Bug 683127 part 7 - Use a custom Elf linker for libraries given with an absolute path name. r=sewardj

This commit is contained in:
Mike Hommey 2012-01-20 09:48:44 +01:00
parent b14c077717
commit 372473a08a
7 changed files with 1410 additions and 2 deletions

View File

@ -0,0 +1,632 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <cstring>
#include <sys/mman.h>
#include <vector>
#include <dlfcn.h>
#include "CustomElf.h"
#include "Logging.h"
using namespace Elf;
using namespace mozilla;
#ifndef PAGE_SIZE
#define PAGE_SIZE 4096
#endif
#ifndef PAGE_MASK
#define PAGE_MASK (~ (PAGE_SIZE - 1))
#endif
/* TODO: Fill ElfLoader::Singleton.lastError on errors. */
/* Function used to report library mappings from the custom linker to Gecko
* crash reporter */
#ifdef ANDROID
extern "C" {
void report_mapping(char *name, void *base, uint32_t len, uint32_t offset);
}
#else
#define report_mapping(...)
#endif
const Ehdr *Ehdr::validate(const void *buf)
{
if (!buf || buf == MAP_FAILED)
return NULL;
const Ehdr *ehdr = reinterpret_cast<const Ehdr *>(buf);
/* Only support ELF executables or libraries for the host system */
if (memcmp(ELFMAG, &ehdr->e_ident, SELFMAG) ||
ehdr->e_ident[EI_CLASS] != ELFCLASS ||
ehdr->e_ident[EI_DATA] != ELFDATA ||
ehdr->e_ident[EI_VERSION] != 1 ||
(ehdr->e_ident[EI_OSABI] != ELFOSABI && ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE) ||
#ifdef EI_ABIVERSION
ehdr->e_ident[EI_ABIVERSION] != ELFABIVERSION ||
#endif
(ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
ehdr->e_machine != ELFMACHINE ||
ehdr->e_version != 1 ||
ehdr->e_phentsize != sizeof(Phdr))
return NULL;
return ehdr;
}
namespace {
void debug_phdr(const char *type, const Phdr *phdr)
{
debug("%s @0x%08" PRIxAddr " ("
"filesz: 0x%08" PRIxAddr ", "
"memsz: 0x%08" PRIxAddr ", "
"offset: 0x%08" PRIxAddr ", "
"flags: %c%c%c)",
type, phdr->p_vaddr, phdr->p_filesz, phdr->p_memsz,
phdr->p_offset, phdr->p_flags & PF_R ? 'r' : '-',
phdr->p_flags & PF_W ? 'w' : '-', phdr->p_flags & PF_X ? 'x' : '-');
}
} /* anonymous namespace */
TemporaryRef<LibHandle>
CustomElf::Load(int fd, const char *path, int flags)
{
debug("CustomElf::Load(\"%s\", %x) = ...", path, flags);
if (fd == -1)
return NULL;
/* Keeping a RefPtr of the CustomElf is going to free the appropriate
* resources when returning NULL */
RefPtr<CustomElf> elf = new CustomElf(fd, path);
/* Map the first page of the Elf object to access Elf and program headers */
MappedPtr ehdr_raw(mmap(NULL, PAGE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0),
PAGE_SIZE);
if (ehdr_raw == MAP_FAILED)
return NULL;
const Ehdr *ehdr = Ehdr::validate(ehdr_raw);
if (!ehdr)
return NULL;
/* Scan Elf Program Headers and gather some information about them */
std::vector<const Phdr *> pt_loads;
Addr min_vaddr = (Addr) -1; // We want to find the lowest and biggest
Addr max_vaddr = 0; // virtual address used by this Elf.
const Phdr *dyn = NULL;
const Phdr *first_phdr = reinterpret_cast<const Phdr *>(
reinterpret_cast<const char *>(ehdr) + ehdr->e_phoff);
const Phdr *end_phdr = &first_phdr[ehdr->e_phnum];
for (const Phdr *phdr = first_phdr; phdr < end_phdr; phdr++) {
switch (phdr->p_type) {
case PT_LOAD:
debug_phdr("PT_LOAD", phdr);
pt_loads.push_back(phdr);
if (phdr->p_vaddr < min_vaddr)
min_vaddr = phdr->p_vaddr;
if (max_vaddr < phdr->p_vaddr + phdr->p_memsz)
max_vaddr = phdr->p_vaddr + phdr->p_memsz;
break;
case PT_DYNAMIC:
debug_phdr("PT_DYNAMIC", phdr);
if (!dyn) {
dyn = phdr;
} else {
log("%s: Multiple PT_DYNAMIC segments detected", elf->GetPath());
return NULL;
}
break;
case PT_TLS:
debug_phdr("PT_TLS", phdr);
if (phdr->p_memsz) {
log("%s: TLS is not supported", elf->GetPath());
return NULL;
}
break;
case PT_GNU_STACK:
debug_phdr("PT_GNU_STACK", phdr);
// Skip on Android until bug 706116 is fixed
#ifndef ANDROID
if (phdr->p_flags & PF_X) {
log("%s: Executable stack is not supported", elf->GetPath());
return NULL;
}
#endif
break;
default:
debug("%s: Warning: program header type #%d not handled",
elf->GetPath(), phdr->p_type);
}
}
if (min_vaddr != 0) {
log("%s: Unsupported minimal virtual address: 0x%08" PRIxAddr,
elf->GetPath(), min_vaddr);
return NULL;
}
if (!dyn) {
log("%s: No PT_DYNAMIC segment found", elf->GetPath());
return NULL;
}
/* Reserve enough memory to map the complete virtual address space for this
