gecko/browser/devtools/tilt/TiltVisualizer.jsm

2119 lines
62 KiB
JavaScript
Raw Normal View History

/* -*- Mode: javascript; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
2012-05-21 04:12:37 -07:00
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
const Cu = Components.utils;
const Ci = Components.interfaces;
const ELEMENT_MIN_SIZE = 4;
const INVISIBLE_ELEMENTS = {
"head": true,
"base": true,
"basefont": true,
"isindex": true,
"link": true,
"meta": true,
"option": true,
"script": true,
"style": true,
"title": true
};
// a node is represented in the visualization mesh as a rectangular stack
// of 5 quads composed of 12 vertices; we draw these as triangles using an
// index buffer of 12 unsigned int elements, obviously one for each vertex;
// if a webpage has enough nodes to overflow the index buffer elements size,
// weird things may happen; thus, when necessary, we'll split into groups
const MAX_GROUP_NODES = Math.pow(2, Uint16Array.BYTES_PER_ELEMENT * 8) / 12 - 1;
const STACK_THICKNESS = 15;
const WIREFRAME_COLOR = [0, 0, 0, 0.25];
const INTRO_TRANSITION_DURATION = 1000;
const OUTRO_TRANSITION_DURATION = 800;
const INITIAL_Z_TRANSLATION = 400;
const MOVE_INTO_VIEW_ACCURACY = 50;
const MOUSE_CLICK_THRESHOLD = 10;
const MOUSE_INTRO_DELAY = 200;
const ARCBALL_SENSITIVITY = 0.5;
const ARCBALL_ROTATION_STEP = 0.15;
const ARCBALL_TRANSLATION_STEP = 35;
const ARCBALL_ZOOM_STEP = 0.1;
const ARCBALL_ZOOM_MIN = -3000;
const ARCBALL_ZOOM_MAX = 500;
const ARCBALL_RESET_SPHERICAL_FACTOR = 0.1;
const ARCBALL_RESET_LINEAR_FACTOR = 0.01;
const TILT_CRAFTER = "resource:///modules/devtools/TiltWorkerCrafter.js";
const TILT_PICKER = "resource:///modules/devtools/TiltWorkerPicker.js";
Cu.import("resource://gre/modules/Services.jsm");
Cu.import("resource:///modules/devtools/TiltGL.jsm");
Cu.import("resource:///modules/devtools/TiltMath.jsm");
Cu.import("resource:///modules/devtools/TiltUtils.jsm");
Cu.import("resource:///modules/devtools/TiltVisualizerStyle.jsm");
this.EXPORTED_SYMBOLS = ["TiltVisualizer"];
/**
* Initializes the visualization presenter and controller.
*
* @param {Object} aProperties
* an object containing the following properties:
* {Window} chromeWindow: a reference to the top level window
* {Window} contentWindow: the content window holding the visualized doc
* {Element} parentNode: the parent node to hold the visualization
* {Object} notifications: necessary notifications for Tilt
* {Function} onError: optional, function called if initialization failed
* {Function} onLoad: optional, function called if initialization worked
*/
this.TiltVisualizer = function TiltVisualizer(aProperties)
{
// make sure the properties parameter is a valid object
aProperties = aProperties || {};
/**
* Save a reference to the top-level window.
*/
this.chromeWindow = aProperties.chromeWindow;
/**
* The canvas element used for rendering the visualization.
*/
this.canvas = TiltUtils.DOM.initCanvas(aProperties.parentNode, {
focusable: true,
append: true
});
/**
* Visualization logic and drawing loop.
*/
this.presenter = new TiltVisualizer.Presenter(this.canvas,
aProperties.chromeWindow,
aProperties.contentWindow,
aProperties.notifications,
aProperties.onError || null,
aProperties.onLoad || null);
/**
* Visualization mouse and keyboard controller.
*/
this.controller = new TiltVisualizer.Controller(this.canvas, this.presenter);
}
TiltVisualizer.prototype = {
/**
* Checks if this object was initialized properly.
*
* @return {Boolean} true if the object was initialized properly
*/
isInitialized: function TV_isInitialized()
{
return this.presenter && this.presenter.isInitialized() &&
this.controller && this.controller.isInitialized();
},
/**
* Removes the overlay canvas used for rendering the visualization.
*/
removeOverlay: function TV_removeOverlay()
{
if (this.canvas && this.canvas.parentNode) {
this.canvas.parentNode.removeChild(this.canvas);
}
},
/**
* Explicitly cleans up this visualizer and sets everything to null.
*/
cleanup: function TV_cleanup()
{
if (this.controller) {
TiltUtils.destroyObject(this.controller);
}
if (this.presenter) {
TiltUtils.destroyObject(this.presenter);
}
let chromeWindow = this.chromeWindow;
TiltUtils.destroyObject(this);
TiltUtils.clearCache();
TiltUtils.gc(chromeWindow);
}
};
/**
* This object manages the visualization logic and drawing loop.
*
* @param {HTMLCanvasElement} aCanvas
* the canvas element used for rendering
* @param {Window} aChromeWindow
* a reference to the top-level window
* @param {Window} aContentWindow
* the content window holding the document to be visualized
* @param {Object} aNotifications
* necessary notifications for Tilt
* @param {Function} onError
* function called if initialization failed
* @param {Function} onLoad
* function called if initialization worked
*/
TiltVisualizer.Presenter = function TV_Presenter(
aCanvas, aChromeWindow, aContentWindow, aNotifications, onError, onLoad)
{
/**
* A canvas overlay used for drawing the visualization.
*/
this.canvas = aCanvas;
/**
* Save a reference to the top-level window, to access InspectorUI or Tilt.
*/
this.chromeWindow = aChromeWindow;
/**
* The content window generating the visualization
*/
this.contentWindow = aContentWindow;
/**
* Shortcut for accessing notifications strings.
*/
this.NOTIFICATIONS = aNotifications;
/**
* Create the renderer, containing useful functions for easy drawing.
*/
this._renderer = new TiltGL.Renderer(aCanvas, onError, onLoad);
/**
* A custom shader used for drawing the visualization mesh.
*/
this._visualizationProgram = null;
/**
* The combined mesh representing the document visualization.
*/
this._texture = null;
this._meshData = null;
this._meshStacks = null;
this._meshWireframe = null;
this._traverseData = null;
/**
* A highlight quad drawn over a stacked dom node.
*/
this._highlight = {
disabled: true,
v0: vec3.create(),
v1: vec3.create(),
v2: vec3.create(),
v3: vec3.create()
};
/**
* Scene transformations, exposing offset, translation and rotation.
* Modified by events in the controller through delegate functions.
*/
this.transforms = {
zoom: 1,
offset: vec3.create(), // mesh offset, aligned to the viewport center
translation: vec3.create(), // scene translation, on the [x, y, z] axis
rotation: quat4.create() // scene rotation, expressed as a quaternion
};
/**
* Variables holding information about the initial and current node selected.
*/
this._currentSelection = -1; // the selected node index
this._initialSelection = false; // true if an initial selection was made
this._initialMeshConfiguration = false; // true if the 3D mesh was configured
/**
* Variable specifying if the scene should be redrawn.
* This should happen usually when the visualization is translated/rotated.
*/
this._redraw = true;
/**
* Total time passed since the rendering started.
* If the rendering is paused, this property won't get updated.
*/
this._time = 0;
/**
* Frame delta time (the ammount of time passed for each frame).
* This is used to smoothly interpolate animation transfroms.
*/
this._delta = 0;
this._prevFrameTime = 0;
this._currFrameTime = 0;
this._setup();
this._loop();
};
TiltVisualizer.Presenter.prototype = {
/**
* The initialization logic.
