gecko/js/src/jsnum.cpp

1495 lines
40 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* IBM Corp.
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS number type and wrapper class.
*/
#if defined(XP_WIN) || defined(XP_OS2)
#include <float.h>
#endif
#ifdef XP_OS2
#define _PC_53 PC_53
#define _MCW_EM MCW_EM
#define _MCW_PC MCW_PC
#endif
#include <locale.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "jstypes.h"
#include "jsstdint.h"
#include "jsutil.h" /* Added by JSIFY */
#include "jsapi.h"
#include "jsatom.h"
#include "jsbuiltins.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jsdtoa.h"
#include "jsgc.h"
#include "jsinterp.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsopcode.h"
#include "jsprf.h"
#include "jsscope.h"
#include "jsstr.h"
#include "jsvector.h"
static JSBool
num_isNaN(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x;
if (argc == 0) {
*vp = JSVAL_TRUE;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
*vp = BOOLEAN_TO_JSVAL(JSDOUBLE_IS_NaN(x));
return JS_TRUE;
}
static JSBool
num_isFinite(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x;
if (argc == 0) {
*vp = JSVAL_FALSE;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
*vp = BOOLEAN_TO_JSVAL(JSDOUBLE_IS_FINITE(x));
return JS_TRUE;
}
static JSBool
num_parseFloat(JSContext *cx, uintN argc, jsval *vp)
{
JSString *str;
jsdouble d;
const jschar *bp, *end, *ep;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
str = js_ValueToString(cx, vp[2]);
if (!str)
return JS_FALSE;
str->getCharsAndEnd(bp, end);
if (!js_strtod(cx, bp, end, &ep, &d))
return JS_FALSE;
if (ep == bp) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
return js_NewNumberInRootedValue(cx, d, vp);
}
#ifdef JS_TRACER
static jsdouble FASTCALL
ParseFloat(JSContext* cx, JSString* str)
{
const jschar* bp;
const jschar* end;
const jschar* ep;
jsdouble d;
str->getCharsAndEnd(bp, end);
if (!js_strtod(cx, bp, end, &ep, &d) || ep == bp)
return js_NaN;
return d;
}
#endif
/* See ECMA 15.1.2.2. */
static JSBool
num_parseInt(JSContext *cx, uintN argc, jsval *vp)
{
jsint radix;
JSString *str;
jsdouble d;
const jschar *bp, *end, *ep;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
if (argc > 1) {
2008-03-06 13:40:43 -08:00
radix = js_ValueToECMAInt32(cx, &vp[3]);
if (JSVAL_IS_NULL(vp[3]))
return JS_FALSE;
} else {
radix = 0;
}
if (radix != 0 && (radix < 2 || radix > 36)) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
if (JSVAL_IS_INT(vp[2]) && (radix == 0 || radix == 10)) {
*vp = vp[2];
return JS_TRUE;
}
str = js_ValueToString(cx, vp[2]);
if (!str)
return JS_FALSE;
str->getCharsAndEnd(bp, end);
if (!js_strtointeger(cx, bp, end, &ep, radix, &d))
return JS_FALSE;
if (ep == bp) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
return js_NewNumberInRootedValue(cx, d, vp);
}
#ifdef JS_TRACER
static jsdouble FASTCALL
ParseInt(JSContext* cx, JSString* str)
{
const jschar* bp;
const jschar* end;
const jschar* ep;
jsdouble d;
str->getCharsAndEnd(bp, end);
if (!js_strtointeger(cx, bp, end, &ep, 0, &d) || ep == bp)
return js_NaN;
return d;
}
static jsdouble FASTCALL
ParseIntDouble(jsdouble d)
{
if (!JSDOUBLE_IS_FINITE(d))
return js_NaN;
if (d > 0)
return floor(d);
if (d < 0)
return -floor(-d);
return 0;
}
#endif
const char js_Infinity_str[] = "Infinity";
const char js_NaN_str[] = "NaN";
const char js_isNaN_str[] = "isNaN";
const char js_isFinite_str[] = "isFinite";
const char js_parseFloat_str[] = "parseFloat";
const char js_parseInt_str[] = "parseInt";
#ifdef JS_TRACER
JS_DEFINE_TRCINFO_2(num_parseInt,
(2, (static, DOUBLE, ParseInt, CONTEXT, STRING, 1, 1)),
(1, (static, DOUBLE, ParseIntDouble, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(num_parseFloat,
(2, (static, DOUBLE, ParseFloat, CONTEXT, STRING, 1, 1)))
#endif /* JS_TRACER */
static JSFunctionSpec number_functions[] = {
JS_FN(js_isNaN_str, num_isNaN, 1,0),
JS_FN(js_isFinite_str, num_isFinite, 1,0),
JS_TN(js_parseFloat_str, num_parseFloat, 1,0, num_parseFloat_trcinfo),
JS_TN(js_parseInt_str, num_parseInt, 2,0, num_parseInt_trcinfo),
JS_FS_END
};
JSClass js_NumberClass = {
js_Number_str,
JSCLASS_HAS_RESERVED_SLOTS(1) | JSCLASS_HAS_CACHED_PROTO(JSProto_Number),
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, NULL,
