divisors, ie. compute: lhs / (rhs > 0 ? rhs : -k),
// where k is a random number in the range 2..100 (this ensures we have
// some negative divisors).
LIns* gt0 = mLir->ins2i(LIR_gt, rhs, 0);
LIns* rhs2 = mLir->ins3(LIR_cmov, gt0, rhs, mLir->insImm(-rnd(99) - 2));
LIns* div = mLir->ins2(LIR_div, lhs, rhs2);
if (op == LIR_div) {
ins = div;
addOrReplace(Is, ins);
n += 5;
} else {
ins = mLir->ins1(LIR_mod, div);
// Add 'div' to the operands too so it might be used again, because
// the code generated is different as compared to the case where 'div'
// isn't used again.
addOrReplace(Is, div);
addOrReplace(Is, ins);
n += 6;
}
}
} else {
ins = mLir->ins2(op, lhs, rhs);
addOrReplace(Is, ins);
n++;
}
}
break;
case LOP_Q_QQ:
if (!Qs.empty()) {
ins = mLir->ins2(rndPick(Q_QQ_ops), rndPick(Qs), rndPick(Qs));
addOrReplace(Qs, ins);
n++;
}
break;
case LOP_F_FF:
if (!Fs.empty()) {
ins = mLir->ins2(rndPick(F_FF_ops), rndPick(Fs), rndPick(Fs));
addOrReplace(Fs, ins);
n++;
}
break;
case LOP_I_BII:
if (!Bs.empty() && !Is.empty()) {
ins = mLir->ins3(rndPick(I_BII_ops), rndPick(Bs), rndPick(Is), rndPick(Is));
addOrReplace(Is, ins);
n++;
}
break;
case LOP_Q_BQQ:
if (!Bs.empty() && !Qs.empty()) {
ins = mLir->ins3(rndPick(Q_BQQ_ops), rndPick(Bs), rndPick(Qs), rndPick(Qs));
addOrReplace(Qs, ins);
n++;
}
break;
case LOP_B_II:
if (!Is.empty()) {
ins = mLir->ins2(rndPick(B_II_ops), rndPick(Is), rndPick(Is));
addOrReplace(Bs, ins);
n++;
}
break;
case LOP_B_QQ:
if (!Qs.empty()) {
ins = mLir->ins2(rndPick(B_QQ_ops), rndPick(Qs), rndPick(Qs));
addOrReplace(Bs, ins);
n++;
}
break;
case LOP_B_FF:
if (!Fs.empty()) {
ins = mLir->ins2(rndPick(B_FF_ops), rndPick(Fs), rndPick(Fs));
// XXX: we don't push the result, because most (all?) of the
// backends currently can't handle cmovs/qcmovs that take
// float comparisons for the test (see bug 520944). This means
// that all B_FF values are dead, unfortunately.
//addOrReplace(Bs, ins);
n++;
}
break;
case LOP_Q_I:
if (!Is.empty()) {
ins = mLir->ins1(rndPick(Q_I_ops), rndPick(Is));
addOrReplace(Qs, ins);
n++;
}
break;
case LOP_F_I:
if (!Is.empty()) {
ins = mLir->ins1(rndPick(F_I_ops), rndPick(Is));
addOrReplace(Fs, ins);
n++;
}
break;
case LOP_I_F:
// XXX: NativeX64 doesn't implement qhi yet (and it may not need to).
#if !defined NANOJIT_X64
if (!Fs.empty()) {
ins = mLir->ins1(rndPick(I_F_ops), rndPick(Fs));
addOrReplace(Is, ins);
n++;
}
#endif
break;
case LOP_F_II:
// XXX: NativeX64 doesn't implement qhi yet (and it may not need to).
#if !defined NANOJIT_X64
if (!Is.empty()) {
ins = mLir->ins2(rndPick(F_II_ops), rndPick(Is), rndPick(Is));
addOrReplace(Fs, ins);
n++;
}
#endif
break;
case LLD_I:
ins = mLir->insLoad(rndPick(I_loads), scratch, rndOffset32(scratchSzB));
addOrReplace(Is, ins);
n++;
break;
case LLD_QorF:
ins = mLir->insLoad(rndPick(QorF_loads), scratch, rndOffset64(scratchSzB));
addOrReplace((rnd(2) ? Qs : Fs), ins);
n++;
break;
case LST_I:
if (!Is.empty()) {
mLir->insStorei(rndPick(Is), scratch, rndOffset32(scratchSzB));
n++;
}
break;
case LST_QorF:
if (!Fs.empty()) {
mLir->insStorei(rndPick(Fs), scratch, rndOffset64(scratchSzB));
n++;
}
break;
case LCALL_I_I1:
if (!Is.empty()) {