* library. */
elf->base.Init(mmap(NULL, max_vaddr, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0), max_vaddr);
if (elf->base == MAP_FAILED) {
log("%s: Failed to mmap", elf->GetPath());
return NULL;
}
/* Load and initialize library */
for (std::vector<const Phdr *>::iterator it = pt_loads.begin();
it < pt_loads.end(); ++it)
if (!elf->LoadSegment(*it))
return NULL;
report_mapping(const_cast<char *>(elf->GetName()), elf->base,
(max_vaddr + PAGE_SIZE - 1) & PAGE_MASK, 0);
if (!elf->InitDyn(dyn))
return NULL;
debug("CustomElf::Load(\"%s\", %x) = %p", path, flags,
static_cast<void *>(elf));
return elf;
}
CustomElf::~CustomElf()
{
debug("CustomElf::~CustomElf(%p [\"%s\"])",
reinterpret_cast<void *>(this), GetPath());
CallFini();
/* Normally, __cxa_finalize is called by the .fini function. However,
* Android NDK before r6b doesn't do that. Our wrapped cxa_finalize only
* calls destructors once, so call it in all cases. */
ElfLoader::__wrap_cxa_finalize(this);
}
namespace {
/**
* Hash function for symbol lookup, as defined in ELF standard for System V
*/
unsigned long
ElfHash(const char *symbol)
{
const unsigned char *sym = reinterpret_cast<const unsigned char *>(symbol);
unsigned long h = 0, g;
while (*sym) {
h = (h << 4) + *sym++;
if ((g = h & 0xf0000000))
h ^= g >> 24;
h &= ~g;
}
return h;
}
} /* anonymous namespace */
void *
CustomElf::GetSymbolPtr(const char *symbol) const
{
return GetSymbolPtr(symbol, ElfHash(symbol));
}
void *
CustomElf::GetSymbolPtr(const char *symbol, unsigned long hash) const
{
const Sym *sym = GetSymbol(symbol, hash);
void *ptr = NULL;
if (sym && sym->st_shndx != SHN_UNDEF)
ptr = GetPtr(sym->st_value);
debug("CustomElf::GetSymbolPtr(%p [\"%s\"], \"%s\") = %p",
reinterpret_cast<const void *>(this), GetPath(), symbol, ptr);
return ptr;
}
void *
CustomElf::GetSymbolPtrInDeps(const char *symbol) const
{
/* Resolve dlopen and related functions to point to ours */
if (symbol[0] == 'd' && symbol[1] == 'l') {
if (strcmp(symbol + 2, "open") == 0)
return FunctionPtr(__wrap_dlopen);
if (strcmp(symbol + 2, "error") == 0)
return FunctionPtr(__wrap_dlerror);
if (strcmp(symbol + 2, "close") == 0)
return FunctionPtr(__wrap_dlclose);
if (strcmp(symbol + 2, "sym") == 0)
return FunctionPtr(__wrap_dlsym);
if (strcmp(symbol + 2, "addr") == 0)
return FunctionPtr(__wrap_dladdr);
} else if (symbol[0] == '_' && symbol[1] == '_') {
/* Resolve a few C++ ABI specific functions to point to ours */
#ifdef __ARM_EABI__
if (strcmp(symbol + 2, "aeabi_atexit") == 0)
return FunctionPtr(&ElfLoader::__wrap_aeabi_atexit);
#else
if (strcmp(symbol + 2, "cxa_atexit") == 0)
return FunctionPtr(&ElfLoader::__wrap_cxa_atexit);
#endif
if (strcmp(symbol + 2, "cxa_finalize") == 0)
return FunctionPtr(&ElfLoader::__wrap_cxa_finalize);
if (strcmp(symbol + 2, "dso_handle") == 0)
return const_cast<CustomElf *>(this);
}
void *sym;
/* Search the symbol in the main program. Note this also tries all libraries
* the system linker will have loaded RTLD_GLOBAL. Unfortunately, that doesn't
* work with bionic, but its linker doesn't normally search the main binary
* anyways. Moreover, on android, the main binary is dalvik. */
#ifdef __GLIBC__
sym = dlsym(RTLD_DEFAULT, symbol);
debug("dlsym(RTLD_DEFAULT, \"%s\") = %p", symbol, sym);
if (sym)
return sym;
#endif
/* Then search the symbol in our dependencies. Since we already searched in
* libraries the system linker loaded, skip those (on glibc systems). We
* also assume the symbol is to be found in one of the dependent libraries
* directly, not in their own dependent libraries. Building libraries with
* --no-allow-shlib-undefined ensures such indirect symbol dependency don't
* happen. */
unsigned long hash = ElfHash(symbol);
for (std::vector<RefPtr<LibHandle> >::const_iterator it = dependencies.begin();
it < dependencies.end(); ++it) {
if (!(*it)->IsSystemElf()) {
sym = reinterpret_cast<CustomElf *>((*it).get())->GetSymbolPtr(symbol, hash);
#ifndef __GLIBC__
} else {
sym = (*it)->GetSymbolPtr(symbol);
#endif
}
if (sym)
return sym;
}
return NULL;
}
const Sym *
CustomElf::GetSymbol(const char *symbol, unsigned long hash) const
{
/* Search symbol with the buckets and chains tables.
* The hash computed from the symbol name gives an index in the buckets