JSCLASS_NO_OPTIONAL_MEMBERS
};
static JSBool
Number(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsval v;
jsdouble d;
if (argc != 0) {
d = js_ValueToNumber(cx, &argv[0]);
v = argv[0];
if (JSVAL_IS_NULL(v))
return JS_FALSE;
if (v != JSVAL_TRUE) {
JS_ASSERT(JSVAL_IS_INT(v) || JSVAL_IS_DOUBLE(v));
} else {
if (!js_NewNumberInRootedValue(cx, d, &argv[0]))
return JS_FALSE;
v = argv[0];
}
} else {
v = JSVAL_ZERO;
}
if (!JS_IsConstructing(cx))
*rval = v;
else
obj->fslots[JSSLOT_PRIVATE] = v;
return true;
}
#if JS_HAS_TOSOURCE
static JSBool
num_toSource(JSContext *cx, uintN argc, jsval *vp)
{
jsval v;
jsdouble d;
char numBuf[DTOSTR_STANDARD_BUFFER_SIZE], *numStr;
char buf[64];
JSString *str;
if (!js_GetPrimitiveThis(cx, vp, &js_NumberClass, &v))
return JS_FALSE;
JS_ASSERT(JSVAL_IS_NUMBER(v));
d = JSVAL_IS_INT(v) ? (jsdouble)JSVAL_TO_INT(v) : *JSVAL_TO_DOUBLE(v);
numStr = JS_dtostr(numBuf, sizeof numBuf, DTOSTR_STANDARD, 0, d);
if (!numStr) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
JS_snprintf(buf, sizeof buf, "(new %s(%s))", js_NumberClass.name, numStr);
str = JS_NewStringCopyZ(cx, buf);
if (!str)
return JS_FALSE;
*vp = STRING_TO_JSVAL(str);
return JS_TRUE;
}
#endif
/* The buf must be big enough for MIN_INT to fit including '-' and '\0'. */
static char *
IntToCString(jsint i, jsint base, char *buf, size_t bufSize)
{
char *cp;
jsuint u;
u = (i < 0) ? -i : i;
cp = buf + bufSize; /* one past last buffer cell */
*--cp = '\0'; /* null terminate the string to be */
/*
* Build the string from behind. We use multiply and subtraction
* instead of modulus because that's much faster.
*/
switch (base) {
case 10:
do {
jsuint newu = u / 10;
*--cp = (char)(u - newu * 10) + '0';
u = newu;
} while (u != 0);
break;
case 16:
do {
jsuint newu = u / 16;
*--cp = "0123456789abcdef"[u - newu * 16];
u = newu;
} while (u != 0);
break;
default:
JS_ASSERT(base >= 2 && base <= 36);
do {
jsuint newu = u / base;
*--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[u - newu * base];
u = newu;
} while (u != 0);
break;
}
if (i < 0)
*--cp = '-';
JS_ASSERT(cp >= buf);
return cp;
}
static JSBool
num_toString(JSContext *cx, uintN argc, jsval *vp)
{
jsval v;
jsdouble d;
jsint base;
JSString *str;
if (!js_GetPrimitiveThis(cx, vp, &js_NumberClass, &v))
return JS_FALSE;
JS_ASSERT(JSVAL_IS_NUMBER(v));
d = JSVAL_IS_INT(v) ? (jsdouble)JSVAL_TO_INT(v) : *JSVAL_TO_DOUBLE(v);
base = 10;
if (argc != 0 && !JSVAL_IS_VOID(vp[2])) {
2008-03-06 13:40:43 -08:00
base = js_ValueToECMAInt32(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
if (base < 2 || base > 36) {
char numBuf[12];
char *numStr = IntToCString(base, 10, numBuf, sizeof numBuf);
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_RADIX,
numStr);
return JS_FALSE;
}
}
if (base == 10) {
str = js_NumberToString(cx, d);
} else {
char *dStr = JS_dtobasestr(base, d);
if (!dStr) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
str = JS_NewStringCopyZ(cx, dStr);
js_free(dStr);
}
if (!str)
return JS_FALSE;
*vp = STRING_TO_JSVAL(str);
return JS_TRUE;
}
static JSBool
num_toLocaleString(JSContext *cx, uintN argc, jsval *vp)
{
char thousandsLength, decimalLength;
const char *numGrouping, *tmpGroup;
JSRuntime *rt;
JSString *numStr, *str;
const char *num, *end, *tmpSrc;
char *buf, *tmpDest;
const char *nint;
int digits, size, remainder, nrepeat;
/*
* Create the string, move back to bytes to make string twiddling
* a bit easier and so we can insert platform charset seperators.
*/
if (!num_toString(cx, 0, vp))
return JS_FALSE;
JS_ASSERT(JSVAL_IS_STRING(*vp));
numStr = JSVAL_TO_STRING(*vp);
num = js_GetStringBytes(cx, numStr);
if (!num)
return JS_FALSE;
/*
* Find the first non-integer value, whether it be a letter as in
2008-07-24 12:59:11 -07:00
* 'Infinity', a decimal point, or an 'e' from exponential notation.
*/
nint = num;
if (*nint == '-')
nint++;
while (*nint >= '0' && *nint <= '9')
nint++;
digits = nint - num;
end = num + digits;
if (!digits)
return JS_TRUE;
rt = cx->runtime;
thousandsLength = strlen(rt->thousandsSeparator);
decimalLength = strlen(rt->decimalSeparator);
/* Figure out how long resulting string will be. */
size = digits + (*nint ? strlen(nint + 1) + 1 : 0);
if (*nint == '.')