LIns* args[1] = { rndPick(Is) };
ins = mLir->insCall(&ci_I_I1, args);
addOrReplace(Is, ins);
n++;
}
break;
case LCALL_I_I6:
if (!Is.empty()) {
LIns* args[6] = { rndPick(Is), rndPick(Is), rndPick(Is),
rndPick(Is), rndPick(Is), rndPick(Is) };
ins = mLir->insCall(&ci_I_I6, args);
addOrReplace(Is, ins);
n++;
}
break;
case LCALL_Q_Q2:
if (!Qs.empty()) {
LIns* args[2] = { rndPick(Qs), rndPick(Qs) };
ins = mLir->insCall(&ci_Q_Q2, args);
addOrReplace(Qs, ins);
n++;
}
break;
case LCALL_Q_Q7:
if (!Qs.empty()) {
LIns* args[7] = { rndPick(Qs), rndPick(Qs), rndPick(Qs), rndPick(Qs),
rndPick(Qs), rndPick(Qs), rndPick(Qs) };
ins = mLir->insCall(&ci_Q_Q7, args);
addOrReplace(Qs, ins);
n++;
}
break;
case LCALL_F_F3:
if (!Fs.empty()) {
LIns* args[3] = { rndPick(Fs), rndPick(Fs), rndPick(Fs) };
ins = mLir->insCall(&ci_F_F3, args);
addOrReplace(Fs, ins);
n++;
}
break;
case LCALL_F_F8:
if (!Fs.empty()) {
LIns* args[8] = { rndPick(Fs), rndPick(Fs), rndPick(Fs), rndPick(Fs),
rndPick(Fs), rndPick(Fs), rndPick(Fs), rndPick(Fs) };
ins = mLir->insCall(&ci_F_F8, args);
addOrReplace(Fs, ins);
n++;
}
break;
case LCALL_N_IQF:
if (!Is.empty() && !Qs.empty() && !Fs.empty()) {
// Nb: args[] holds the args in reverse order... sigh.
LIns* args[3] = { rndPick(Fs), rndPick(Qs), rndPick(Is) };
ins = mLir->insCall(&ci_N_IQF, args);
n++;
}
break;
case LLABEL:
// Although no jumps are generated yet, labels are important
// because they delimit areas where CSE can be applied. Without
// them, CSE can be applied over very long regions, which leads to
// values that have very large live ranges, which leads to stack
// overflows.
mLir->ins0(LIR_label);
n++;
break;
default:
NanoAssert(0);
break;
}
}
delete[] classGenerator;
// End with a vanilla exit.
mReturnTypeBits |= RT_GUARD;
endFragment();
}
Lirasm::Lirasm(bool verbose) :
mAssm(mCodeAlloc, mAlloc, &mCore, &mLogc)
{
@ -951,7 +1643,7 @@ Lirasm::Lirasm(bool verbose) :
mLirbuf = new (mAlloc) LirBuffer(mAlloc);
#ifdef DEBUG
if (mVerbose) {
mLogc.lcbits = LC_Assembly;
mLogc.lcbits = LC_Assembly | LC_RegAlloc | LC_Activation;
mLabelMap = new (mAlloc) LabelMap(mAlloc, &mLogc);
mLirbuf->names = new (mAlloc) LirNameMap(mAlloc, mLabelMap);
}
@ -1051,6 +1743,14 @@ Lirasm::assemble(istream &in)
}
}
void
Lirasm::assembleRandom(int nIns)
{
string name = "main";
FragmentAssembler assembler(*this, name);
assembler.assembleRandomFragment(nIns);
}
void
Lirasm::handlePatch(LirTokenStream &in)
{
@ -1080,66 +1780,118 @@ Lirasm::handlePatch(LirTokenStream &in)
mAssm.patch(ins->record()->exit);
}
bool
has_flag(vector<string> &args, const string &flag)
void
usageAndQuit(const string& progname)
{
for (vector<string>::iterator i = args.begin(); i != args.end(); ++i) {
if (*i == flag) {
args.erase(i);
return true;
cout <<
"usage: " << progname << " [options] [filename]\n"
"Options:\n"
" -h --help print this message\n"
" -v --verbose print LIR and assembly code\n"
" --execute execute LIR\n"
" --random [N] generate a random LIR block of size N (default=100)\n"
" --sse use SSE2 instructions (x86 only)\n"
;
exit(0);
}
void
errMsgAndQuit(const string& progname, const string& msg)
{
cerr << progname << ": " << msg << endl;
exit(1);
}
struct CmdLineOptions {