* table. The corresponding value in the bucket table is an index in the
* symbols table and in the chains table.
* If the corresponding symbol in the symbols table matches, we're done.
* Otherwise, the corresponding value in the chains table is a new index
* in both tables, which corresponding symbol is tested and so on and so
* forth */
size_t bucket = hash % buckets.numElements();
for (size_t y = buckets[bucket]; y != STN_UNDEF; y = chains[y]) {
if (strcmp(symbol, strtab.GetStringAt(symtab[y].st_name)))
continue;
return &symtab[y];
}
return NULL;
}
bool
CustomElf::Contains(void *addr) const
{
return base.Contains(addr);
}
bool
CustomElf::LoadSegment(const Phdr *pt_load) const
{
if (pt_load->p_type != PT_LOAD) {
debug("%s: Elf::LoadSegment only takes PT_LOAD program headers", GetPath());
return false;;
}
int prot = ((pt_load->p_flags & PF_X) ? PROT_EXEC : 0) |
((pt_load->p_flags & PF_W) ? PROT_WRITE : 0) |
((pt_load->p_flags & PF_R) ? PROT_READ : 0);
/* Mmap at page boundary */
Addr page_offset = pt_load->p_vaddr & ~PAGE_MASK;
void *where = GetPtr(pt_load->p_vaddr - page_offset);
debug("%s: Loading segment @%p %c%c%c", GetPath(), where,
prot & PROT_READ ? 'r' : '-',
prot & PROT_WRITE ? 'w' : '-',
prot & PROT_EXEC ? 'x' : '-');
void *mapped = mmap(where, pt_load->p_filesz + page_offset,
prot, MAP_PRIVATE | MAP_FIXED, fd,
pt_load->p_offset - page_offset);
if (mapped != where) {
if (mapped == MAP_FAILED) {
log("%s: Failed to mmap", GetPath());
} else {
log("%s: Didn't map at the expected location (wanted: %p, got: %p)",
GetPath(), where, mapped);
}
return false;
}
/* When p_memsz is greater than p_filesz, we need to have nulled out memory
* after p_filesz and before p_memsz.
* We first null out bytes after p_filesz and up to the end of the page
* p_filesz is in. */
Addr end_offset = pt_load->p_filesz + page_offset;
if ((prot & PROT_WRITE) && (end_offset & ~PAGE_MASK)) {
memset(reinterpret_cast<char *>(mapped) + end_offset,
0, PAGE_SIZE - (end_offset & ~PAGE_MASK));
}
/* Above the end of that page, and up to p_memsz, we already have nulled out
* memory because we mapped anonymous memory on the whole library virtual
* address space. We just need to adjust this anonymous memory protection
* flags. */
if (pt_load->p_memsz > pt_load->p_filesz) {
Addr file_end = pt_load->p_vaddr + pt_load->p_filesz;
Addr mem_end = pt_load->p_vaddr + pt_load->p_memsz;
Addr next_page = (file_end & ~(PAGE_SIZE - 1)) + PAGE_SIZE;
if (mem_end > next_page) {
if (mprotect(GetPtr(next_page), mem_end - next_page, prot) < 0) {
log("%s: Failed to mprotect", GetPath());
return false;
}
}
}
return true;
}
namespace {
void debug_dyn(const char *type, const Dyn *dyn)
{
debug("%s 0x%08" PRIxAddr, type, dyn->d_un.d_val);
}
} /* anonymous namespace */
bool
CustomElf::InitDyn(const Phdr *pt_dyn)
{
/* Scan PT_DYNAMIC segment and gather some information */
const Dyn *first_dyn = GetPtr<Dyn>(pt_dyn->p_vaddr);
const Dyn *end_dyn = GetPtr<Dyn>(pt_dyn->p_vaddr + pt_dyn->p_filesz);
std::vector<Word> dt_needed;
size_t symnum = 0;
for (const Dyn *dyn = first_dyn; dyn < end_dyn && dyn->d_tag; dyn++) {
switch (dyn->d_tag) {
case DT_NEEDED:
debug_dyn("DT_NEEDED", dyn);
dt_needed.push_back(dyn->d_un.d_val);
break;
case DT_HASH:
{
debug_dyn("DT_HASH", dyn);
const Word *hash_table_header = GetPtr<Word>(dyn->d_un.d_ptr);
symnum = hash_table_header[1];
buckets.Init(&hash_table_header[2], hash_table_header[0]);
chains.Init(&*buckets.end());
}
break;
case DT_STRTAB:
debug_dyn("DT_STRTAB", dyn);
strtab.Init(GetPtr(dyn->d_un.d_ptr));
break;
case DT_SYMTAB:
debug_dyn("DT_SYMTAB", dyn);
symtab.Init(GetPtr(dyn->d_un.d_ptr));
break;
case DT_SYMENT:
debug_dyn("DT_SYMENT", dyn);
if (dyn->d_un.d_val != sizeof(Sym)) {
log("%s: Unsupported DT_SYMENT", GetPath());
return false;
}
break;
case DT_TEXTREL:
log("%s: Text relocations are not supported", GetPath());
return false;
case DT_STRSZ: /* Ignored */
debug_dyn("DT_STRSZ", dyn);
break;
case UNSUPPORTED_RELOC():
case UNSUPPORTED_RELOC(SZ):
case UNSUPPORTED_RELOC(ENT):
log("%s: Unsupported relocations", GetPath());
return false;
case RELOC():
debug_dyn(STR_RELOC(), dyn);
relocations.Init(GetPtr(dyn->d_un.d_ptr));
break;
case RELOC(SZ):
debug_dyn(STR_RELOC(SZ), dyn);
relocations.InitSize(dyn->d_un.d_val);
break;