size += decimalLength;
numGrouping = tmpGroup = rt->numGrouping;
remainder = digits;
if (*num == '-')
remainder--;
while (*tmpGroup != CHAR_MAX && *tmpGroup != '\0') {
if (*tmpGroup >= remainder)
break;
size += thousandsLength;
remainder -= *tmpGroup;
tmpGroup++;
}
if (*tmpGroup == '\0' && *numGrouping != '\0') {
nrepeat = (remainder - 1) / tmpGroup[-1];
size += thousandsLength * nrepeat;
remainder -= nrepeat * tmpGroup[-1];
} else {
nrepeat = 0;
}
tmpGroup--;
buf = (char *)cx->malloc(size + 1);
if (!buf)
return JS_FALSE;
tmpDest = buf;
tmpSrc = num;
while (*tmpSrc == '-' || remainder--)
*tmpDest++ = *tmpSrc++;
while (tmpSrc < end) {
strcpy(tmpDest, rt->thousandsSeparator);
tmpDest += thousandsLength;
memcpy(tmpDest, tmpSrc, *tmpGroup);
tmpDest += *tmpGroup;
tmpSrc += *tmpGroup;
if (--nrepeat < 0)
tmpGroup--;
}
if (*nint == '.') {
strcpy(tmpDest, rt->decimalSeparator);
tmpDest += decimalLength;
strcpy(tmpDest, nint + 1);
} else {
strcpy(tmpDest, nint);
}
if (cx->localeCallbacks && cx->localeCallbacks->localeToUnicode)
return cx->localeCallbacks->localeToUnicode(cx, buf, vp);
str = JS_NewString(cx, buf, size);
if (!str) {
cx->free(buf);
return JS_FALSE;
}
*vp = STRING_TO_JSVAL(str);
return JS_TRUE;
}
static JSBool
num_valueOf(JSContext *cx, uintN argc, jsval *vp)
{
jsval v;
JSObject *obj;
v = vp[1];
if (JSVAL_IS_NUMBER(v)) {
*vp = v;
return JS_TRUE;
}
obj = JS_THIS_OBJECT(cx, vp);
if (!JS_InstanceOf(cx, obj, &js_NumberClass, vp + 2))
return JS_FALSE;
*vp = obj->fslots[JSSLOT_PRIVATE];
return JS_TRUE;
}
#define MAX_PRECISION 100
static JSBool
num_to(JSContext *cx, JSDToStrMode zeroArgMode, JSDToStrMode oneArgMode,
jsint precisionMin, jsint precisionMax, jsint precisionOffset,
uintN argc, jsval *vp)
{
jsval v;
jsdouble d, precision;
JSString *str;
/* Use MAX_PRECISION+1 because precisionOffset can be 1. */
char buf[DTOSTR_VARIABLE_BUFFER_SIZE(MAX_PRECISION+1)];
char *numStr;
if (!js_GetPrimitiveThis(cx, vp, &js_NumberClass, &v))
return JS_FALSE;
JS_ASSERT(JSVAL_IS_NUMBER(v));
d = JSVAL_IS_INT(v) ? (jsdouble)JSVAL_TO_INT(v) : *JSVAL_TO_DOUBLE(v);
if (argc == 0) {
precision = 0.0;
oneArgMode = zeroArgMode;
} else {
precision = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
precision = js_DoubleToInteger(precision);
if (precision < precisionMin || precision > precisionMax) {
numStr = JS_dtostr(buf, sizeof buf, DTOSTR_STANDARD, 0, precision);
if (!numStr)
JS_ReportOutOfMemory(cx);
else
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_PRECISION_RANGE, numStr);
return JS_FALSE;
}
}
numStr = JS_dtostr(buf, sizeof buf, oneArgMode, (jsint)precision + precisionOffset, d);
if (!numStr) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
str = JS_NewStringCopyZ(cx, numStr);
if (!str)
return JS_FALSE;
*vp = STRING_TO_JSVAL(str);
return JS_TRUE;
}
/*
* In the following three implementations, we allow a larger range of precision
* than ECMA requires; this is permitted by ECMA-262.
*/
static JSBool
num_toFixed(JSContext *cx, uintN argc, jsval *vp)
{
return num_to(cx, DTOSTR_FIXED, DTOSTR_FIXED, -20, MAX_PRECISION, 0,
argc, vp);
}
static JSBool
num_toExponential(JSContext *cx, uintN argc, jsval *vp)
{
return num_to(cx, DTOSTR_STANDARD_EXPONENTIAL, DTOSTR_EXPONENTIAL, 0,
MAX_PRECISION, 1, argc, vp);
}
static JSBool
num_toPrecision(JSContext *cx, uintN argc, jsval *vp)
{
if (argc == 0 || JSVAL_IS_VOID(vp[2]))
return num_toString(cx, 0, vp);
return num_to(cx, DTOSTR_STANDARD, DTOSTR_PRECISION, 1, MAX_PRECISION, 0,
argc, vp);
}
#ifdef JS_TRACER
JS_DEFINE_TRCINFO_2(num_toString,
(3, (static, STRING, NumberToStringWithBase, CONTEXT, THIS_DOUBLE, INT32, 1, 1)),
(2, (extern, STRING, js_NumberToString, CONTEXT, THIS_DOUBLE, 1, 1)))
#endif /* JS_TRACER */
static JSFunctionSpec number_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, num_toSource, 0,JSFUN_THISP_NUMBER),
#endif
JS_TN(js_toString_str, num_toString, 1,JSFUN_THISP_NUMBER,
num_toString_trcinfo),
JS_FN(js_toLocaleString_str, num_toLocaleString, 0,JSFUN_THISP_NUMBER),
JS_FN(js_valueOf_str, num_valueOf, 0,JSFUN_THISP_NUMBER),
JS_FN(js_toJSON_str, num_valueOf, 0,JSFUN_THISP_NUMBER),
JS_FN("toFixed", num_toFixed, 1,JSFUN_THISP_NUMBER),
JS_FN("toExponential", num_toExponential, 1,JSFUN_THISP_NUMBER),
JS_FN("toPrecision", num_toPrecision, 1,JSFUN_THISP_NUMBER),
JS_FS_END
};
/* NB: Keep this in synch with number_constants[]. */
enum nc_slot {
NC_NaN,
NC_POSITIVE_INFINITY,
NC_NEGATIVE_INFINITY,
NC_MAX_VALUE,
NC_MIN_VALUE,
NC_LIMIT
};
/*
* Some to most C compilers forbid spelling these at compile time, or barf
* if you try, so all but MAX_VALUE are set up by js_InitRuntimeNumberState
* using union jsdpun.