string progname;
bool verbose;
bool execute;
int random;
string filename;
};
static void
processCmdLine(int argc, char **argv, CmdLineOptions& opts)
{
opts.progname = argv[0];
opts.verbose = false;
opts.execute = false;
opts.random = 0;
bool sse = false;
for (int i = 1; i < argc; i++) {
string arg = argv[i];
if (arg == "-h" || arg == "--help")
usageAndQuit(opts.progname);
else if (arg == "-v" || arg == "--verbose")
opts.verbose = true;
else if (arg == "--execute")
opts.execute = true;
else if (arg == "--random") {
const int defaultSize = 100;
if (i == argc - 1) {
opts.random = defaultSize; // no numeric argument, use default
} else {
char* endptr;
int res = strtol(argv[i+1], &endptr, 10);
if ('\0' == *endptr) {
// We don't bother checking for overflow.
if (res <= 0)
errMsgAndQuit(opts.progname, "--random argument must be greater than zero");
opts.random = res; // next arg is a number, use that for the size
i++;
} else {
opts.random = defaultSize; // next arg is not a number
}
}
return false;
}
else if (arg == "--sse") {
sse = true;
}
else if (arg[0] != '-') {
if (opts.filename.empty())
opts.filename = arg;
else
errMsgAndQuit(opts.progname, "you can only specify one filename");
}
else
errMsgAndQuit(opts.progname, "bad option: " + arg);
}
if ((!opts.random && opts.filename.empty()) || (opts.random && !opts.filename.empty()))
errMsgAndQuit(opts.progname,
"you must specify either a filename or --random (but not both)");
#if defined NANOJIT_IA32
avmplus::AvmCore::config.use_cmov = avmplus::AvmCore::config.sse2 = sse;
#else
if (sse)
errMsgAndQuit(opts.progname, "--sse is only allowed on x86");
#endif
}
int
main(int argc, char **argv)
{
string prog(*argv);
vector<string> args;
while (--argc)
args.push_back(string(*++argv));
CmdLineOptions opts;
processCmdLine(argc, argv, opts);
#if defined NANOJIT_IA32
avmplus::AvmCore::config.use_cmov =
avmplus::AvmCore::config.sse2 =
has_flag(args, "--sse");
#endif
bool execute = has_flag(args, "--execute");
bool verbose = has_flag(args, "-v");
#if defined NANOJIT_IA32
if (verbose && !execute) {
cerr << "usage: " << prog << " [--sse | --execute [-v]] <filename>" << endl;
exit(1);
}
#endif
if (args.empty()) {
#if defined NANOJIT_IA32
cerr << "usage: " << prog << " [--sse | --execute [-v]] <filename>" << endl;
#else
cerr << "usage: " << prog << " <filename>" << endl;
#endif
exit(1);
}
ifstream in(args[0].c_str());
if (!in) {
cerr << prog << ": error: unable to open file " << args[0] << endl;
exit(1);
}
Lirasm lasm(verbose);
Lirasm lasm(opts.verbose);
if (opts.random) {
lasm.assembleRandom(opts.random);
} else {
ifstream in(opts.filename.c_str());
if (!in)
errMsgAndQuit(opts.progname, "unable to open file " + opts.filename);
lasm.assemble(in);
}
Fragments::const_iterator i;
if (execute) {
if (opts.execute) {
i = lasm.mFragments.find("main");
if (i == lasm.mFragments.end()) {
cerr << prog << ": error: atleast one fragment must be named main" << endl;
exit(1);
}
if (i == lasm.mFragments.end())
errMsgAndQuit(opts.progname, "error: at least one fragment must be named 'main'");
switch (i->second.mReturnType) {
case RT_FLOAT:
cout << "Output is: " << i->second.rfloat() << endl;