case RELOC(ENT):
debug_dyn(STR_RELOC(ENT), dyn);
if (dyn->d_un.d_val != sizeof(Reloc)) {
log("%s: Unsupported DT_RELENT", GetPath());
return false;
}
break;
case DT_JMPREL:
debug_dyn("DT_JMPREL", dyn);
jumprels.Init(GetPtr(dyn->d_un.d_ptr));
break;
case DT_PLTRELSZ:
debug_dyn("DT_PLTRELSZ", dyn);
jumprels.InitSize(dyn->d_un.d_val);
break;
case DT_PLTGOT:
debug_dyn("DT_PLTGOT", dyn);
break;
case DT_INIT:
debug_dyn("DT_INIT", dyn);
init = dyn->d_un.d_ptr;
break;
case DT_INIT_ARRAY:
debug_dyn("DT_INIT_ARRAY", dyn);
init_array.Init(GetPtr(dyn->d_un.d_ptr));
break;
case DT_INIT_ARRAYSZ:
debug_dyn("DT_INIT_ARRAYSZ", dyn);
init_array.InitSize(dyn->d_un.d_val);
break;
case DT_FINI:
debug_dyn("DT_FINI", dyn);
fini = dyn->d_un.d_ptr;
break;
case DT_FINI_ARRAY:
debug_dyn("DT_FINI_ARRAY", dyn);
fini_array.Init(GetPtr(dyn->d_un.d_ptr));
break;
case DT_FINI_ARRAYSZ:
debug_dyn("DT_FINI_ARRAYSZ", dyn);
fini_array.InitSize(dyn->d_un.d_val);
break;
default:
log("%s: Warning: dynamic header type #%" PRIxAddr" not handled",
GetPath(), dyn->d_tag);
}
}
if (!buckets || !symnum) {
log("%s: Missing or broken DT_HASH", GetPath());
return false;
}
if (!strtab) {
log("%s: Missing DT_STRTAB", GetPath());
return false;
}
if (!symtab) {
log("%s: Missing DT_SYMTAB", GetPath());
return false;
}
/* Load dependent libraries */
for (size_t i = 0; i < dt_needed.size(); i++) {
const char *name = strtab.GetStringAt(dt_needed[i]);
RefPtr<LibHandle> handle =
ElfLoader::Singleton.Load(name, RTLD_GLOBAL | RTLD_LAZY, this);
if (!handle)
return false;
dependencies.push_back(handle);
}
/* Finish initialization */
return Relocate() && RelocateJumps() && CallInit();
}
bool
CustomElf::Relocate()
{
debug("Relocate %s @%p", GetPath(), static_cast<void *>(base));
for (Array<Reloc>::iterator rel = relocations.begin();
rel < relocations.end(); ++rel) {
/* Location of the relocation */
void *ptr = GetPtr(rel->r_offset);
/* R_*_RELATIVE relocations apply directly at the given location */
if (ELF_R_TYPE(rel->r_info) == R_RELATIVE) {
*(void **) ptr = GetPtr(rel->GetAddend(base));
continue;
}
/* Other relocation types need a symbol resolution */
const Sym sym = symtab[ELF_R_SYM(rel->r_info)];
void *symptr;
if (sym.st_shndx != SHN_UNDEF) {
symptr = GetPtr(sym.st_value);
} else {
/* TODO: avoid symbol resolution when it's the same symbol as last
* iteration */
/* TODO: handle symbol resolving to NULL vs. being undefined. */
symptr = GetSymbolPtrInDeps(strtab.GetStringAt(sym.st_name));
}
if (symptr == NULL)
log("%s: Warning: relocation to NULL @0x%08" PRIxAddr,
GetPath(), rel->r_offset);
/* Apply relocation */
switch (ELF_R_TYPE(rel->r_info)) {
case R_GLOB_DAT:
/* R_*_GLOB_DAT relocations simply use the symbol value */
*(void **) ptr = symptr;
break;
case R_ABS:
/* R_*_ABS* relocations add the relocation added to the symbol value */
*(const char **) ptr = (const char *)symptr + rel->GetAddend(base);
break;
default:
log("%s: Unsupported relocation type: 0x%" PRIxAddr,
GetPath(), ELF_R_TYPE(rel->r_info));
return false;
}
}
return true;
}
bool
CustomElf::RelocateJumps()
{
/* TODO: Dynamic symbol resolution */
for (Array<Reloc>::iterator rel = jumprels.begin();
rel < jumprels.end(); ++rel) {
/* Location of the relocation */
void *ptr = GetPtr(rel->r_offset);
/* Only R_*_JMP_SLOT relocations are expected */
if (ELF_R_TYPE(rel->r_info) != R_JMP_SLOT) {
log("%s: Jump relocation type mismatch", GetPath());
return false;
}
/* TODO: Avoid code duplication with the relocations above */
const Sym sym = symtab[ELF_R_SYM(rel->r_info)];
void *symptr;
if (sym.st_shndx != SHN_UNDEF)
symptr = GetPtr(sym.st_value);
else
symptr = GetSymbolPtrInDeps(strtab.GetStringAt(sym.st_name));
if (symptr == NULL) {
log("%s: Error: relocation to NULL @0x%08" PRIxAddr, GetPath(), rel->r_offset);
return false;
}
/* Apply relocation */
*(void **) ptr = symptr;
}
return true;
}
bool
CustomElf::CallInit()
{
if (init)
CallFunction(init);
for (Array<void *>::iterator it = init_array.begin();
it < init_array.end(); ++it) {
if (*it)
CallFunction(*it);
}
initialized = true;
return true;
}
void
CustomElf::CallFini()
{
if (!initialized)
return;
for (Array<void *>::iterator it = fini_array.begin();
it < fini_array.end(); ++it) {
if (*it)
CallFunction(*it);
}
if (fini)
CallFunction(fini);
}