*/
static JSConstDoubleSpec number_constants[] = {
{0, js_NaN_str, 0,{0,0,0}},
{0, "POSITIVE_INFINITY", 0,{0,0,0}},
{0, "NEGATIVE_INFINITY", 0,{0,0,0}},
{1.7976931348623157E+308, "MAX_VALUE", 0,{0,0,0}},
{0, "MIN_VALUE", 0,{0,0,0}},
{0,0,0,{0,0,0}}
};
2008-08-21 00:13:40 -07:00
jsdouble js_NaN;
#if (defined XP_WIN || defined XP_OS2) && \
!defined WINCE && \
!defined __MWERKS__ && \
(defined _M_IX86 || \
(defined __GNUC__ && !defined __MINGW32__))
/*
* Set the exception mask to mask all exceptions and set the FPU precision
* to 53 bit mantissa.
* On Alpha platform this is handled via Compiler option.
*/
#define FIX_FPU() _control87(_MCW_EM | _PC_53, _MCW_EM | _MCW_PC)
#else
#define FIX_FPU() ((void)0)
#endif
JSBool
js_InitRuntimeNumberState(JSContext *cx)
{
JSRuntime *rt;
jsdpun u;
struct lconv *locale;
rt = cx->runtime;
JS_ASSERT(!rt->jsNaN);
FIX_FPU();
u.s.hi = JSDOUBLE_HI32_EXPMASK | JSDOUBLE_HI32_MANTMASK;
u.s.lo = 0xffffffff;
2008-08-21 00:13:40 -07:00
number_constants[NC_NaN].dval = js_NaN = u.d;
rt->jsNaN = js_NewWeaklyRootedDouble(cx, js_NaN);
if (!rt->jsNaN)
return JS_FALSE;
u.s.hi = JSDOUBLE_HI32_EXPMASK;
u.s.lo = 0x00000000;
number_constants[NC_POSITIVE_INFINITY].dval = u.d;
rt->jsPositiveInfinity = js_NewWeaklyRootedDouble(cx, u.d);
if (!rt->jsPositiveInfinity)
return JS_FALSE;
u.s.hi = JSDOUBLE_HI32_SIGNBIT | JSDOUBLE_HI32_EXPMASK;
u.s.lo = 0x00000000;
number_constants[NC_NEGATIVE_INFINITY].dval = u.d;
rt->jsNegativeInfinity = js_NewWeaklyRootedDouble(cx, u.d);
if (!rt->jsNegativeInfinity)
return JS_FALSE;
u.s.hi = 0;
u.s.lo = 1;
number_constants[NC_MIN_VALUE].dval = u.d;
locale = localeconv();
rt->thousandsSeparator =
JS_strdup(cx, locale->thousands_sep ? locale->thousands_sep : "'");
rt->decimalSeparator =
JS_strdup(cx, locale->decimal_point ? locale->decimal_point : ".");
rt->numGrouping =
JS_strdup(cx, locale->grouping ? locale->grouping : "\3\0");
return rt->thousandsSeparator && rt->decimalSeparator && rt->numGrouping;
}
void
js_TraceRuntimeNumberState(JSTracer *trc)
{
JSRuntime *rt;
rt = trc->context->runtime;
if (rt->jsNaN)
JS_CALL_DOUBLE_TRACER(trc, rt->jsNaN, "NaN");
if (rt->jsPositiveInfinity)
JS_CALL_DOUBLE_TRACER(trc, rt->jsPositiveInfinity, "+Infinity");
if (rt->jsNegativeInfinity)
JS_CALL_DOUBLE_TRACER(trc, rt->jsNegativeInfinity, "-Infinity");
}
void
js_FinishRuntimeNumberState(JSContext *cx)
{
JSRuntime *rt = cx->runtime;
js_UnlockGCThingRT(rt, rt->jsNaN);
js_UnlockGCThingRT(rt, rt->jsNegativeInfinity);
js_UnlockGCThingRT(rt, rt->jsPositiveInfinity);
rt->jsNaN = NULL;
rt->jsNegativeInfinity = NULL;
rt->jsPositiveInfinity = NULL;
cx->free((void *)rt->thousandsSeparator);
cx->free((void *)rt->decimalSeparator);
cx->free((void *)rt->numGrouping);
rt->thousandsSeparator = rt->decimalSeparator = rt->numGrouping = NULL;
}
JSObject *
js_InitNumberClass(JSContext *cx, JSObject *obj)
{
JSObject *proto, *ctor;
JSRuntime *rt;
/* XXX must do at least once per new thread, so do it per JSContext... */
FIX_FPU();
if (!JS_DefineFunctions(cx, obj, number_functions))
return NULL;
proto = JS_InitClass(cx, obj, NULL, &js_NumberClass, Number, 1,
NULL, number_methods, NULL, NULL);
if (!proto || !(ctor = JS_GetConstructor(cx, proto)))
return NULL;
proto->fslots[JSSLOT_PRIVATE] = JSVAL_ZERO;
if (!JS_DefineConstDoubles(cx, ctor, number_constants))
return NULL;
/* ECMA 15.1.1.1 */
rt = cx->runtime;
if (!JS_DefineProperty(cx, obj, js_NaN_str, DOUBLE_TO_JSVAL(rt->jsNaN),
NULL, NULL, JSPROP_PERMANENT)) {
return NULL;
}
/* ECMA 15.1.1.2 */
if (!JS_DefineProperty(cx, obj, js_Infinity_str,
DOUBLE_TO_JSVAL(rt->jsPositiveInfinity),
NULL, NULL, JSPROP_PERMANENT)) {
return NULL;
}
return proto;
}
JSBool
js_NewNumberInRootedValue(JSContext *cx, jsdouble d, jsval *vp)
{
jsint i;
if (JSDOUBLE_IS_INT(d, i) && INT_FITS_IN_JSVAL(i)) {
*vp = INT_TO_JSVAL(i);
return JS_TRUE;
}
return js_NewDoubleInRootedValue(cx, d, vp);
}
JSBool
js_NewWeaklyRootedNumber(JSContext *cx, jsdouble d, jsval *rval)
{
jsint i;
if (JSDOUBLE_IS_INT(d, i) && INT_FITS_IN_JSVAL(i)) {
*rval = INT_TO_JSVAL(i);
return JS_TRUE;
}
return JS_NewDoubleValue(cx, d, rval);
}
/*
* Convert a number to C string. The buf must be large enough to accommodate
* the result, including '-' and '\0', if base == 10 or d is an integer that
* fits in 32 bits. The caller must free the resulting pointer if it does not
* point into buf.