View File

@ -13,6 +13,12 @@ do
exit 1
fi
# If it has the special name "random.in", replace filename with --random.
if [ `basename $infile` = "random.in" ]
then
infile="--random 1000"
fi
if ./lirasm --execute $infile > testoutput.txt && cmp -s testoutput.txt $outfile
then
echo "$0: output correct for $infile"
@ -24,4 +30,5 @@ do
cat $outfile
fi
done
rm testoutput.txt

View File

@ -0,0 +1 @@
# dummy file, contents aren't used

View File

@ -0,0 +1 @@
Output is: 0

View File

@ -293,11 +293,11 @@ namespace nanojit
if (rA == 0 || (ra = rA->reg) == UnknownReg) {
ra = findSpecificRegFor(a, rr);
} else if (!(allow & rmask(ra))) {
// rA already has a register assigned, but it's not valid
// to make sure floating point operations stay in FPU registers
// rA already has a register assigned, but it's not valid.
// To make sure floating point operations stay in FPU registers
// as much as possible, make sure that only a few opcodes are
// reserving GPRs.
NanoAssert(a->opcode() == LIR_quad || a->opcode() == LIR_ldq);
NanoAssert(a->isop(LIR_quad) || a->isop(LIR_ldq) || a->isop(LIR_ldqc));
allow &= ~rmask(rr);
ra = findRegFor(a, allow);
}
@ -1059,8 +1059,8 @@ namespace nanojit
Register r;
if (!resv || (r = resv->reg) == UnknownReg) {
RegisterMask allow;
LOpcode op = value->opcode();
if ((op >= LIR_fneg && op <= LIR_fmod) || op == LIR_fcall) {
// XXX: isFloat doesn't cover float/fmod! see bug 520208.
if (value->isFloat() || value->isop(LIR_float) || value->isop(LIR_fmod)) {
allow = FpRegs;
} else {
allow = GpRegs;

View File

@ -451,9 +451,7 @@ namespace nanojit
} while (0)
// load 8-bit, zero extend
// note, only 5-bit offsets (!) are supported for this, but that's all we need at the moment
// (movzx actually allows larger offsets mode but 5-bit gives us advantage in Thumb mode)
#define LD8Z(r,d,b) do { count_ld(); NanoAssert((d)>=0&&(d)<=31); ALU2m(0x0fb6,r,d,b); asm_output("movzx %s,%d(%s)", gpn(r),d,gpn(b)); } while(0)
#define LD8Z(r,d,b) do { count_ld(); ALU2m(0x0fb6,r,d,b); asm_output("movzx %s,%d(%s)", gpn(r),d,gpn(b)); } while(0)
#define LD8Zdm(r,addr) do { \
count_ld(); \
@ -699,7 +697,7 @@ namespace nanojit
#define SSE_MOVDm(d,b,xrs) do {\
count_st();\
NanoAssert(_is_xmm_reg_(xrs) && _is_gp_reg_(b));\
NanoAssert(_is_xmm_reg_(xrs) && (_is_gp_reg_(b) || b==FP));\
SSEm(0x660f7e, (xrs)&7, d, b);\
asm_output("movd %d(%s),%s", d, gpn(b), gpn(xrs));\
} while(0)