372
mozglue/linker/CustomElf.h Normal file
View File

@ -0,0 +1,372 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef CustomElf_h
#define CustomElf_h
/**
* Android system headers have two different elf.h file. The one under linux/
* is the most complete.
*/
#ifdef ANDROID
#include <linux/elf.h>
#else
#include <elf.h>
#endif
#include <endian.h>
#include "ElfLoader.h"
#include "Logging.h"
/**
* Generic ELF macros for the target system
*/
#ifdef HAVE_64BIT_OS
#define Elf_(type) Elf64_ ## type
#define ELFCLASS ELFCLASS64
#define ELF_R_TYPE ELF64_R_TYPE
#define ELF_R_SYM ELF64_R_SYM
#define PRIxAddr "lx"
#else
#define Elf_(type) Elf32_ ## type
#define ELFCLASS ELFCLASS32
#define ELF_R_TYPE ELF32_R_TYPE
#define ELF_R_SYM ELF32_R_SYM
#define PRIxAddr "x"
#endif
#ifndef __BYTE_ORDER
#error Cannot find endianness
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define ELFDATA ELFDATA2LSB
#elif __BYTE_ORDER == __BIG_ENDIAN
#define ELFDATA ELFDATA2MSB
#endif
#ifdef __linux__
#define ELFOSABI ELFOSABI_LINUX
#ifdef EI_ABIVERSION
#define ELFABIVERSION 0
#endif
#else
#error Unknown ELF OSABI
#endif
#if defined(__i386__)
#define ELFMACHINE EM_386
// Doing this way probably doesn't scale to other architectures
#define R_ABS R_386_32
#define R_GLOB_DAT R_386_GLOB_DAT
#define R_JMP_SLOT R_386_JMP_SLOT
#define R_RELATIVE R_386_RELATIVE
#define RELOC(n) DT_REL ## n
#define UNSUPPORTED_RELOC(n) DT_RELA ## n
#define STR_RELOC(n) "DT_REL" # n
#define Reloc Rel
#elif defined(__x86_64__)
#define ELFMACHINE EM_X86_64
#define R_ABS R_X86_64_64
#define R_GLOB_DAT R_X86_64_GLOB_DAT
#define R_JMP_SLOT R_X86_64_JUMP_SLOT
#define R_RELATIVE R_X86_64_RELATIVE
#define RELOC(n) DT_RELA ## n
#define UNSUPPORTED_RELOC(n) DT_REL ## n
#define STR_RELOC(n) "DT_RELA" # n
#define Reloc Rela
#elif defined(__arm__)
#define ELFMACHINE EM_ARM
#ifndef R_ARM_ABS32
#define R_ARM_ABS32 2
#endif
#ifndef R_ARM_GLOB_DAT
#define R_ARM_GLOB_DAT 21
#endif
#ifndef R_ARM_JUMP_SLOT
#define R_ARM_JUMP_SLOT 22
#endif
#ifndef R_ARM_RELATIVE
#define R_ARM_RELATIVE 23
#endif
#define R_ABS R_ARM_ABS32
#define R_GLOB_DAT R_ARM_GLOB_DAT
#define R_JMP_SLOT R_ARM_JUMP_SLOT
#define R_RELATIVE R_ARM_RELATIVE
#define RELOC(n) DT_REL ## n
#define UNSUPPORTED_RELOC(n) DT_RELA ## n
#define STR_RELOC(n) "DT_REL" # n
#define Reloc Rel
#else
#error Unknown ELF machine type
#endif
/**
* Android system headers don't have all definitions
*/
#ifndef STN_UNDEF
#define STN_UNDEF 0
#endif
#ifndef DT_INIT_ARRAY
#define DT_INIT_ARRAY 25
#endif
#ifndef DT_FINI_ARRAY
#define DT_FINI_ARRAY 26
#endif
#ifndef DT_INIT_ARRAYSZ
#define DT_INIT_ARRAYSZ 27
#endif
#ifndef DT_FINI_ARRAYSZ
#define DT_FINI_ARRAYSZ 28
#endif
namespace Elf {
/**
* Define a few basic Elf Types
*/
typedef Elf_(Phdr) Phdr;
typedef Elf_(Dyn) Dyn;
typedef Elf_(Sym) Sym;
typedef Elf_(Addr) Addr;
typedef Elf_(Word) Word;
/**
* Helper class around the standard Elf header struct
*/
struct Ehdr: public Elf_(Ehdr)
{
/**
* Equivalent to reinterpret_cast<const Ehdr *>(buf), but additionally
* checking that this is indeed an Elf header and that the Elf type
* corresponds to that of the system
*/
static const Ehdr *validate(const void *buf);
};
/**
* Elf String table
*/
class Strtab: public UnsizedArray<const char>
{
public:
/**
* Returns the string at the given index in the table
*/
const char *GetStringAt(off_t index) const
{
return &UnsizedArray<const char>::operator[](index);
}
};
/**
* Helper class around Elf relocation.
*/
struct Rel: public Elf_(Rel)
{
/**
* Returns the addend for the relocation, which is the value stored
* at r_offset.
*/
Addr GetAddend(void *base) const
{
return *(reinterpret_cast<const Addr *>(
reinterpret_cast<const char *>(base) + r_offset));
}
};
/**
* Helper class around Elf relocation with addend.
*/
struct Rela: public Elf_(Rela)
{
/**
* Returns the addend for the relocation.
*/
Addr GetAddend(void *base) const
{
return r_addend;
}
};
} /* namespace Elf */