*/
static char *
NumberToCString(JSContext *cx, jsdouble d, jsint base, char *buf, size_t bufSize)
{
jsint i;
char *numStr;
JS_ASSERT(bufSize >= DTOSTR_STANDARD_BUFFER_SIZE);
if (JSDOUBLE_IS_INT(d, i)) {
numStr = IntToCString(i, base, buf, bufSize);
} else {
if (base == 10)
numStr = JS_dtostr(buf, bufSize, DTOSTR_STANDARD, 0, d);
else
numStr = JS_dtobasestr(base, d);
if (!numStr) {
JS_ReportOutOfMemory(cx);
return NULL;
}
}
return numStr;
}
static JSString * JS_FASTCALL
NumberToStringWithBase(JSContext *cx, jsdouble d, jsint base)
{
/*
* The longest possible result here that would need to fit in buf is
* (-0x80000000).toString(2), which has length 33. (This can produce
* longer results, but in those cases buf is not used; see comment at
* NumberToCString.)
*/
char buf[34];
char *numStr;
JSString *s;
if (base < 2 || base > 36)
return NULL;
numStr = NumberToCString(cx, d, base, buf, sizeof buf);
if (!numStr)
return NULL;
s = JS_NewStringCopyZ(cx, numStr);
if (!(numStr >= buf && numStr < buf + sizeof buf))
js_free(numStr);
return s;
}
JSString * JS_FASTCALL
js_NumberToString(JSContext *cx, jsdouble d)
{
return NumberToStringWithBase(cx, d, 10);
}
JSBool JS_FASTCALL
js_NumberValueToCharBuffer(JSContext *cx, jsval v, JSCharVector &buf)
{
/* Convert to C-string. */
static const size_t arrSize = DTOSTR_STANDARD_BUFFER_SIZE;
char arr[arrSize];
const char *cstr;
if (JSVAL_IS_INT(v)) {
cstr = IntToCString(JSVAL_TO_INT(v), 10, arr, arrSize);
} else {
JS_ASSERT(JSVAL_IS_DOUBLE(v));
cstr = JS_dtostr(arr, arrSize, DTOSTR_STANDARD, 0, *JSVAL_TO_DOUBLE(v));
}
if (!cstr)
return JS_FALSE;
/*
* Inflate to jschar string. The input C-string characters are < 127, so
* even if jschars are UTF-8, all chars should map to one jschar.
*/
size_t cstrlen = strlen(cstr);
JS_ASSERT(cstrlen < arrSize);
size_t sizeBefore = buf.size();
if (!buf.growBy(cstrlen))
return JS_FALSE;
jschar *appendBegin = buf.begin() + sizeBefore;
#ifdef DEBUG
size_t oldcstrlen = cstrlen;
JSBool ok =
#endif
js_InflateStringToBuffer(cx, cstr, cstrlen, appendBegin, &cstrlen);
JS_ASSERT(ok && cstrlen == oldcstrlen);
return JS_TRUE;
}
jsdouble
js_ValueToNumber(JSContext *cx, jsval *vp)
{
jsval v;
JSString *str;
const jschar *bp, *end, *ep;
jsdouble d, *dp;
JSObject *obj;
JSTempValueRooter tvr;
v = *vp;
for (;;) {
if (JSVAL_IS_INT(v))
return (jsdouble) JSVAL_TO_INT(v);
if (JSVAL_IS_DOUBLE(v))
return *JSVAL_TO_DOUBLE(v);
if (JSVAL_IS_STRING(v)) {
str = JSVAL_TO_STRING(v);
/*
* Note that ECMA doesn't treat a string beginning with a '0' as
* an octal number here. This works because all such numbers will
* be interpreted as decimal by js_strtod and will never get
* passed to js_strtointeger (which would interpret them as
* octal).
*/
str->getCharsAndEnd(bp, end);
if ((!js_strtod(cx, bp, end, &ep, &d) ||
js_SkipWhiteSpace(ep, end) != end) &&
(!js_strtointeger(cx, bp, end, &ep, 0, &d) ||
2008-03-12 00:05:30 -07:00
js_SkipWhiteSpace(ep, end) != end)) {
break;
}
/*
* JSVAL_TRUE indicates that double jsval was never constructed
* for the result.
