mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
105 lines
2.6 KiB
Python
105 lines
2.6 KiB
Python
|
#!/usr/bin/env python
|
||
|
# graph_latency.py - graph media latency
|
||
|
#
|
||
|
# This Source Code Form is subject to the terms of the Mozilla Public
|
||
|
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
|
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
# needs matplotlib (sudo aptitude install python-matplotlib)
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
from matplotlib import rc
|
||
|
import sys
|
||
|
from pprint import pprint
|
||
|
import re
|
||
|
|
||
|
|
||
|
# FIX! needs to be sum of a single mediastreamtrack and any output overhead for it
|
||
|
# So there is one sum per MST
|
||
|
def compute_sum(data):
|
||
|
'Compute the sum for each timestamp. This expects the output of parse_data.'
|
||
|
last_values = {}
|
||
|
out = ([],[])
|
||
|
|
||
|
for i in data:
|
||
|
if i[0] not in last_values.keys():
|
||
|
last_values[i[0]] = 0
|
||
|
last_values[i[0]] = float(i[3])
|
||
|
print last_values
|
||
|
out[0].append(i[2])
|
||
|
out[1].append(sum(last_values.values()))
|
||
|
return out
|
||
|
|
||
|
|
||
|
def clean_data(raw_data):
|
||
|
'''
|
||
|
Remove the PR_LOG cruft at the beginning of each line and returns a list of
|
||
|
tuple.
|
||
|
'''
|
||
|
out = []
|
||
|
for line in raw_data:
|
||
|
match = re.match(r'(.*)#(.*)', line)
|
||
|
if match:
|
||
|
continue
|
||
|
else:
|
||
|
out.append(line.split(": ")[1])
|
||
|
return out
|
||
|
|
||
|
# returns a list of tuples
|
||
|
def parse_data(raw_lines):
|
||
|
'''
|
||
|
Split each line by , and put every bit in a tuple.
|
||
|
'''
|
||
|
out = []
|
||
|
for line in raw_lines:
|
||
|
out.append(line.split(','))
|
||
|
return out
|
||
|
|
||
|
if len(sys.argv) == 3:
|
||
|
name = sys.argv[1]
|
||
|
channels = int(sys.argv[2])
|
||
|
else:
|
||
|
print sys.argv[0] + "latency_log"
|
||
|
|
||
|
try:
|
||
|
f = open(sys.argv[1])
|
||
|
except:
|
||
|
print "cannot open " + name
|
||
|
|
||
|
raw_lines = f.readlines()
|
||
|
lines = clean_data(raw_lines)
|
||
|
data = parse_data(lines)
|
||
|
|
||
|
final_data = {}
|
||
|
|
||
|
for tupl in data:
|
||
|
name = tupl[0]
|
||
|
if tupl[1] != 0:
|
||
|
name = name+tupl[1]
|
||
|
if name not in final_data.keys():
|
||
|
final_data[name] = ([], [])
|
||
|
# sanity-check values
|
||
|
if float(tupl[3]) < 10*1000:
|
||
|
final_data[name][0].append(float(tupl[2]))
|
||
|
final_data[name][1].append(float(tupl[3]))
|
||
|
|
||
|
#overall = compute_sum(data)
|
||
|
#final_data["overall"] = overall
|
||
|
|
||
|
pprint(final_data)
|
||
|
|
||
|
fig = plt.figure()
|
||
|
for i in final_data.keys():
|
||
|
plt.plot(final_data[i][0], final_data[i][1], label=i)
|
||
|
|
||
|
plt.legend()
|
||
|
plt.suptitle("Latency in ms (y-axis) against time in ms (x-axis).")
|
||
|
|
||
|
size = fig.get_size_inches()
|
||
|
# make it gigantic so we can see things. sometimes, if the graph is too big,
|
||
|
# this errors. reduce the factor so it stays under 2**15.
|
||
|
fig.set_size_inches((size[0]*10, size[1]*2))
|
||
|
name = sys.argv[1][:-4] + ".pdf"
|
||
|
fig.savefig(name)
|
||
|
|