/**
* Library Handle class for ELF libraries we don't let the system linker
* handle.
*/
class CustomElf: public LibHandle
{
public:
/**
* Returns a new CustomElf using the given file descriptor to map ELF
* content. The file descriptor ownership is stolen, and it will be closed
* in CustomElf's destructor if an instance is created, or by the Load
* method otherwise. The path corresponds to the file descriptor, and flags
* are the same kind of flags that would be given to dlopen(), though
* currently, none are supported and the behaviour is more or less that of
* RTLD_GLOBAL | RTLD_BIND_NOW.
*/
static mozilla::TemporaryRef<LibHandle> Load(int fd,
const char *path, int flags);
/**
* Inherited from LibHandle
*/
virtual ~CustomElf();
virtual void *GetSymbolPtr(const char *symbol) const;
virtual bool Contains(void *addr) const;
private:
/**
* Returns a pointer to the Elf Symbol in the Dynamic Symbol table
* corresponding to the given symbol name (with a pre-computed hash).
*/
const Elf::Sym *GetSymbol(const char *symbol, unsigned long hash) const;
/**
* Returns the address corresponding to the given symbol name (with a
* pre-computed hash).
*/
void *GetSymbolPtr(const char *symbol, unsigned long hash) const;
/**
* Scan dependent libraries to find the address corresponding to the
* given symbol name. This is used to find symbols that are undefined
* in the Elf object.
*/
void *GetSymbolPtrInDeps(const char *symbol) const;
/**
* Private constructor
*/
CustomElf(int fd, const char *path)
: LibHandle(path), fd(fd), init(0), fini(0), initialized(false)
{ }
/**
* Returns a pointer relative to the base address where the library is
* loaded.
*/
void *GetPtr(const Elf::Addr offset) const
{
return base + offset;
}
/**
* Like the above, but returns a typed (const) pointer
*/
template <typename T>
const T *GetPtr(const Elf::Addr offset) const
{
return reinterpret_cast<const T *>(base + offset);
}
/**
* Loads an Elf segment defined by the given PT_LOAD header.
* Returns whether this succeeded or failed.
*/
bool LoadSegment(const Elf::Phdr *pt_load) const;
/**
* Initializes the library according to information found in the given
* PT_DYNAMIC header.
* Returns whether this succeeded or failed.
*/
bool InitDyn(const Elf::Phdr *pt_dyn);
/**
* Apply .rel.dyn/.rela.dyn relocations.
* Returns whether this succeeded or failed.
*/
bool Relocate();
/**
* Apply .rel.plt/.rela.plt relocations.
* Returns whether this succeeded or failed.
*/
bool RelocateJumps();
/**
* Call initialization functions (.init/.init_array)
* Returns true;
*/
bool CallInit();
/**
* Call destructor functions (.fini_array/.fini)
* Returns whether this succeeded or failed.
*/
void CallFini();
/**
* Call a function given a pointer to its location.
*/
void CallFunction(void *ptr) const
{
/* C++ doesn't allow direct conversion between pointer-to-object
* and pointer-to-function. */
union {
void *ptr;
void (*func)(void);
} f;
f.ptr = ptr;
f.func();
}
/**
* Call a function given a an address relative to the library base
*/
void CallFunction(Elf::Addr addr) const
{
return CallFunction(GetPtr(addr));
}
/* Appropriated file descriptor */
AutoCloseFD fd;
/* Base address where the library is loaded */
MappedPtr base;
/* String table */
Elf::Strtab strtab;
/* Symbol table */
UnsizedArray<Elf::Sym> symtab;
/* Buckets and chains for the System V symbol hash table */
Array<Elf::Word> buckets;
UnsizedArray<Elf::Word> chains;
/* List of dependent libraries */
std::vector<mozilla::RefPtr<LibHandle> > dependencies;
/* List of .rel.dyn/.rela.dyn relocations */
Array<Elf::Reloc> relocations;
/* List of .rel.plt/.rela.plt relocation */
Array<Elf::Reloc> jumprels;
/* Relative address of the initialization and destruction functions
* (.init/.fini) */
Elf::Addr init, fini;
/* List of initialization and destruction functions
* (.init_array/.fini_array) */
Array<void *> init_array, fini_array;
bool initialized;
};
#endif /* CustomElf_h */