*/
*vp = JSVAL_TRUE;
return d;
}
if (JSVAL_IS_BOOLEAN(v)) {
if (JSVAL_TO_BOOLEAN(v)) {
*vp = JSVAL_ONE;
return 1.0;
} else {
*vp = JSVAL_ZERO;
return 0.0;
}
}
if (JSVAL_IS_NULL(v)) {
*vp = JSVAL_ZERO;
return 0.0;
}
if (JSVAL_IS_VOID(v))
break;
JS_ASSERT(!JSVAL_IS_PRIMITIVE(v));
obj = JSVAL_TO_OBJECT(v);
/*
* vp roots obj so we cannot use it as an extra root for
* OBJ_DEFAULT_VALUE result when calling the hook.
*/
JS_PUSH_SINGLE_TEMP_ROOT(cx, v, &tvr);
if (!OBJ_DEFAULT_VALUE(cx, obj, JSTYPE_NUMBER, &tvr.u.value))
obj = NULL;
else
v = *vp = tvr.u.value;
JS_POP_TEMP_ROOT(cx, &tvr);
if (!obj) {
*vp = JSVAL_NULL;
return 0.0;
}
if (!JSVAL_IS_PRIMITIVE(v))
break;
}
dp = cx->runtime->jsNaN;
*vp = DOUBLE_TO_JSVAL(dp);
return *dp;
}
2008-03-06 13:40:43 -08:00
int32
js_ValueToECMAInt32(JSContext *cx, jsval *vp)
{
2008-03-06 13:40:43 -08:00
jsval v;
jsdouble d;
2008-03-06 13:40:43 -08:00
v = *vp;
if (JSVAL_IS_INT(v))
return JSVAL_TO_INT(v);
if (JSVAL_IS_DOUBLE(v)) {
d = *JSVAL_TO_DOUBLE(v);
*vp = JSVAL_TRUE;
2008-03-06 13:40:43 -08:00
} else {
d = js_ValueToNumber(cx, vp);
if (JSVAL_IS_NULL(*vp))
2008-03-06 13:40:43 -08:00
return 0;
*vp = JSVAL_TRUE;
2008-03-06 13:40:43 -08:00
}
return js_DoubleToECMAInt32(d);
}
/*
* From the ES3 spec, 9.5
* 2. If Result(1) is NaN, +0, -0, +Inf, or -Inf, return +0.
* 3. Compute sign(Result(1)) * floor(abs(Result(1))).
* 4. Compute Result(3) modulo 2^32; that is, a finite integer value k of Number
* type with positive sign and less than 2^32 in magnitude such the mathematical
* difference of Result(3) and k is mathematically an integer multiple of 2^32.
* 5. If Result(4) is greater than or equal to 2^31, return Result(4)- 2^32,
* otherwise return Result(4).
*/
int32
js_DoubleToECMAInt32(jsdouble d)
{
#ifdef __i386__
jsdpun du, duh, two32;
uint32 di_h, u_tmp, expon, shift_amount;
int32 mask32;
/*
* Algorithm Outline
* Step 1. If d is NaN, +/-Inf or |d|>=2^84 or |d|<1, then return 0
* All of this is implemented based on an exponent comparison.
* Step 2. If |d|<2^31, then return (int)d
* The cast to integer (conversion in RZ mode) returns the correct result.
* Step 3. If |d|>=2^32, d:=fmod(d, 2^32) is taken -- but without a call
* Step 4. If |d|>=2^31, then the fractional bits are cleared before
* applying the correction by 2^32: d - sign(d)*2^32
* Step 5. Return (int)d
*/
du.d = d;
di_h = du.s.hi;
u_tmp = (di_h & 0x7ff00000) - 0x3ff00000;
if (u_tmp >= (0x45300000-0x3ff00000)) {
// d is Nan, +/-Inf or +/-0, or |d|>=2^(32+52) or |d|<1, in which case result=0
return 0;
}
if (u_tmp < 0x01f00000) {
// |d|<2^31
return int32_t(d);
}
if (u_tmp > 0x01f00000) {
// |d|>=2^32
expon = u_tmp >> 20;
shift_amount = expon - 21;
duh.u64 = du.u64;
mask32 = 0x80000000;
if (shift_amount < 32) {
mask32 >>= shift_amount;
duh.s.hi = du.s.hi & mask32;
duh.s.lo = 0;
} else {
mask32 >>= (shift_amount-32);
duh.s.hi = du.s.hi;
duh.s.lo = du.s.lo & mask32;
}
du.d -= duh.d;
}
di_h = du.s.hi;
// eliminate fractional bits
u_tmp = (di_h & 0x7ff00000);
if (u_tmp >= 0x41e00000) {
// |d|>=2^31
expon = u_tmp >> 20;
shift_amount = expon - (0x3ff - 11);
mask32 = 0x80000000;
if (shift_amount < 32) {
mask32 >>= shift_amount;
du.s.hi &= mask32;
du.s.lo = 0;
} else {
mask32 >>= (shift_amount-32);
du.s.lo &= mask32;
}
two32.s.hi = 0x41f00000 ^ (du.s.hi & 0x80000000);
two32.s.lo = 0;
du.d -= two32.d;
}
return int32(du.d);
#else
2008-03-06 13:40:43 -08:00
int32 i;
jsdouble two32, two31;
2008-03-06 13:40:43 -08:00
if (!JSDOUBLE_IS_FINITE(d))
return 0;
2008-03-06 13:40:43 -08:00
i = (int32) d;
if ((jsdouble) i == d)
return i;
two32 = 4294967296.0;
two31 = 2147483648.0;
d = fmod(d, two32);
d = (d >= 0) ? floor(d) : ceil(d) + two32;
return (int32) (d >= two31 ? d - two32 : d);
#endif
}
2008-03-06 13:40:43 -08:00
uint32
js_ValueToECMAUint32(JSContext *cx, jsval *vp)
{
2008-03-06 13:40:43 -08:00
jsval v;
jsint i;
jsdouble d;
2008-03-06 13:40:43 -08:00
v = *vp;
if (JSVAL_IS_INT(v)) {
i = JSVAL_TO_INT(v);
if (i < 0)
*vp = JSVAL_TRUE;
return (uint32) i;
}
2008-03-06 13:40:43 -08:00
if (JSVAL_IS_DOUBLE(v)) {
d = *JSVAL_TO_DOUBLE(v);
*vp = JSVAL_TRUE;
2008-03-06 13:40:43 -08:00
} else {
d = js_ValueToNumber(cx, vp);
if (JSVAL_IS_NULL(*vp))
2008-03-06 13:40:43 -08:00
return 0;
*vp = JSVAL_TRUE;
2008-03-06 13:40:43 -08:00
}
return js_DoubleToECMAUint32(d);
}
uint32
js_DoubleToECMAUint32(jsdouble d)
{
2008-03-06 13:40:43 -08:00
int32 i;
JSBool neg;
2008-03-06 13:40:43 -08:00
jsdouble two32;
2008-03-06 13:40:43 -08:00
if (!JSDOUBLE_IS_FINITE(d))
return 0;
2008-03-06 13:40:43 -08:00
/*
* We check whether d fits int32, not uint32, as all but the ">>>" bit
* manipulation bytecode stores the result as int, not uint. When the
* result does not fit int jsval, it will be stored as a negative double.
*/
i = (int32) d;
if ((jsdouble) i == d)
return (int32)i;
neg = (d < 0);
d = floor(neg ? -d : d);
d = neg ? -d : d;
2008-03-06 13:40:43 -08:00
two32 = 4294967296.0;
d = fmod(d, two32);
return (uint32) (d >= 0 ? d : d + two32);
}
int32
js_ValueToInt32(JSContext *cx, jsval *vp)
{
jsval v;
jsdouble d;
v = *vp;
if (JSVAL_IS_INT(v))
return JSVAL_TO_INT(v);
d = js_ValueToNumber(cx, vp);
if (JSVAL_IS_NULL(*vp))
return 0;
if (JSVAL_IS_INT(*vp))
return JSVAL_TO_INT(*vp);
*vp = JSVAL_TRUE;
if (JSDOUBLE_IS_NaN(d) || d <= -2147483649.0 || 2147483648.0 <= d) {
js_ReportValueError(cx, JSMSG_CANT_CONVERT,
JSDVG_SEARCH_STACK, v, NULL);
*vp = JSVAL_NULL;
return 0;
}
return (int32) floor(d + 0.5); /* Round to nearest */
}
uint16
js_ValueToUint16(JSContext *cx, jsval *vp)
{
jsdouble d;
uint16 u;
jsuint m;
JSBool neg;
d = js_ValueToNumber(cx, vp);
if (JSVAL_IS_NULL(*vp))
return 0;
if (JSVAL_IS_INT(*vp)) {
u = (uint16) JSVAL_TO_INT(*vp);
} else if (d == 0 || !JSDOUBLE_IS_FINITE(d)) {
u = (uint16) 0;
} else {
u = (uint16) d;
if ((jsdouble) u != d) {
neg = (d < 0);
d = floor(neg ? -d : d);
d = neg ? -d : d;
m = JS_BIT(16);
d = fmod(d, (double) m);
if (d < 0)
d += m;
u = (uint16) d;
}
}
*vp = INT_TO_JSVAL(u);
return u;
}
jsdouble
js_DoubleToInteger(jsdouble d)
{
JSBool neg;
if (d == 0)
return d;
if (!JSDOUBLE_IS_FINITE(d)) {
if (JSDOUBLE_IS_NaN(d))
return 0;
return d;
}
neg = (d < 0);
d = floor(neg ? -d : d);
return neg ? -d : d;
}
JSBool
js_strtod(JSContext *cx, const jschar *s, const jschar *send,
const jschar **ep, jsdouble *dp)
{
const jschar *s1;
size_t length, i;
char cbuf[32];
char *cstr, *istr, *estr;
JSBool negative;
jsdouble d;
s1 = js_SkipWhiteSpace(s, send);
length = send - s1;
/* Use cbuf to avoid malloc */
if (length >= sizeof cbuf) {
cstr = (char *) cx->malloc(length + 1);
if (!cstr)
return JS_FALSE;
} else {
cstr = cbuf;
}
for (i = 0; i != length; i++) {
if (s1[i] >> 8)
break;
cstr[i] = (char)s1[i];
}
cstr[i] = 0;
istr = cstr;
if ((negative = (*istr == '-')) != 0 || *istr == '+')
istr++;
if (!strncmp(istr, js_Infinity_str, sizeof js_Infinity_str - 1)) {
d = *(negative ? cx->runtime->jsNegativeInfinity : cx->runtime->jsPositiveInfinity);
estr = istr + 8;
} else {
int err;
d = JS_strtod(cstr, &estr, &err);
if (d == HUGE_VAL)
d = *cx->runtime->jsPositiveInfinity;
else if (d == -HUGE_VAL)
d = *cx->runtime->jsNegativeInfinity;
#ifdef HPUX
if (d == 0.0 && negative) {
/*
* "-0", "-1e-2000" come out as positive zero
* here on HPUX. Force a negative zero instead.
*/
JSDOUBLE_HI32(d) = JSDOUBLE_HI32_SIGNBIT;
JSDOUBLE_LO32(d) = 0;
}
#endif
}
i = estr - cstr;
if (cstr != cbuf)
cx->free(cstr);
*ep = i ? s1 + i : s;
*dp = d;
return JS_TRUE;
}
struct BinaryDigitReader
{
uintN base; /* Base of number; must be a power of 2 */
uintN digit; /* Current digit value in radix given by base */
uintN digitMask; /* Mask to extract the next bit from digit */
const jschar *digits; /* Pointer to the remaining digits */
const jschar *end; /* Pointer to first non-digit */
};
/* Return the next binary digit from the number or -1 if done */
static intN GetNextBinaryDigit(struct BinaryDigitReader *bdr)
{
intN bit;
if (bdr->digitMask == 0) {
uintN c;
if (bdr->digits == bdr->end)
return -1;
c = *bdr->digits++;
if ('0' <= c && c <= '9')
bdr->digit = c - '0';
else if ('a' <= c && c <= 'z')
bdr->digit = c - 'a' + 10;
else
bdr->digit = c - 'A' + 10;
bdr->digitMask = bdr->base >> 1;
}
bit = (bdr->digit & bdr->digitMask) != 0;
bdr->digitMask >>= 1;
return bit;
}
JSBool
js_strtointeger(JSContext *cx, const jschar *s, const jschar *send,
const jschar **ep, jsint base, jsdouble *dp)
{
const jschar *s1, *start;
JSBool negative;
jsdouble value;
s1 = js_SkipWhiteSpace(s, send);
if (s1 == send)
goto no_digits;
if ((negative = (*s1 == '-')) != 0 || *s1 == '+') {
s1++;
if (s1 == send)
goto no_digits;
}
if (base == 0) {
/* No base supplied, or some base that evaluated to 0. */
if (*s1 == '0') {
/* It's either hex or octal; only increment char if str isn't '0' */
if (s1 + 1 != send && (s1[1] == 'X' || s1[1] == 'x')) {
base = 16;
s1 += 2;
if (s1 == send)
goto no_digits;
} else {
base = 8;
}
} else {
base = 10; /* Default to decimal. */
}
} else if (base == 16) {
/* If base is 16, ignore hex prefix. */
if (*s1 == '0' && s1 + 1 != send && (s1[1] == 'X' || s1[1] == 'x')) {
s1 += 2;
if (s1 == send)
goto no_digits;
}
}
/*
* Done with the preliminaries; find some prefix of the string that's
* a number in the given base.
*/
JS_ASSERT(s1 < send);
start = s1;
value = 0.0;
do {
uintN digit;
jschar c = *s1;
if ('0' <= c && c <= '9')
digit = c - '0';
else if ('a' <= c && c <= 'z')
digit = c - 'a' + 10;
else if ('A' <= c && c <= 'Z')
digit = c - 'A' + 10;
else
break;
if (digit >= (uintN)base)
break;
value = value * base + digit;
} while (++s1 != send);
if (value >= 9007199254740992.0) {
if (base == 10) {
/*
* If we're accumulating a decimal number and the number is >=
* 2^53, then the result from the repeated multiply-add above may
* be inaccurate. Call JS_strtod to get the correct answer.
*/
size_t i;
size_t length = s1 - start;
char *cstr = (char *) cx->malloc(length + 1);
char *estr;
int err=0;
if (!cstr)
return JS_FALSE;
for (i = 0; i != length; i++)
cstr[i] = (char)start[i];
cstr[length] = 0;
value = JS_strtod(cstr, &estr, &err);
if (err == JS_DTOA_ENOMEM) {
JS_ReportOutOfMemory(cx);
cx->free(cstr);
return JS_FALSE;
}
if (err == JS_DTOA_ERANGE && value == HUGE_VAL)
value = *cx->runtime->jsPositiveInfinity;
cx->free(cstr);
} else if ((base & (base - 1)) == 0) {
/*
* The number may also be inaccurate for power-of-two bases. This
* happens if the addition in value * base + digit causes a round-
* down to an even least significant mantissa bit when the first
* dropped bit is a one. If any of the following digits in the
* number (which haven't been added in yet) are nonzero, then the
* correct action would have been to round up instead of down. An
* example occurs when reading the number 0x1000000000000081, which
* rounds to 0x1000000000000000 instead of 0x1000000000000100.
*/
struct BinaryDigitReader bdr;
intN bit, bit2;
intN j;
bdr.base = base;
bdr.digitMask = 0;
bdr.digits = start;
bdr.end = s1;
value = 0.0;
/* Skip leading zeros. */
do {
bit = GetNextBinaryDigit(&bdr);
} while (bit == 0);
if (bit == 1) {
/* Gather the 53 significant bits (including the leading 1) */
value = 1.0;
for (j = 52; j; j--) {
bit = GetNextBinaryDigit(&bdr);
if (bit < 0)
goto done;
value = value*2 + bit;
}
/* bit2 is the 54th bit (the first dropped from the mantissa) */
bit2 = GetNextBinaryDigit(&bdr);
if (bit2 >= 0) {
jsdouble factor = 2.0;
intN sticky = 0; /* sticky is 1 if any bit beyond the 54th is 1 */
intN bit3;
while ((bit3 = GetNextBinaryDigit(&bdr)) >= 0) {
sticky |= bit3;
factor *= 2;
}
value += bit2 & (bit | sticky);
value *= factor;
}
done:;
}
}
}
/* We don't worry about inaccurate numbers for any other base. */
if (s1 == start) {
no_digits:
*dp = 0.0;
*ep = s;
} else {
*dp = negative ? -value : value;
*ep = s1;
}
return JS_TRUE;
}