*/
_setup: function TVP__setup()
{
let renderer = this._renderer;
let inspector = this.chromeWindow.InspectorUI;
// if the renderer was destroyed, don't continue setup
if (!renderer || !renderer.context) {
return;
}
// create the visualization shaders and program to draw the stacks mesh
this._visualizationProgram = new renderer.Program({
vs: TiltVisualizer.MeshShader.vs,
fs: TiltVisualizer.MeshShader.fs,
attributes: ["vertexPosition", "vertexTexCoord", "vertexColor"],
uniforms: ["mvMatrix", "projMatrix", "sampler"]
});
// get the document zoom to properly scale the visualization
if (inspector.highlighter) {
this.transforms.zoom = inspector.highlighter.zoom;
}
// bind the owner object to the necessary functions
TiltUtils.bindObjectFunc(this, "^_on");
TiltUtils.bindObjectFunc(this, "_loop");
this._setupTexture();
this._setupMeshData();
this._setupEventListeners();
this.canvas.focus();
},
/**
* The animation logic.
*/
_loop: function TVP__loop()
{
let renderer = this._renderer;
// if the renderer was destroyed, don't continue rendering
if (!renderer || !renderer.context) {
return;
}
// prepare for the next frame of the animation loop
this.chromeWindow.mozRequestAnimationFrame(this._loop);
// only redraw if we really have to
if (this._redraw) {
this._redraw = false;
this._drawVisualization();
}
// update the current presenter transfroms from the controller
if ("function" === typeof this._controllerUpdate) {
this._controllerUpdate(this._time, this._delta);
}
this._handleFrameDelta();
this._handleKeyframeNotifications();
},
/**
* Calculates the current frame delta time.
*/
_handleFrameDelta: function TVP__handleFrameDelta()
{
this._prevFrameTime = this._currFrameTime;
this._currFrameTime = this.chromeWindow.mozAnimationStartTime;
this._delta = this._currFrameTime - this._prevFrameTime;
},
/**
* Draws the visualization mesh and highlight quad.
*/
_drawVisualization: function TVP__drawVisualization()
{
let renderer = this._renderer;
let transforms = this.transforms;
let w = renderer.width;
let h = renderer.height;
let ih = renderer.initialHeight;
// if the mesh wasn't created yet, don't continue rendering
if (!this._meshStacks || !this._meshWireframe) {
return;
}
// clear the context to an opaque black background
renderer.clear();
renderer.perspective();
// apply a transition transformation using an ortho and perspective matrix
let ortho = mat4.ortho(0, w, h, 0, -1000, 1000);
if (!this._isExecutingDestruction) {
let f = this._time / INTRO_TRANSITION_DURATION;
renderer.lerp(renderer.projMatrix, ortho, f, 8);
} else {
let f = this._time / OUTRO_TRANSITION_DURATION;
renderer.lerp(renderer.projMatrix, ortho, 1 - f, 8);
}
// apply the preliminary transformations to the model view
renderer.translate(w * 0.5, ih * 0.5, -INITIAL_Z_TRANSLATION);
// calculate the camera matrix using the rotation and translation
renderer.translate(transforms.translation[0], 0,
transforms.translation[2]);
renderer.transform(quat4.toMat4(transforms.rotation));
// offset the visualization mesh to center
renderer.translate(transforms.offset[0],
transforms.offset[1] + transforms.translation[1], 0);
renderer.scale(transforms.zoom, transforms.zoom);
// draw the visualization mesh
renderer.strokeWeight(2);
renderer.depthTest(true);
this._drawMeshStacks();
this._drawMeshWireframe();
this._drawHighlight();
// make sure the initial transition is drawn until finished
if (this._time < INTRO_TRANSITION_DURATION ||
this._time < OUTRO_TRANSITION_DURATION) {
this._redraw = true;
}
this._time += this._delta;
},
/**
* Draws the meshStacks object.
*/
_drawMeshStacks: function TVP__drawMeshStacks()
{
let renderer = this._renderer;
let mesh = this._meshStacks;
let visualizationProgram = this._visualizationProgram;
let texture = this._texture;
let mvMatrix = renderer.mvMatrix;
let projMatrix = renderer.projMatrix;
// use the necessary shader
visualizationProgram.use();
for (let i = 0, len = mesh.length; i < len; i++) {
let group = mesh[i];
// bind the attributes and uniforms as necessary
visualizationProgram.bindVertexBuffer("vertexPosition", group.vertices);
visualizationProgram.bindVertexBuffer("vertexTexCoord", group.texCoord);
visualizationProgram.bindVertexBuffer("vertexColor", group.color);
visualizationProgram.bindUniformMatrix("mvMatrix", mvMatrix);
visualizationProgram.bindUniformMatrix("projMatrix", projMatrix);
visualizationProgram.bindTexture("sampler", texture);
// draw the vertices as TRIANGLES indexed elements
renderer.drawIndexedVertices(renderer.context.TRIANGLES, group.indices);
}
// save the current model view and projection matrices
mesh.mvMatrix = mat4.create(mvMatrix);
mesh.projMatrix = mat4.create(projMatrix);
},
/**
* Draws the meshWireframe object.
*/
_drawMeshWireframe: function TVP__drawMeshWireframe()
{
let renderer = this._renderer;
let mesh = this._meshWireframe;
for (let i = 0, len = mesh.length; i < len; i++) {
let group = mesh[i];
// use the necessary shader
renderer.useColorShader(group.vertices, WIREFRAME_COLOR);
// draw the vertices as LINES indexed elements
renderer.drawIndexedVertices(renderer.context.LINES, group.indices);
}
},
/**
* Draws a highlighted quad around a currently selected node.
*/
_drawHighlight: function TVP__drawHighlight()
{
// check if there's anything to highlight (i.e any node is selected)
if (!this._highlight.disabled) {
// set the corresponding state to draw the highlight quad
let renderer = this._renderer;
let highlight = this._highlight;
renderer.depthTest(false);
renderer.fill(highlight.fill, 0.5);
renderer.stroke(highlight.stroke);
renderer.strokeWeight(highlight.strokeWeight);
renderer.quad(highlight.v0, highlight.v1, highlight.v2, highlight.v3);
}
},
/**
* Creates or refreshes the texture applied to the visualization mesh.
*/
_setupTexture: function TVP__setupTexture()
{
let renderer = this._renderer;
// destroy any previously created texture
TiltUtils.destroyObject(this._texture); this._texture = null;
// if the renderer was destroyed, don't continue setup
if (!renderer || !renderer.context) {
return;
}
// get the maximum texture size
this._maxTextureSize =
renderer.context.getParameter(renderer.context.MAX_TEXTURE_SIZE);
// use a simple shim to get the image representation of the document
// this will be removed once the MOZ_window_region_texture bug #653656
// is finished; currently just converting the document image to a texture
// applied to the mesh
this._texture = new renderer.Texture({
source: TiltGL.TextureUtils.createContentImage(this.contentWindow,
this._maxTextureSize),
format: "RGB"
});
if ("function" === typeof this._onSetupTexture) {
this._onSetupTexture();
this._onSetupTexture = null;
}
},
/**
* Create the combined mesh representing the document visualization by
* traversing the document & adding a stack for each node that is drawable.
*
* @param {Object} aMeshData
* object containing the necessary mesh verts, texcoord etc.
*/
_setupMesh: function TVP__setupMesh(aMeshData)
{
let renderer = this._renderer;
// destroy any previously created mesh
TiltUtils.destroyObject(this._meshStacks); this._meshStacks = [];
TiltUtils.destroyObject(this._meshWireframe); this._meshWireframe = [];
// if the renderer was destroyed, don't continue setup
if (!renderer || !renderer.context) {
return;
}
// save the mesh data for future use
this._meshData = aMeshData;
// create a sub-mesh for each group in the mesh data
for (let i = 0, len = aMeshData.groups.length; i < len; i++) {
let group = aMeshData.groups[i];
// create the visualization mesh using the vertices, texture coordinates
// and indices computed when traversing the document object model
this._meshStacks.push({
vertices: new renderer.VertexBuffer(group.vertices, 3),
texCoord: new renderer.VertexBuffer(group.texCoord, 2),
color: new renderer.VertexBuffer(group.color, 3),
indices: new renderer.IndexBuffer(group.stacksIndices)
});
// additionally, create a wireframe representation to make the
// visualization a bit more pretty
this._meshWireframe.push({
vertices: this._meshStacks[i].vertices,
indices: new renderer.IndexBuffer(group.wireframeIndices)
});
}
// if there's no initial selection made, highlight the required node
if (!this._initialSelection) {
this._initialSelection = true;
this.highlightNode(this.chromeWindow.InspectorUI.selection);
if (this._currentSelection === 0) { // if the "html" node is selected
this._highlight.disabled = true;
}
}
// configure the required mesh transformations and background only once
if (!this._initialMeshConfiguration) {
this._initialMeshConfiguration = true;
// set the necessary mesh offsets
this.transforms.offset[0] = -renderer.width * 0.5;
this.transforms.offset[1] = -renderer.height * 0.5;
// make sure the canvas is opaque now that the initialization is finished
this.canvas.style.background = TiltVisualizerStyle.canvas.background;
this._drawVisualization();
this._redraw = true;
}
if ("function" === typeof this._onSetupMesh) {
this._onSetupMesh();
this._onSetupMesh = null;
}
},
/**
* Computes the mesh vertices, texture coordinates etc. by groups of nodes.
*/
_setupMeshData: function TVP__setupMeshData()
{
let renderer = this._renderer;
// if the renderer was destroyed, don't continue setup
if (!renderer || !renderer.context) {
return;
}
// traverse the document and get the depths, coordinates and local names
this._traverseData = TiltUtils.DOM.traverse(this.contentWindow, {
invisibleElements: INVISIBLE_ELEMENTS,
minSize: ELEMENT_MIN_SIZE,
maxX: this._texture.width,
maxY: this._texture.height
});
let worker = new ChromeWorker(TILT_CRAFTER);
worker.addEventListener("message", function TVP_onMessage(event) {
this._setupMesh(event.data);
}.bind(this), false);
// calculate necessary information regarding vertices, texture coordinates
// etc. in a separate thread, as this process may take a while
worker.postMessage({
maxGroupNodes: MAX_GROUP_NODES,
thickness: STACK_THICKNESS,
style: TiltVisualizerStyle.nodes,
texWidth: this._texture.width,
texHeight: this._texture.height,
nodesInfo: this._traverseData.info
});
},
/**
* Sets up event listeners necessary for the presenter.
*/
_setupEventListeners: function TVP__setupEventListeners()
{
this.contentWindow.addEventListener("resize", this._onResize, false);
},
/**
* Called when the content window of the current browser is resized.
*/
_onResize: function TVP_onResize(e)
{
let zoom = this.chromeWindow.InspectorUI.highlighter.zoom;
let width = e.target.innerWidth * zoom;
let height = e.target.innerHeight * zoom;
// handle aspect ratio changes to update the projection matrix
this._renderer.width = width;
this._renderer.height = height;
this._redraw = true;
},
/**
* Highlights a specific node.
*
* @param {Element} aNode
* the html node to be highlighted
* @param {String} aFlags
* flags specifying highlighting options
*/
highlightNode: function TVP_highlightNode(aNode, aFlags)
{
this.highlightNodeFor(this._traverseData.nodes.indexOf(aNode), aFlags);
},
/**
* Picks a stacked dom node at the x and y screen coordinates and highlights
* the selected node in the mesh.
*
* @param {Number} x
* the current horizontal coordinate of the mouse
* @param {Number} y
* the current vertical coordinate of the mouse
* @param {Object} aProperties
* an object containing the following properties:
* {Function} onpick: function to be called after picking succeeded
* {Function} onfail: function to be called after picking failed
*/
highlightNodeAt: function TVP_highlightNodeAt(x, y, aProperties)
{
// make sure the properties parameter is a valid object
aProperties = aProperties || {};
// try to pick a mesh node using the current x, y coordinates
this.pickNode(x, y, {
/**
* Mesh picking failed (nothing was found for the picked point).
*/
onfail: function TVP_onHighlightFail()
{
this.highlightNodeFor(-1);
if ("function" === typeof aProperties.onfail) {
aProperties.onfail();
}
}.bind(this),
/**
* Mesh picking succeeded.
*
* @param {Object} aIntersection
* object containing the intersection details
*/
onpick: function TVP_onHighlightPick(aIntersection)
{
this.highlightNodeFor(aIntersection.index);
if ("function" === typeof aProperties.onpick) {
aProperties.onpick();
}
}.bind(this)
});
},
/**
* Sets the corresponding highlight coordinates and color based on the
* information supplied.
*
* @param {Number} aNodeIndex
* the index of the node in the this._traverseData array
* @param {String} aFlags
* flags specifying highlighting options
*/
highlightNodeFor: function TVP_highlightNodeFor(aNodeIndex, aFlags)
{
this._redraw = true;
// if the node was already selected, don't do anything
if (this._currentSelection === aNodeIndex) {
return;
}
// if an invalid or nonexisted node is specified, disable the highlight
if (aNodeIndex < 0) {
this._currentSelection = -1;
this._highlight.disabled = true;
Services.obs.notifyObservers(null, this.NOTIFICATIONS.UNHIGHLIGHTING, null);
return;
}
let highlight = this._highlight;
let info = this._traverseData.info[aNodeIndex];
let node = this._traverseData.nodes[aNodeIndex];
let style = TiltVisualizerStyle.nodes;
highlight.disabled = false;
highlight.fill = style[info.name] || style.highlight.defaultFill;
highlight.stroke = style.highlight.defaultStroke;
highlight.strokeWeight = style.highlight.defaultStrokeWeight;
let x = info.coord.left;
let y = info.coord.top;
let w = info.coord.width;
let h = info.coord.height;
let z = info.depth;
vec3.set([x, y, z * STACK_THICKNESS], highlight.v0);
vec3.set([x + w, y, z * STACK_THICKNESS], highlight.v1);
vec3.set([x + w, y + h, z * STACK_THICKNESS], highlight.v2);
vec3.set([x, y + h, z * STACK_THICKNESS], highlight.v3);
this._currentSelection = aNodeIndex;
this.chromeWindow.InspectorUI.inspectNode(node,
this.contentWindow.innerHeight < y ||
this.contentWindow.pageYOffset > 0);
// if something is highlighted, make sure it's inside the current viewport;
// the point which should be moved into view is considered the center [x, y]
// position along the top edge of the currently selected node
if (aFlags && aFlags.indexOf("moveIntoView") !== -1)
{
this.controller.arcball.moveIntoView(vec3.lerp(
vec3.scale(this._highlight.v0, this.transforms.zoom, []),
vec3.scale(this._highlight.v1, this.transforms.zoom, []), 0.5));
}
Services.obs.notifyObservers(null, this.NOTIFICATIONS.HIGHLIGHTING, null);
},
/**
* Deletes a node from the visualization mesh.
*
* @param {Number} aNodeIndex
* the index of the node in the this._traverseData array;
* if not specified, it will default to the current selection
*/
deleteNode: function TVP_deleteNode(aNodeIndex)
{
// we probably don't want to delete the html or body node.. just sayin'
if ((aNodeIndex = aNodeIndex || this._currentSelection) < 1) {
return;
}
let renderer = this._renderer;
let groupIndex = parseInt(aNodeIndex / MAX_GROUP_NODES);
let nodeIndex = parseInt((aNodeIndex + (groupIndex ? 1 : 0)) % MAX_GROUP_NODES);
let group = this._meshStacks[groupIndex];
let vertices = group.vertices.components;
for (let i = 0, k = 36 * nodeIndex; i < 36; i++) {
vertices[i + k] = 0;
}
group.vertices = new renderer.VertexBuffer(vertices, 3);
this._highlight.disabled = true;
this._redraw = true;
Services.obs.notifyObservers(null, this.NOTIFICATIONS.NODE_REMOVED, null);
},
/**
* Picks a stacked dom node at the x and y screen coordinates and issues
* a callback function with the found intersection.
*
* @param {Number} x
* the current horizontal coordinate of the mouse
* @param {Number} y
* the current vertical coordinate of the mouse
* @param {Object} aProperties
* an object containing the following properties:
* {Function} onpick: function to be called at intersection
* {Function} onfail: function to be called if no intersections
*/
pickNode: function TVP_pickNode(x, y, aProperties)
{
// make sure the properties parameter is a valid object
aProperties = aProperties || {};
// if the mesh wasn't created yet, don't continue picking
if (!this._meshStacks || !this._meshWireframe) {
return;
}
let worker = new ChromeWorker(TILT_PICKER);
worker.addEventListener("message", function TVP_onMessage(event) {
if (event.data) {
if ("function" === typeof aProperties.onpick) {
aProperties.onpick(event.data);
}
} else {
if ("function" === typeof aProperties.onfail) {
aProperties.onfail();
}
}
}, false);
let zoom = this.chromeWindow.InspectorUI.highlighter.zoom;
let width = this._renderer.width * zoom;
let height = this._renderer.height * zoom;
x *= zoom;
y *= zoom;
// create a ray following the mouse direction from the near clipping plane
// to the far clipping plane, to check for intersections with the mesh,
// and do all the heavy lifting in a separate thread
worker.postMessage({
thickness: STACK_THICKNESS,
vertices: this._meshData.allVertices,
// create the ray destined for 3D picking
ray: vec3.createRay([x, y, 0], [x, y, 1], [0, 0, width, height],
this._meshStacks.mvMatrix,
this._meshStacks.projMatrix)
});
},
/**
* Delegate translation method, used by the controller.
*
* @param {Array} aTranslation
* the new translation on the [x, y, z] axis
*/
setTranslation: function TVP_setTranslation(aTranslation)
{
let x = aTranslation[0];
let y = aTranslation[1];
let z = aTranslation[2];
let transforms = this.transforms;
// only update the translation if it's not already set
if (transforms.translation[0] !== x ||
transforms.translation[1] !== y ||
transforms.translation[2] !== z) {
vec3.set(aTranslation, transforms.translation);
this._redraw = true;
}
},
/**
* Delegate rotation method, used by the controller.
*
* @param {Array} aQuaternion
* the rotation quaternion, as [x, y, z, w]
*/
setRotation: function TVP_setRotation(aQuaternion)
{
let x = aQuaternion[0];
let y = aQuaternion[1];
let z = aQuaternion[2];
let w = aQuaternion[3];
let transforms = this.transforms;
// only update the rotation if it's not already set
if (transforms.rotation[0] !== x ||
transforms.rotation[1] !== y ||
transforms.rotation[2] !== z ||
transforms.rotation[3] !== w) {
quat4.set(aQuaternion, transforms.rotation);
this._redraw = true;
}
},
/**
* Handles notifications at specific frame counts.
*/
_handleKeyframeNotifications: function TV__handleKeyframeNotifications()
{
if (!TiltVisualizer.Prefs.introTransition && !this._isExecutingDestruction) {
this._time = INTRO_TRANSITION_DURATION;
}
if (!TiltVisualizer.Prefs.outroTransition && this._isExecutingDestruction) {
this._time = OUTRO_TRANSITION_DURATION;
}
if (this._time >= INTRO_TRANSITION_DURATION &&
!this._isInitializationFinished &&
!this._isExecutingDestruction) {
this._isInitializationFinished = true;
Services.obs.notifyObservers(null, this.NOTIFICATIONS.INITIALIZED, null);
if ("function" === typeof this._onInitializationFinished) {
this._onInitializationFinished();
}
}
if (this._time >= OUTRO_TRANSITION_DURATION &&
!this._isDestructionFinished &&
this._isExecutingDestruction) {
this._isDestructionFinished = true;
Services.obs.notifyObservers(null, this.NOTIFICATIONS.BEFORE_DESTROYED, null);
if ("function" === typeof this._onDestructionFinished) {
this._onDestructionFinished();
}
}
},
/**
* Starts executing the destruction sequence and issues a callback function
* when finished.
*
* @param {Function} aCallback
* the destruction finished callback
*/
executeDestruction: function TV_executeDestruction(aCallback)
{
if (!this._isExecutingDestruction) {
this._isExecutingDestruction = true;
this._onDestructionFinished = aCallback;
// if we execute the destruction after the initialization finishes,
// proceed normally; otherwise, skip everything and immediately issue
// the callback
if (this._time > OUTRO_TRANSITION_DURATION) {
this._time = 0;
this._redraw = true;
} else {
aCallback();
}
}
},
/**
* Checks if this object was initialized properly.
*
* @return {Boolean} true if the object was initialized properly
*/
isInitialized: function TVP_isInitialized()
{
return this._renderer && this._renderer.context;
},
/**
* Function called when this object is destroyed.
*/
_finalize: function TVP__finalize()
{
TiltUtils.destroyObject(this._visualizationProgram);
TiltUtils.destroyObject(this._texture);
if (this._meshStacks) {
this._meshStacks.forEach(function(group) {
TiltUtils.destroyObject(group.vertices);
TiltUtils.destroyObject(group.texCoord);
TiltUtils.destroyObject(group.color);
TiltUtils.destroyObject(group.indices);
});
}
if (this._meshWireframe) {
this._meshWireframe.forEach(function(group) {
TiltUtils.destroyObject(group.indices);
});
}
TiltUtils.destroyObject(this._renderer);
this.contentWindow.removeEventListener("resize", this._onResize, false);
}
};
/**
* A mouse and keyboard controller implementation.
*
* @param {HTMLCanvasElement} aCanvas
* the visualization canvas element
* @param {TiltVisualizer.Presenter} aPresenter
* the presenter instance to control
*/
TiltVisualizer.Controller = function TV_Controller(aCanvas, aPresenter)
{
/**
* A canvas overlay on which mouse and keyboard event listeners are attached.
*/
this.canvas = aCanvas;
/**
* Save a reference to the presenter to modify its model-view transforms.
*/
this.presenter = aPresenter;
this.presenter.controller = this;
/**
* The initial controller dimensions and offset, in pixels.
*/
this._zoom = aPresenter.transforms.zoom;
this._left = (aPresenter.contentWindow.pageXOffset || 0) * this._zoom;
this._top = (aPresenter.contentWindow.pageYOffset || 0) * this._zoom;
this._width = aCanvas.width;
this._height = aCanvas.height;
/**
* Arcball used to control the visualization using the mouse.
*/
this.arcball = new TiltVisualizer.Arcball(
this.presenter.chromeWindow, this._width, this._height, 0,
[
this._width + this._left < aPresenter._maxTextureSize ? -this._left : 0,
this._height + this._top < aPresenter._maxTextureSize ? -this._top : 0
]);
/**
* Object containing the rotation quaternion and the translation amount.
*/
this._coordinates = null;
// bind the owner object to the necessary functions
TiltUtils.bindObjectFunc(this, "_update");
TiltUtils.bindObjectFunc(this, "^_on");
// add the necessary event listeners
this.addEventListeners();
// attach this controller's update function to the presenter ondraw event
this.presenter._controllerUpdate = this._update;
};
TiltVisualizer.Controller.prototype = {
/**
* Adds events listeners required by this controller.
*/
addEventListeners: function TVC_addEventListeners()
{
let canvas = this.canvas;
let presenter = this.presenter;
// bind commonly used mouse and keyboard events with the controller
canvas.addEventListener("mousedown", this._onMouseDown, false);
canvas.addEventListener("mouseup", this._onMouseUp, false);
canvas.addEventListener("mousemove", this._onMouseMove, false);
canvas.addEventListener("mouseover", this._onMouseOver, false);
canvas.addEventListener("mouseout", this._onMouseOut, false);
canvas.addEventListener("MozMousePixelScroll", this._onMozScroll, false);
canvas.addEventListener("keydown", this._onKeyDown, false);
canvas.addEventListener("keyup", this._onKeyUp, false);
canvas.addEventListener("keypress", this._onKeyPress, true);
canvas.addEventListener("blur", this._onBlur, false);
// handle resize events to change the arcball dimensions
presenter.contentWindow.addEventListener("resize", this._onResize, false);
},
/**
* Removes all added events listeners required by this controller.
*/
removeEventListeners: function TVC_removeEventListeners()
{
let canvas = this.canvas;
let presenter = this.presenter;
canvas.removeEventListener("mousedown", this._onMouseDown, false);
canvas.removeEventListener("mouseup", this._onMouseUp, false);
canvas.removeEventListener("mousemove", this._onMouseMove, false);
canvas.removeEventListener("mouseover", this._onMouseOver, false);
canvas.removeEventListener("mouseout", this._onMouseOut, false);
canvas.removeEventListener("MozMousePixelScroll", this._onMozScroll, false);
canvas.removeEventListener("keydown", this._onKeyDown, false);
canvas.removeEventListener("keyup", this._onKeyUp, false);
canvas.removeEventListener("keypress", this._onKeyPress, true);
canvas.removeEventListener("blur", this._onBlur, false);
presenter.contentWindow.removeEventListener("resize", this._onResize, false);
},
/**
* Function called each frame, updating the visualization camera transforms.
*
* @param {Number} aTime
* total time passed since rendering started
* @param {Number} aDelta
* the current animation frame delta
*/
_update: function TVC__update(aTime, aDelta)
{
this._time = aTime;
this._coordinates = this.arcball.update(aDelta);
this.presenter.setRotation(this._coordinates.rotation);
this.presenter.setTranslation(this._coordinates.translation);
},
/**
* Called once after every time a mouse button is pressed.
*/
_onMouseDown: function TVC__onMouseDown(e)
{
e.target.focus();
e.preventDefault();
e.stopPropagation();
if (this._time < MOUSE_INTRO_DELAY) {
return;
}
// calculate x and y coordinates using using the client and target offset
let button = e.which;
this._downX = e.clientX - e.target.offsetLeft;
this._downY = e.clientY - e.target.offsetTop;
this.arcball.mouseDown(this._downX, this._downY, button);
},
/**
* Called every time a mouse button is released.
*/
_onMouseUp: function TVC__onMouseUp(e)
{
e.preventDefault();
e.stopPropagation();
if (this._time < MOUSE_INTRO_DELAY) {
return;
}
// calculate x and y coordinates using using the client and target offset
let button = e.which;
let upX = e.clientX - e.target.offsetLeft;
let upY = e.clientY - e.target.offsetTop;
// a click in Tilt is issued only when the mouse pointer stays in
// relatively the same position
if (Math.abs(this._downX - upX) < MOUSE_CLICK_THRESHOLD &&
Math.abs(this._downY - upY) < MOUSE_CLICK_THRESHOLD) {
this.presenter.highlightNodeAt(upX, upY);
}
this.arcball.mouseUp(upX, upY, button);
},
/**
* Called every time the mouse moves.
*/
_onMouseMove: function TVC__onMouseMove(e)
{
e.preventDefault();
e.stopPropagation();
if (this._time < MOUSE_INTRO_DELAY) {
return;
}
// calculate x and y coordinates using using the client and target offset
let moveX = e.clientX - e.target.offsetLeft;
let moveY = e.clientY - e.target.offsetTop;
this.arcball.mouseMove(moveX, moveY);
},
/**
* Called when the mouse leaves the visualization bounds.
*/
_onMouseOver: function TVC__onMouseOver(e)
{
e.preventDefault();
e.stopPropagation();
this.arcball.mouseOver();
},
/**
* Called when the mouse leaves the visualization bounds.
*/
_onMouseOut: function TVC__onMouseOut(e)
{
e.preventDefault();
e.stopPropagation();
this.arcball.mouseOut();
},
/**
* Called when the mouse wheel is used.
*/
_onMozScroll: function TVC__onMozScroll(e)
{
e.preventDefault();
e.stopPropagation();
this.arcball.zoom(e.detail);
},
/**
* Called when a key is pressed.
*/
_onKeyDown: function TVC__onKeyDown(e)
{
let code = e.keyCode || e.which;
if (!e.altKey && !e.ctrlKey && !e.metaKey && !e.shiftKey) {
e.preventDefault();
e.stopPropagation();
this.arcball.keyDown(code);
} else {
this.arcball.cancelKeyEvents();
}
},
/**
* Called when a key is released.
*/
_onKeyUp: function TVC__onKeyUp(e)
{
let code = e.keyCode || e.which;
if (code === e.DOM_VK_X) {
this.presenter.deleteNode();
}
if (code === e.DOM_VK_F) {
let highlight = this.presenter._highlight;
let zoom = this.presenter.transforms.zoom;
this.arcball.moveIntoView(vec3.lerp(
vec3.scale(highlight.v0, zoom, []),
vec3.scale(highlight.v1, zoom, []), 0.5));
}
if (!e.altKey && !e.ctrlKey && !e.metaKey && !e.shiftKey) {
e.preventDefault();
e.stopPropagation();
this.arcball.keyUp(code);
}
},
/**
* Called when a key is pressed.
*/
_onKeyPress: function TVC__onKeyPress(e)
{
let tilt = this.presenter.chromeWindow.Tilt;
if (e.keyCode === e.DOM_VK_ESCAPE) {
e.preventDefault();
e.stopPropagation();
tilt.destroy(tilt.currentWindowId, true);
}
},
/**
* Called when the canvas looses focus.
*/
_onBlur: function TVC__onBlur(e) {
this.arcball.cancelKeyEvents();
},
/**
* Called when the content window of the current browser is resized.
*/
_onResize: function TVC__onResize(e)
{
let zoom = this.presenter.chromeWindow.InspectorUI.highlighter.zoom;
let width = e.target.innerWidth * zoom;
let height = e.target.innerHeight * zoom;
this.arcball.resize(width, height);
},
/**
* Checks if this object was initialized properly.
*
* @return {Boolean} true if the object was initialized properly
*/
isInitialized: function TVC_isInitialized()
{
return this.arcball ? true : false;
},
/**
* Function called when this object is destroyed.
*/
_finalize: function TVC__finalize()
{
TiltUtils.destroyObject(this.arcball);
TiltUtils.destroyObject(this._coordinates);
this.removeEventListeners();
this.presenter.controller = null;
this.presenter._controllerUpdate = null;
}
};
/**
* This is a general purpose 3D rotation controller described by Ken Shoemake
* in the Graphics Interface ’92 Proceedings. It features good behavior
* easy implementation, cheap execution.
*
* @param {Window} aChromeWindow
* a reference to the top-level window
* @param {Number} aWidth
* the width of canvas
* @param {Number} aHeight
* the height of canvas
* @param {Number} aRadius
* optional, the radius of the arcball
* @param {Array} aInitialTrans
* optional, initial vector translation
* @param {Array} aInitialRot
* optional, initial quaternion rotation
*/
TiltVisualizer.Arcball = function TV_Arcball(
aChromeWindow, aWidth, aHeight, aRadius, aInitialTrans, aInitialRot)
{
/**
* Save a reference to the top-level window to set/remove intervals.
*/
this.chromeWindow = aChromeWindow;
/**
* Values retaining the current horizontal and vertical mouse coordinates.
*/
this._mousePress = vec3.create();
this._mouseRelease = vec3.create();
this._mouseMove = vec3.create();
this._mouseLerp = vec3.create();
this._mouseButton = -1;
/**
* Object retaining the current pressed key codes.
*/
this._keyCode = {};
/**
* The vectors representing the mouse coordinates mapped on the arcball
* and their perpendicular converted from (x, y) to (x, y, z) at specific
* events like mousePressed and mouseDragged.
*/
this._startVec = vec3.create();
this._endVec = vec3.create();
this._pVec = vec3.create();
/**
* The corresponding rotation quaternions.
*/
this._lastRot = quat4.create();
this._deltaRot = quat4.create();
this._currentRot = quat4.create(aInitialRot);
/**
* The current camera translation coordinates.
*/
this._lastTrans = vec3.create();
this._deltaTrans = vec3.create();
this._currentTrans = vec3.create(aInitialTrans);
this._zoomAmount = 0;
/**
* Additional rotation and translation vectors.
*/
this._additionalRot = vec3.create();
this._additionalTrans = vec3.create();
this._deltaAdditionalRot = quat4.create();
this._deltaAdditionalTrans = vec3.create();
// load the keys controlling the arcball
this._loadKeys();
// set the current dimensions of the arcball
this.resize(aWidth, aHeight, aRadius);
};
TiltVisualizer.Arcball.prototype = {
/**
* Call this function whenever you need the updated rotation quaternion
* and the zoom amount. These values will be returned as "rotation" and
* "translation" properties inside an object.
*
* @param {Number} aDelta
* the current animation frame delta
*
* @return {Object} the rotation quaternion and the translation amount
*/
update: function TVA_update(aDelta)
{
let mousePress = this._mousePress;
let mouseRelease = this._mouseRelease;
let mouseMove = this._mouseMove;
let mouseLerp = this._mouseLerp;
let mouseButton = this._mouseButton;
// smoothly update the mouse coordinates
mouseLerp[0] += (mouseMove[0] - mouseLerp[0]) * ARCBALL_SENSITIVITY;
mouseLerp[1] += (mouseMove[1] - mouseLerp[1]) * ARCBALL_SENSITIVITY;
// cache the interpolated mouse coordinates
let x = mouseLerp[0];
let y = mouseLerp[1];
// the smoothed arcball rotation may not be finished when the mouse is
// pressed again, so cancel the rotation if other events occur or the
// animation finishes
if (mouseButton === 3 || x === mouseRelease[0] && y === mouseRelease[1]) {
this._rotating = false;
}
let startVec = this._startVec;
let endVec = this._endVec;
let pVec = this._pVec;
let lastRot = this._lastRot;
let deltaRot = this._deltaRot;
let currentRot = this._currentRot;
// left mouse button handles rotation
if (mouseButton === 1 || this._rotating) {
// the rotation doesn't stop immediately after the left mouse button is
// released, so add a flag to smoothly continue it until it ends
this._rotating = true;
// find the sphere coordinates of the mouse positions
this._pointToSphere(x, y, this.width, this.height, this.radius, endVec);
// compute the vector perpendicular to the start & end vectors
vec3.cross(startVec, endVec, pVec);
// if the begin and end vectors don't coincide
if (vec3.length(pVec) > 0) {
deltaRot[0] = pVec[0];
deltaRot[1] = pVec[1];
deltaRot[2] = pVec[2];
// in the quaternion values, w is cosine (theta / 2),
// where theta is the rotation angle
deltaRot[3] = -vec3.dot(startVec, endVec);
} else {
// return an identity rotation quaternion
deltaRot[0] = 0;
deltaRot[1] = 0;
deltaRot[2] = 0;
deltaRot[3] = 1;
}
// calculate the current rotation based on the mouse click events
quat4.multiply(lastRot, deltaRot, currentRot);
} else {
// save the current quaternion to stack rotations
quat4.set(currentRot, lastRot);
}
let lastTrans = this._lastTrans;
let deltaTrans = this._deltaTrans;
let currentTrans = this._currentTrans;
// right mouse button handles panning
if (mouseButton === 3) {
// calculate a delta translation between the new and old mouse position
// and save it to the current translation
deltaTrans[0] = mouseMove[0] - mousePress[0];
deltaTrans[1] = mouseMove[1] - mousePress[1];
currentTrans[0] = lastTrans[0] + deltaTrans[0];
currentTrans[1] = lastTrans[1] + deltaTrans[1];
} else {
// save the current panning to stack translations
lastTrans[0] = currentTrans[0];
lastTrans[1] = currentTrans[1];
}
let zoomAmount = this._zoomAmount;
let keyCode = this._keyCode;
// mouse wheel handles zooming
deltaTrans[2] = (zoomAmount - currentTrans[2]) * ARCBALL_ZOOM_STEP;
currentTrans[2] += deltaTrans[2];
let additionalRot = this._additionalRot;
let additionalTrans = this._additionalTrans;
let deltaAdditionalRot = this._deltaAdditionalRot;
let deltaAdditionalTrans = this._deltaAdditionalTrans;
let rotateKeys = this.rotateKeys;
let panKeys = this.panKeys;
let zoomKeys = this.zoomKeys;
let resetKey = this.resetKey;
// handle additional rotation and translation by the keyboard
if (keyCode[rotateKeys.left]) {
additionalRot[0] -= ARCBALL_SENSITIVITY * ARCBALL_ROTATION_STEP;
}
if (keyCode[rotateKeys.right]) {
additionalRot[0] += ARCBALL_SENSITIVITY * ARCBALL_ROTATION_STEP;
}
if (keyCode[rotateKeys.up]) {
additionalRot[1] += ARCBALL_SENSITIVITY * ARCBALL_ROTATION_STEP;
}
if (keyCode[rotateKeys.down]) {
additionalRot[1] -= ARCBALL_SENSITIVITY * ARCBALL_ROTATION_STEP;
}
if (keyCode[panKeys.left]) {
additionalTrans[0] -= ARCBALL_SENSITIVITY * ARCBALL_TRANSLATION_STEP;
}
if (keyCode[panKeys.right]) {
additionalTrans[0] += ARCBALL_SENSITIVITY * ARCBALL_TRANSLATION_STEP;
}
if (keyCode[panKeys.up]) {
additionalTrans[1] -= ARCBALL_SENSITIVITY * ARCBALL_TRANSLATION_STEP;
}
if (keyCode[panKeys.down]) {
additionalTrans[1] += ARCBALL_SENSITIVITY * ARCBALL_TRANSLATION_STEP;
}
if (keyCode[zoomKeys["in"][0]] ||
keyCode[zoomKeys["in"][1]] ||
keyCode[zoomKeys["in"][2]]) {
this.zoom(-ARCBALL_TRANSLATION_STEP);
}
if (keyCode[zoomKeys["out"][0]] ||
keyCode[zoomKeys["out"][1]]) {
this.zoom(ARCBALL_TRANSLATION_STEP);
}
if (keyCode[zoomKeys["unzoom"]]) {
this._zoomAmount = 0;
}
if (keyCode[resetKey]) {
this.reset();
}
// update the delta key rotations and translations
deltaAdditionalRot[0] +=
(additionalRot[0] - deltaAdditionalRot[0]) * ARCBALL_SENSITIVITY;
deltaAdditionalRot[1] +=
(additionalRot[1] - deltaAdditionalRot[1]) * ARCBALL_SENSITIVITY;
deltaAdditionalRot[2] +=
(additionalRot[2] - deltaAdditionalRot[2]) * ARCBALL_SENSITIVITY;
deltaAdditionalTrans[0] +=
(additionalTrans[0] - deltaAdditionalTrans[0]) * ARCBALL_SENSITIVITY;
deltaAdditionalTrans[1] +=
(additionalTrans[1] - deltaAdditionalTrans[1]) * ARCBALL_SENSITIVITY;
// create an additional rotation based on the key events
quat4.fromEuler(
deltaAdditionalRot[0],
deltaAdditionalRot[1],
deltaAdditionalRot[2], deltaRot);
// create an additional translation based on the key events
vec3.set([deltaAdditionalTrans[0], deltaAdditionalTrans[1], 0], deltaTrans);
// handle the reset animation steps if necessary
if (this._resetInProgress) {
this._nextResetStep(aDelta || 1);
}
// return the current rotation and translation
return {
rotation: quat4.multiply(deltaRot, currentRot),
translation: vec3.add(deltaTrans, currentTrans)
};
},
/**
* Function handling the mouseDown event.
* Call this when the mouse was pressed.
*
* @param {Number} x
* the current horizontal coordinate of the mouse
* @param {Number} y
* the current vertical coordinate of the mouse
* @param {Number} aButton
* which mouse button was pressed
*/
mouseDown: function TVA_mouseDown(x, y, aButton)
{
// save the mouse down state and prepare for rotations or translations
this._mousePress[0] = x;
this._mousePress[1] = y;
this._mouseButton = aButton;
this._cancelReset();
this._save();
// find the sphere coordinates of the mouse positions
this._pointToSphere(
x, y, this.width, this.height, this.radius, this._startVec);
quat4.set(this._currentRot, this._lastRot);
},
/**
* Function handling the mouseUp event.
* Call this when a mouse button was released.
*
* @param {Number} x
* the current horizontal coordinate of the mouse
* @param {Number} y
* the current vertical coordinate of the mouse
*/
mouseUp: function TVA_mouseUp(x, y)
{
// save the mouse up state and prepare for rotations or translations
this._mouseRelease[0] = x;
this._mouseRelease[1] = y;
this._mouseButton = -1;
},
/**
* Function handling the mouseMove event.
* Call this when the mouse was moved.
*
* @param {Number} x
* the current horizontal coordinate of the mouse
* @param {Number} y
* the current vertical coordinate of the mouse
*/
mouseMove: function TVA_mouseMove(x, y)
{
// save the mouse move state and prepare for rotations or translations
// only if the mouse is pressed
if (this._mouseButton !== -1) {
this._mouseMove[0] = x;
this._mouseMove[1] = y;
}
},
/**
* Function handling the mouseOver event.
* Call this when the mouse enters the context bounds.
*/
mouseOver: function TVA_mouseOver()
{
// if the mouse just entered the parent bounds, stop the animation
this._mouseButton = -1;
},
/**
* Function handling the mouseOut event.
* Call this when the mouse leaves the context bounds.
*/
mouseOut: function TVA_mouseOut()
{
// if the mouse leaves the parent bounds, stop the animation
this._mouseButton = -1;
},
/**
* Function handling the arcball zoom amount.
* Call this, for example, when the mouse wheel was scrolled or zoom keys
* were pressed.
*
* @param {Number} aZoom
* the zoom direction and speed
*/
zoom: function TVA_zoom(aZoom)
{
this._cancelReset();
this._zoomAmount = TiltMath.clamp(this._zoomAmount - aZoom,
ARCBALL_ZOOM_MIN, ARCBALL_ZOOM_MAX);
},
/**
* Function handling the keyDown event.
* Call this when a key was pressed.
*
* @param {Number} aCode
* the code corresponding to the key pressed
*/
keyDown: function TVA_keyDown(aCode)
{
this._cancelReset();
this._keyCode[aCode] = true;
},
/**
* Function handling the keyUp event.
* Call this when a key was released.
*
* @param {Number} aCode
* the code corresponding to the key released
*/
keyUp: function TVA_keyUp(aCode)
{
this._keyCode[aCode] = false;
},
/**
* Maps the 2d coordinates of the mouse location to a 3d point on a sphere.
*
* @param {Number} x
* the current horizontal coordinate of the mouse
* @param {Number} y
* the current vertical coordinate of the mouse
* @param {Number} aWidth
* the width of canvas
* @param {Number} aHeight
* the height of canvas
* @param {Number} aRadius
* optional, the radius of the arcball
* @param {Array} aSphereVec
* a 3d vector to store the sphere coordinates
*/
_pointToSphere: function TVA__pointToSphere(
x, y, aWidth, aHeight, aRadius, aSphereVec)
{
// adjust point coords and scale down to range of [-1..1]
x = (x - aWidth * 0.5) / aRadius;
y = (y - aHeight * 0.5) / aRadius;
// compute the square length of the vector to the point from the center
let normal = 0;
let sqlength = x * x + y * y;
// if the point is mapped outside of the sphere
if (sqlength > 1) {
// calculate the normalization factor
normal = 1 / Math.sqrt(sqlength);
// set the normalized vector (a point on the sphere)
aSphereVec[0] = x * normal;
aSphereVec[1] = y * normal;
aSphereVec[2] = 0;
} else {
// set the vector to a point mapped inside the sphere
aSphereVec[0] = x;
aSphereVec[1] = y;
aSphereVec[2] = Math.sqrt(1 - sqlength);
}
},
/**
* Cancels all pending transformations caused by key events.
*/
cancelKeyEvents: function TVA_cancelKeyEvents()
{
this._keyCode = {};
},
/**
* Cancels all pending transformations caused by mouse events.
*/
cancelMouseEvents: function TVA_cancelMouseEvents()
{
this._rotating = false;
this._mouseButton = -1;
},
/**
* Incremental translation method.
*
* @param {Array} aTranslation
* the translation ammount on the [x, y] axis
*/
translate: function TVP_translate(aTranslation)
{
this._additionalTrans[0] += aTranslation[0];
this._additionalTrans[1] += aTranslation[1];
},
/**
* Incremental rotation method.
*
* @param {Array} aRotation
* the rotation ammount along the [x, y, z] axis
*/
rotate: function TVP_rotate(aRotation)
{
// explicitly rotate along y, x, z values because they're eulerian angles
this._additionalRot[0] += TiltMath.radians(aRotation[1]);
this._additionalRot[1] += TiltMath.radians(aRotation[0]);
this._additionalRot[2] += TiltMath.radians(aRotation[2]);
},
/**
* Moves a target point into view only if it's outside the currently visible
* area bounds (in which case it also resets any additional transforms).
*
* @param {Arary} aPoint
* the [x, y] point which should be brought into view
*/
moveIntoView: function TVA_moveIntoView(aPoint) {
let visiblePointX = -(this._currentTrans[0] + this._additionalTrans[0]);
let visiblePointY = -(this._currentTrans[1] + this._additionalTrans[1]);
if (aPoint[1] - visiblePointY - MOVE_INTO_VIEW_ACCURACY > this.height ||
aPoint[1] - visiblePointY + MOVE_INTO_VIEW_ACCURACY < 0 ||
aPoint[0] - visiblePointX > this.width ||
aPoint[0] - visiblePointX < 0) {
this.reset([0, -aPoint[1]]);
}
},
/**
* Resize this implementation to use different bounds.
* This function is automatically called when the arcball is created.
*
* @param {Number} newWidth
* the new width of canvas
* @param {Number} newHeight
* the new height of canvas
* @param {Number} newRadius
* optional, the new radius of the arcball
*/
resize: function TVA_resize(newWidth, newHeight, newRadius)
{
if (!newWidth || !newHeight) {
return;
}
// set the new width, height and radius dimensions
this.width = newWidth;
this.height = newHeight;
this.radius = newRadius ? newRadius : Math.min(newWidth, newHeight);
this._save();
},
/**
* Starts an animation resetting the arcball transformations to identity.
*
* @param {Array} aFinalTranslation
* optional, final vector translation
* @param {Array} aFinalRotation
* optional, final quaternion rotation
*/
reset: function TVA_reset(aFinalTranslation, aFinalRotation)
{
if ("function" === typeof this._onResetStart) {
this._onResetStart();
this._onResetStart = null;
}
this.cancelMouseEvents();
this.cancelKeyEvents();
this._cancelReset();
this._save();
this._resetFinalTranslation = vec3.create(aFinalTranslation);
this._resetFinalRotation = quat4.create(aFinalRotation);
this._resetInProgress = true;
},
/**
* Cancels the current arcball reset animation if there is one.
*/
_cancelReset: function TVA__cancelReset()
{
if (this._resetInProgress) {
this._resetInProgress = false;
this._save();
if ("function" === typeof this._onResetFinish) {
this._onResetFinish();
this._onResetFinish = null;
this._onResetStep = null;
}
}
},
/**
* Executes the next step in the arcball reset animation.
*
* @param {Number} aDelta
* the current animation frame delta
*/
_nextResetStep: function TVA__nextResetStep(aDelta)
{
// a very large animation frame delta (in case of seriously low framerate)
// would cause all the interpolations to become highly unstable
aDelta = TiltMath.clamp(aDelta, 1, 100);
let fNearZero = EPSILON * EPSILON;
let fInterpLin = ARCBALL_RESET_LINEAR_FACTOR * aDelta;
let fInterpSph = ARCBALL_RESET_SPHERICAL_FACTOR;
let fTran = this._resetFinalTranslation;
let fRot = this._resetFinalRotation;
let t = vec3.create(fTran);
let r = quat4.multiply(quat4.inverse(quat4.create(this._currentRot)), fRot);
// reset the rotation quaternion and translation vector
vec3.lerp(this._currentTrans, t, fInterpLin);
quat4.slerp(this._currentRot, r, fInterpSph);
// also reset any additional transforms by the keyboard or mouse
vec3.scale(this._additionalTrans, fInterpLin);
vec3.scale(this._additionalRot, fInterpLin);
this._zoomAmount *= fInterpLin;
// clear the loop if the all values are very close to zero
if (vec3.length(vec3.subtract(this._lastRot, fRot, [])) < fNearZero &&
vec3.length(vec3.subtract(this._deltaRot, fRot, [])) < fNearZero &&
vec3.length(vec3.subtract(this._currentRot, fRot, [])) < fNearZero &&
vec3.length(vec3.subtract(this._lastTrans, fTran, [])) < fNearZero &&
vec3.length(vec3.subtract(this._deltaTrans, fTran, [])) < fNearZero &&
vec3.length(vec3.subtract(this._currentTrans, fTran, [])) < fNearZero &&
vec3.length(this._additionalRot) < fNearZero &&
vec3.length(this._additionalTrans) < fNearZero) {
this._cancelReset();
}
if ("function" === typeof this._onResetStep) {
this._onResetStep();
}
},
/**
* Loads the keys to control this arcball.
*/
_loadKeys: function TVA__loadKeys()
{
this.rotateKeys = {
"up": Ci.nsIDOMKeyEvent["DOM_VK_W"],
"down": Ci.nsIDOMKeyEvent["DOM_VK_S"],
"left": Ci.nsIDOMKeyEvent["DOM_VK_A"],
"right": Ci.nsIDOMKeyEvent["DOM_VK_D"],
};
this.panKeys = {
"up": Ci.nsIDOMKeyEvent["DOM_VK_UP"],
"down": Ci.nsIDOMKeyEvent["DOM_VK_DOWN"],
"left": Ci.nsIDOMKeyEvent["DOM_VK_LEFT"],
"right": Ci.nsIDOMKeyEvent["DOM_VK_RIGHT"],
};
this.zoomKeys = {
"in": [
Ci.nsIDOMKeyEvent["DOM_VK_I"],
Ci.nsIDOMKeyEvent["DOM_VK_ADD"],
Ci.nsIDOMKeyEvent["DOM_VK_EQUALS"],
],
"out": [
Ci.nsIDOMKeyEvent["DOM_VK_O"],
Ci.nsIDOMKeyEvent["DOM_VK_SUBTRACT"],
],
"unzoom": Ci.nsIDOMKeyEvent["DOM_VK_0"]
};
this.resetKey = Ci.nsIDOMKeyEvent["DOM_VK_R"];
},
/**
* Saves the current arcball state, typically after resize or mouse events.
*/
_save: function TVA__save()
{
if (this._mousePress) {
let x = this._mousePress[0];
let y = this._mousePress[1];
this._mouseMove[0] = x;
this._mouseMove[1] = y;
this._mouseRelease[0] = x;
this._mouseRelease[1] = y;
this._mouseLerp[0] = x;
this._mouseLerp[1] = y;
}
},
/**
* Function called when this object is destroyed.
*/
_finalize: function TVA__finalize()
{
this._cancelReset();
}
};
/**
* Tilt configuration preferences.
*/
TiltVisualizer.Prefs = {
/**
* Specifies if Tilt is enabled or not.
*/
get enabled()
{
return this._enabled;
},
set enabled(value)
{
TiltUtils.Preferences.set("enabled", "boolean", value);
this._enabled = value;
},
get introTransition()
{
return this._introTransition;
},
set introTransition(value)
{
TiltUtils.Preferences.set("intro_transition", "boolean", value);
this._introTransition = value;
},
get outroTransition()
{
return this._outroTransition;
},
set outroTransition(value)
{
TiltUtils.Preferences.set("outro_transition", "boolean", value);
this._outroTransition = value;
},
/**
* Loads the preferences.
*/
load: function TVC_load()
{
let prefs = TiltVisualizer.Prefs;
let get = TiltUtils.Preferences.get;
prefs._enabled = get("enabled", "boolean");
prefs._introTransition = get("intro_transition", "boolean");
prefs._outroTransition = get("outro_transition", "boolean");
}
};
/**
* A custom visualization shader.
*
* @param {Attribute} vertexPosition: the vertex position
* @param {Attribute} vertexTexCoord: texture coordinates used by the sampler
* @param {Attribute} vertexColor: specific [r, g, b] color for each vertex
* @param {Uniform} mvMatrix: the model view matrix
* @param {Uniform} projMatrix: the projection matrix
* @param {Uniform} sampler: the texture sampler to fetch the pixels from
*/
TiltVisualizer.MeshShader = {
/**
* Vertex shader.
*/
vs: [
"attribute vec3 vertexPosition;",
"attribute vec2 vertexTexCoord;",
"attribute vec3 vertexColor;",
"uniform mat4 mvMatrix;",
"uniform mat4 projMatrix;",
"varying vec2 texCoord;",
"varying vec3 color;",
"void main() {",
" gl_Position = projMatrix * mvMatrix * vec4(vertexPosition, 1.0);",
" texCoord = vertexTexCoord;",
" color = vertexColor;",
"}"
].join("\n"),
/**
* Fragment shader.
*/
fs: [
"#ifdef GL_ES",
"precision lowp float;",
"#endif",
"uniform sampler2D sampler;",
"varying vec2 texCoord;",
"varying vec3 color;",
"void main() {",
" if (texCoord.x < 0.0) {",
" gl_FragColor = vec4(color, 1.0);",
" } else {",
" gl_FragColor = vec4(texture2D(sampler, texCoord).rgb, 1.0);",
" }",
"}"
].join("\n")
};