View File

@ -7,7 +7,9 @@
#include <dlfcn.h>
#include <unistd.h>
#include <algorithm>
#include <fcntl.h>
#include "ElfLoader.h"
#include "CustomElf.h"
#include "Logging.h"
using namespace mozilla;
@ -173,6 +175,7 @@ ElfLoader::Load(const char *path, int flags, LibHandle *parent)
}
char *abs_path = NULL;
const char *requested_path = path;
/* When the path is not absolute and the library is being loaded for
* another, first try to load the library from the directory containing
@ -186,7 +189,15 @@ ElfLoader::Load(const char *path, int flags, LibHandle *parent)
path = abs_path;
}
handle = SystemElf::Load(path, flags);
/* Try loading the file with the custom linker, and fall back to the
* system linker if that fails */
AutoCloseFD fd = open(path, O_RDONLY);
if (fd != -1) {
handle = CustomElf::Load(fd, path, flags);
fd.forget();
}
if (!handle)
handle = SystemElf::Load(path, flags);
/* If we didn't have an absolute path and haven't been able to load
* a library yet, try in the system search path */
@ -194,7 +205,7 @@ ElfLoader::Load(const char *path, int flags, LibHandle *parent)
handle = SystemElf::Load(name, flags);
delete [] abs_path;
debug("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", path, flags,
debug("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path, flags,
reinterpret_cast<void *>(parent), parent ? parent->GetPath() : "",
static_cast<void *>(handle));
@ -273,3 +284,48 @@ ElfLoader::~ElfLoader()
}
}
}
#ifdef __ARM_EABI__
int
ElfLoader::__wrap_aeabi_atexit(void *that, ElfLoader::Destructor destructor,
void *dso_handle)
{
Singleton.destructors.push_back(
DestructorCaller(destructor, that, dso_handle));
return 0;
}
#else
int
ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void *that,
void *dso_handle)
{
Singleton.destructors.push_back(
DestructorCaller(destructor, that, dso_handle));
return 0;
}
#endif
void
ElfLoader::__wrap_cxa_finalize(void *dso_handle)
{
/* Call all destructors for the given DSO handle in reverse order they were
* registered. */
std::vector<DestructorCaller>::reverse_iterator it;
for (it = Singleton.destructors.rbegin();
it < Singleton.destructors.rend(); ++it) {
if (it->IsForHandle(dso_handle)) {
it->Call();
}
}
}
void
ElfLoader::DestructorCaller::Call()
{
if (destructor) {
debug("ElfLoader::DestructorCaller::Call(%p, %p, %p)",
FunctionPtr(destructor), object, dso_handle);
destructor(object);
destructor = NULL;
}
}

View File

@ -9,6 +9,7 @@
/* Until RefPtr.h stops using JS_Assert */
#undef DEBUG
#include "mozilla/RefPtr.h"
#include "Zip.h"
/**
* dlfcn.h replacement functions
@ -118,6 +119,7 @@ protected:
* to do this without RTTI)
*/
friend class ElfLoader;
friend class CustomElf;
virtual bool IsSystemElf() const { return false; }
private:
@ -222,6 +224,70 @@ private:
/* Bookkeeping */
typedef std::vector<LibHandle *> LibHandleList;
LibHandleList handles;
protected:
friend class CustomElf;
/* Definition of static destructors as to be used for C++ ABI compatibility */
typedef void (*Destructor)(void *object);
/**
* C++ ABI makes static initializers register destructors through a specific
* atexit interface. On glibc/linux systems, the dso_handle is a pointer
* within a given library. On bionic/android systems, it is an undefined
* symbol. Making sense of the value is not really important, and all that
* is really important is that it is different for each loaded library, so
* that they can be discriminated when shutting down. For convenience, on
* systems where the dso handle is a symbol, that symbol is resolved to
* point at corresponding CustomElf.
*
* Destructors are registered with __*_atexit with an associated object to
* be passed as argument when it is called.
*
* When __cxa_finalize is called, destructors registered for the given
* DSO handle are called in the reverse order they were registered.
*/
#ifdef __ARM_EABI__
static int __wrap_aeabi_atexit(void *that, Destructor destructor,
void *dso_handle);
#else
static int __wrap_cxa_atexit(Destructor destructor, void *that,
void *dso_handle);
#endif
static void __wrap_cxa_finalize(void *dso_handle);
/**
* Registered destructor. Keeps track of the destructor function pointer,
* associated object to call it with, and DSO handle.
*/
class DestructorCaller {
public:
DestructorCaller(Destructor destructor, void *object, void *dso_handle)
: destructor(destructor), object(object), dso_handle(dso_handle) { }
/**
* Call the destructor function with the associated object.
* Call only once, see CustomElf::~CustomElf.
*/
void Call();
/**
* Returns whether the destructor is associated to the given DSO handle
*/
bool IsForHandle(void *handle) const
{
return handle == dso_handle;
}
private:
Destructor destructor;
void *object;
void *dso_handle;
};
private:
/* Keep track of all registered destructors */
std::vector<DestructorCaller> destructors;
};
#endif /* ElfLoader_h */

View File

@ -21,6 +21,7 @@ CPPSRCS = \
ifndef MOZ_OLD_LINKER
CPPSRCS += \
ElfLoader.cpp \
CustomElf.cpp \
$(NULL)
endif

View File

@ -6,6 +6,9 @@
#define Utils_h
#include <stdint.h>
#include <stddef.h>
#include <sys/mman.h>
#include <unistd.h>
/**
* On architectures that are little endian and that support unaligned reads,
@ -90,4 +93,280 @@ private:
int fd;
};
/**
* MappedPtr is a RAII wrapper for mmap()ed memory. It can be used as
* a simple void * or unsigned char *.
*/
class MappedPtr
{
public:
MappedPtr(void *buf, size_t length): buf(buf), length(length) { }
MappedPtr(): buf(MAP_FAILED), length(0) { }
void Init(void *b, size_t len) {
buf = b;
length = len;
}
~MappedPtr()
{
if (buf != MAP_FAILED)
munmap(buf, length);
}
operator void *() const
{
return buf;
}
operator unsigned char *() const
{
return reinterpret_cast<unsigned char *>(buf);
}
bool operator ==(void *ptr) const {
return buf == ptr;
}
bool operator ==(unsigned char *ptr) const {
return buf == ptr;
}
void *operator +(off_t offset) const
{
return reinterpret_cast<char *>(buf) + offset;
}
/**
* Returns whether the given address is within the mapped range
*/
bool Contains(void *ptr) const
{
return (ptr >= buf) && (ptr < reinterpret_cast<char *>(buf) + length);
}
private:
void *buf;
size_t length;
};
/**
* UnsizedArray is a way to access raw arrays of data in memory.
*
* struct S { ... };
* UnsizedArray<S> a(buf);
* UnsizedArray<S> b; b.Init(buf);
*
* This is roughly equivalent to
* const S *a = reinterpret_cast<const S *>(buf);
* const S *b = NULL; b = reinterpret_cast<const S *>(buf);
*
* An UnsizedArray has no known length, and it's up to the caller to make
* sure the accessed memory is mapped and makes sense.
*/
template <typename T>
class UnsizedArray
{
public:
typedef size_t idx_t;
/**
* Constructors and Initializers
*/
UnsizedArray(): contents(NULL) { }
UnsizedArray(const void *buf): contents(reinterpret_cast<const T *>(buf)) { }
void Init(const void *buf)
{
// ASSERT(operator bool())
contents = reinterpret_cast<const T *>(buf);
}
/**
* Returns the nth element of the array
*/
const T &operator[](const idx_t index) const
{
// ASSERT(operator bool())
return contents[index];
}
/**
* Returns whether the array points somewhere
*/
operator bool() const
{
return contents != NULL;
}
private:
const T *contents;
};
/**
* Array, like UnsizedArray, is a way to access raw arrays of data in memory.
* Unlike UnsizedArray, it has a known length, and is enumerable with an
* iterator.
*
* struct S { ... };
* Array<S> a(buf, len);
* UnsizedArray<S> b; b.Init(buf, len);
*
* In the above examples, len is the number of elements in the array. It is
* also possible to initialize an Array with the buffer size:
*
* Array<S> c; c.InitSize(buf, size);
*
* It is also possible to initialize an Array in two steps, only providing
* one data at a time:
*
* Array<S> d;
* d.Init(buf);
* d.Init(len); // or d.InitSize(size);
*
*/
template <typename T>
class Array: public UnsizedArray<T>
{
public:
typedef typename UnsizedArray<T>::idx_t idx_t;
/**
* Constructors and Initializers
*/
Array(): UnsizedArray<T>(), length(0) { }
Array(const void *buf, const idx_t length)
: UnsizedArray<T>(buf), length(length) { }
void Init(const void *buf)
{
UnsizedArray<T>::Init(buf);
}
void Init(const idx_t len)
{
// ASSERT(length != 0)
length = len;
}
void InitSize(const idx_t size)
{
Init(size / sizeof(T));
}
void Init(const void *buf, const idx_t len)
{
UnsizedArray<T>::Init(buf);
Init(len);
}
void InitSize(const void *buf, const idx_t size)
{
UnsizedArray<T>::Init(buf);
InitSize(size);
}
/**
* Returns the nth element of the array
*/
const T &operator[](const idx_t index) const
{
// ASSERT(index < length)
// ASSERT(operator bool())
return UnsizedArray<T>::operator[](index);
}
/**
* Returns the number of elements in the array
*/
idx_t numElements() const
{
return length;
}
/**
* Returns whether the array points somewhere and has at least one element.
*/
operator bool() const
{
return (length > 0) && UnsizedArray<T>::operator bool();
}
/**
* Iterator for an Array. Use is similar to that of STL const_iterators:
*
* struct S { ... };
* Array<S> a(buf, len);
* for (Array<S>::iterator it = a.begin(); it < a.end(); ++it) {
* // Do something with *it.
* }
*/
class iterator
{
public:
iterator(): item(NULL) { }
const T &operator *() const
{
return *item;
}
const T *operator ->() const
{
return item;
}
const T &operator ++()
{
return *(++item);
}
bool operator<(const iterator &other) const
{
return item < other.item;
}
protected:
friend class Array<T>;
iterator(const T &item): item(&item) { }
private:
const T *item;
};
/**
* Returns an iterator pointing at the beginning of the Array
*/
iterator begin() const {
if (length)
return iterator(UnsizedArray<T>::operator[](0));
return iterator();
}
/**
* Returns an iterator pointing past the end of the Array
*/
iterator end() const {
if (length)
return iterator(UnsizedArray<T>::operator[](length));
return iterator();
}
private:
idx_t length;
};
/**
* Transforms a pointer-to-function to a pointer-to-object pointing at the
* same address.
*/
template <typename T>
void *FunctionPtr(T func)
{
union {
void *ptr;
T func;
} f;
f.func = func;
return f.ptr;
}
#endif /* Utils_h */

View File

@ -6,6 +6,8 @@
#include <unistd.h>
#include "Zip.h"
extern "C" void report_mapping() { }
/**
* test.zip is a basic test zip file with a central directory. It contains
* four entries, in the following order: