gecko/js/src/jsatom.cpp

666 lines
20 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
2012-05-21 04:12:37 -07:00
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* JS atom table.
*/
#include "jsatominlines.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/RangedPtr.h"
#include <string.h>
#include "jscntxt.h"
#include "jsstr.h"
#include "jstypes.h"
2010-07-14 23:19:36 -07:00
#include "gc/Marking.h"
#include "vm/Xdr.h"
#include "jscntxtinlines.h"
#include "jscompartmentinlines.h"
#include "jsobjinlines.h"
2010-07-14 23:19:36 -07:00
#include "vm/String-inl.h"
#include "vm/Symbol-inl.h"
2010-07-14 23:19:36 -07:00
using namespace js;
2010-09-24 10:54:39 -07:00
using namespace js::gc;
using mozilla::ArrayEnd;
using mozilla::ArrayLength;
using mozilla::RangedPtr;
const char *
js::AtomToPrintableString(ExclusiveContext *cx, JSAtom *atom, JSAutoByteString *bytes)
{
JSString *str = js_QuoteString(cx, atom, 0);
if (!str)
return nullptr;
return bytes->encodeLatin1(cx, str);
}
const char * const js::TypeStrings[] = {
js_undefined_str,
js_object_str,
js_function_str,
js_string_str,
js_number_str,
js_boolean_str,
js_null_str,
};
#define DEFINE_PROTO_STRING(name,code,init,clasp) const char js_##name##_str[] = #name;
JS_FOR_EACH_PROTOTYPE(DEFINE_PROTO_STRING)
#undef DEFINE_PROTO_STRING
#define CONST_CHAR_STR(idpart, id, text) const char js_##idpart##_str[] = text;
FOR_EACH_COMMON_PROPERTYNAME(CONST_CHAR_STR)
#undef CONST_CHAR_STR
/* Constant strings that are not atomized. */
const char js_break_str[] = "break";
const char js_case_str[] = "case";
const char js_catch_str[] = "catch";
const char js_class_str[] = "class";
const char js_close_str[] = "close";
const char js_const_str[] = "const";
const char js_continue_str[] = "continue";
const char js_debugger_str[] = "debugger";
const char js_default_str[] = "default";
const char js_do_str[] = "do";
const char js_else_str[] = "else";
const char js_enum_str[] = "enum";
const char js_export_str[] = "export";
const char js_extends_str[] = "extends";
const char js_finally_str[] = "finally";
const char js_for_str[] = "for";
const char js_getter_str[] = "getter";
const char js_if_str[] = "if";
const char js_implements_str[] = "implements";
const char js_import_str[] = "import";
const char js_in_str[] = "in";
const char js_instanceof_str[] = "instanceof";
const char js_interface_str[] = "interface";
const char js_new_str[] = "new";
const char js_package_str[] = "package";
const char js_private_str[] = "private";
const char js_protected_str[] = "protected";
const char js_public_str[] = "public";
const char js_send_str[] = "send";
const char js_setter_str[] = "setter";
const char js_static_str[] = "static";
const char js_super_str[] = "super";
const char js_switch_str[] = "switch";
const char js_this_str[] = "this";
const char js_try_str[] = "try";
const char js_typeof_str[] = "typeof";
const char js_void_str[] = "void";
const char js_while_str[] = "while";
const char js_with_str[] = "with";
// Use a low initial capacity for atom hash tables to avoid penalizing runtimes
// which create a small number of atoms.
static const uint32_t JS_STRING_HASH_COUNT = 64;
struct CommonNameInfo
{
const char *str;
size_t length;
};
bool
JSRuntime::initializeAtoms(JSContext *cx)
{
atoms_ = cx->new_<AtomSet>();
if (!atoms_ || !atoms_->init(JS_STRING_HASH_COUNT))
return false;
if (parentRuntime) {
staticStrings = parentRuntime->staticStrings;
commonNames = parentRuntime->commonNames;
emptyString = parentRuntime->emptyString;
permanentAtoms = parentRuntime->permanentAtoms;
wellKnownSymbols = parentRuntime->wellKnownSymbols;
return true;
}
permanentAtoms = cx->new_<AtomSet>();
if (!permanentAtoms || !permanentAtoms->init(JS_STRING_HASH_COUNT))
return false;
staticStrings = cx->new_<StaticStrings>();
if (!staticStrings || !staticStrings->init(cx))
return false;
static const CommonNameInfo cachedNames[] = {
#define COMMON_NAME_INFO(idpart, id, text) { js_##idpart##_str, sizeof(text) - 1 },
FOR_EACH_COMMON_PROPERTYNAME(COMMON_NAME_INFO)
#undef COMMON_NAME_INFO
#define COMMON_NAME_INFO(name, code, init, clasp) { js_##name##_str, sizeof(#name) - 1 },
JS_FOR_EACH_PROTOTYPE(COMMON_NAME_INFO)
#undef COMMON_NAME_INFO
};
commonNames = cx->new_<JSAtomState>();
if (!commonNames)
return false;
ImmutablePropertyNamePtr *names = reinterpret_cast<ImmutablePropertyNamePtr *>(commonNames);
for (size_t i = 0; i < ArrayLength(cachedNames); i++, names++) {
JSAtom *atom = Atomize(cx, cachedNames[i].str, cachedNames[i].length, InternAtom);
if (!atom)
return false;
names->init(atom->asPropertyName());
}
JS_ASSERT(uintptr_t(names) == uintptr_t(commonNames + 1));
emptyString = commonNames->empty;
// Create the well-known symbols.
wellKnownSymbols = cx->new_<WellKnownSymbols>();
if (!wellKnownSymbols)
return false;
ImmutablePropertyNamePtr *descriptions = &commonNames->Symbol_iterator;
ImmutableSymbolPtr *symbols = reinterpret_cast<ImmutableSymbolPtr *>(wellKnownSymbols);
for (size_t i = 0; i < JS::WellKnownSymbolLimit; i++) {
JS::Symbol *symbol = JS::Symbol::new_(cx, JS::SymbolCode(i), descriptions[i]);
if (!symbol) {
js_ReportOutOfMemory(cx);
return false;
}
symbols[i].init(symbol);
}
return true;
}
void
JSRuntime::finishAtoms()
{
js_delete(atoms_);
if (!parentRuntime) {
js_delete(staticStrings);
js_delete(commonNames);
js_delete(permanentAtoms);
js_delete(wellKnownSymbols);
}
atoms_ = nullptr;
staticStrings = nullptr;
commonNames = nullptr;
permanentAtoms = nullptr;
wellKnownSymbols = nullptr;
emptyString = nullptr;
}
void
js::MarkAtoms(JSTracer *trc)
{
JSRuntime *rt = trc->runtime();
for (AtomSet::Enum e(rt->atoms()); !e.empty(); e.popFront()) {
const AtomStateEntry &entry = e.front();
if (!entry.isTagged())
continue;
JSAtom *atom = entry.asPtr();
bool tagged = entry.isTagged();
MarkStringRoot(trc, &atom, "interned_atom");
if (entry.asPtr() != atom)
e.rekeyFront(AtomHasher::Lookup(atom), AtomStateEntry(atom, tagged));
}
}
void
js::MarkPermanentAtoms(JSTracer *trc)
{
JSRuntime *rt = trc->runtime();
// Permanent atoms only need to be marked in the runtime which owns them.
if (rt->parentRuntime)
return;
// Static strings are not included in the permanent atoms table.
if (rt->staticStrings)
rt->staticStrings->trace(trc);
if (rt->permanentAtoms) {
for (AtomSet::Enum e(*rt->permanentAtoms); !e.empty(); e.popFront()) {
const AtomStateEntry &entry = e.front();
JSAtom *atom = entry.asPtr();
MarkPermanentAtom(trc, atom, "permanent_table");
}
}
}
void
js::MarkWellKnownSymbols(JSTracer *trc)
{
JSRuntime *rt = trc->runtime();
if (rt->parentRuntime)
return;
if (WellKnownSymbols *wks = rt->wellKnownSymbols) {
for (size_t i = 0; i < JS::WellKnownSymbolLimit; i++)
MarkWellKnownSymbol(trc, wks->get(i));
}
}
void
JSRuntime::sweepAtoms()
{
if (!atoms_)
return;
for (AtomSet::Enum e(*atoms_); !e.empty(); e.popFront()) {
AtomStateEntry entry = e.front();
JSAtom *atom = entry.asPtr();
bool isDying = IsStringAboutToBeFinalized(&atom);
/* Pinned or interned key cannot be finalized. */
JS_ASSERT_IF(hasContexts() && entry.isTagged(), !isDying);
if (isDying)
e.removeFront();
}
}
bool
JSRuntime::transformToPermanentAtoms()
{
JS_ASSERT(!parentRuntime);
// All static strings were created as permanent atoms, now move the contents
// of the atoms table into permanentAtoms and mark each as permanent.
JS_ASSERT(permanentAtoms && permanentAtoms->empty());
AtomSet *temp = atoms_;
atoms_ = permanentAtoms;
permanentAtoms = temp;
for (AtomSet::Enum e(*permanentAtoms); !e.empty(); e.popFront()) {
AtomStateEntry entry = e.front();
JSAtom *atom = entry.asPtr();
atom->morphIntoPermanentAtom();
}
return true;
}
bool
AtomIsInterned(JSContext *cx, JSAtom *atom)
{
/* We treat static strings as interned because they're never collected. */
if (StaticStrings::isStatic(atom))
return true;
AtomHasher::Lookup lookup(atom);
/* Likewise, permanent strings are considered to be interned. */
AtomSet::Ptr p = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
if (p)
return true;
AutoLockForExclusiveAccess lock(cx);
p = cx->runtime()->atoms().lookup(lookup);
if (!p)
return false;
return p->isTagged();
}
/*
* When the jschars reside in a freshly allocated buffer the memory can be used
* as a new JSAtom's storage without copying. The contract is that the caller no
* longer owns the memory and this method is responsible for freeing the memory.
*/
MOZ_ALWAYS_INLINE
static JSAtom *
AtomizeAndtake(ExclusiveContext *cx, jschar *tbchars, size_t length, InternBehavior ib)
{
JS_ASSERT(tbchars[length] == 0);
if (JSAtom *s = cx->staticStrings().lookup(tbchars, length)) {
js_free(tbchars);
return s;
}
AtomHasher::Lookup lookup(tbchars, length);
AtomSet::Ptr pp = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
if (pp) {
js_free(tbchars);
return pp->asPtr();
}
AutoLockForExclusiveAccess lock(cx);
/*
* If a GC occurs at NewStringCopy then |p| will still have the correct
* hash, allowing us to avoid rehashing it. Even though the hash is
* unchanged, we need to re-lookup the table position because a last-ditch
* GC will potentially free some table entries.
*/
AtomSet& atoms = cx->atoms();
AtomSet::AddPtr p = atoms.lookupForAdd(lookup);
if (p) {
JSAtom *atom = p->asPtr();
p->setTagged(bool(ib));
js_free(tbchars);
return atom;
}
AutoCompartment ac(cx, cx->atomsCompartment());
JSFlatString *flat = NewString<NoGC>(cx, tbchars, length);
if (!flat) {
js_free(tbchars);
js_ReportOutOfMemory(cx);
return nullptr;
}
JSAtom *atom = flat->morphAtomizedStringIntoAtom();
if (!atoms.relookupOrAdd(p, lookup, AtomStateEntry(atom, bool(ib)))) {
js_ReportOutOfMemory(cx); /* SystemAllocPolicy does not report OOM. */
return nullptr;
}
return atom;
}
/* |tbchars| must not point into an inline or short string. */
template <typename CharT>
MOZ_ALWAYS_INLINE
static JSAtom *
AtomizeAndCopyChars(ExclusiveContext *cx, const CharT *tbchars, size_t length, InternBehavior ib)
{
if (JSAtom *s = cx->staticStrings().lookup(tbchars, length))
return s;
AtomHasher::Lookup lookup(tbchars, length);
AtomSet::Ptr pp = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
if (pp)
return pp->asPtr();
AutoLockForExclusiveAccess lock(cx);
AtomSet& atoms = cx->atoms();
AtomSet::AddPtr p = atoms.lookupForAdd(lookup);
if (p) {
JSAtom *atom = p->asPtr();
p->setTagged(bool(ib));
return atom;
}
AutoCompartment ac(cx, cx->atomsCompartment());
JSFlatString *flat = NewStringCopyN<NoGC>(cx, tbchars, length);
if (!flat) {
// Grudgingly forgo last-ditch GC. The alternative would be to release
// the lock, manually GC here, and retry from the top. If you fix this,
// please also fix or comment the similar case in Symbol::new_.
js_ReportOutOfMemory(cx);
return nullptr;
}
JSAtom *atom = flat->morphAtomizedStringIntoAtom();
// We have held the lock since looking up p, and the operations we've done
// since then can't GC; therefore the atoms table has not been modified and
// p is still valid.
if (!atoms.add(p, AtomStateEntry(atom, bool(ib)))) {
js_ReportOutOfMemory(cx); /* SystemAllocPolicy does not report OOM. */
return nullptr;
}
return atom;
}
template JSAtom *
AtomizeAndCopyChars(ExclusiveContext *cx, const jschar *tbchars, size_t length, InternBehavior ib);
template JSAtom *
AtomizeAndCopyChars(ExclusiveContext *cx, const Latin1Char *tbchars, size_t length, InternBehavior ib);
JSAtom *
js::AtomizeString(ExclusiveContext *cx, JSString *str,
js::InternBehavior ib /* = js::DoNotInternAtom */)
{
if (str->isAtom()) {
JSAtom &atom = str->asAtom();
/* N.B. static atoms are effectively always interned. */
if (ib != InternAtom || js::StaticStrings::isStatic(&atom))
return &atom;
AtomHasher::Lookup lookup(&atom);
/* Likewise, permanent atoms are always interned. */
AtomSet::Ptr p = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
if (p)
return &atom;
AutoLockForExclusiveAccess lock(cx);
p = cx->atoms().lookup(lookup);
JS_ASSERT(p); /* Non-static atom must exist in atom state set. */
JS_ASSERT(p->asPtr() == &atom);
JS_ASSERT(ib == InternAtom);
p->setTagged(bool(ib));
return &atom;
}
JSLinearString *linear = str->ensureLinear(cx);
if (!linear)
return nullptr;
JS::AutoCheckCannotGC nogc;
return linear->hasLatin1Chars()
? AtomizeAndCopyChars(cx, linear->latin1Chars(nogc), linear->length(), ib)
: AtomizeAndCopyChars(cx, linear->twoByteChars(nogc), linear->length(), ib);
}
JSAtom *
js::Atomize(ExclusiveContext *cx, const char *bytes, size_t length, InternBehavior ib)
{
CHECK_REQUEST(cx);
if (!JSString::validateLength(cx, length))
return nullptr;
if (EnableLatin1Strings) {
const Latin1Char *chars = reinterpret_cast<const Latin1Char*>(bytes);
return AtomizeAndCopyChars(cx, chars, length, ib);
}
static const unsigned ATOMIZE_BUF_MAX = 32;
if (length < ATOMIZE_BUF_MAX) {
/*
* Avoiding the malloc in InflateString on shorter strings saves us
* over 20,000 malloc calls on mozilla browser startup. This compares to
* only 131 calls where the string is longer than a 31 char (net) buffer.
* The vast majority of atomized strings are already in the hashtable. So
* js::AtomizeString rarely has to copy the temp string we make.
*/
jschar inflated[ATOMIZE_BUF_MAX];
CopyAndInflateChars(inflated, bytes, length);
return AtomizeAndCopyChars(cx, inflated, length, ib);
}
jschar *tbcharsZ = InflateString(cx, bytes, &length);
if (!tbcharsZ)
return nullptr;
return AtomizeAndtake(cx, tbcharsZ, length, ib);
}
template <typename CharT>
JSAtom *
js::AtomizeChars(ExclusiveContext *cx, const CharT *chars, size_t length, InternBehavior ib)
{
CHECK_REQUEST(cx);
if (!JSString::validateLength(cx, length))
return nullptr;
return AtomizeAndCopyChars(cx, chars, length, ib);
}
template JSAtom *
js::AtomizeChars(ExclusiveContext *cx, const Latin1Char *chars, size_t length, InternBehavior ib);
template JSAtom *
js::AtomizeChars(ExclusiveContext *cx, const jschar *chars, size_t length, InternBehavior ib);
bool
js::IndexToIdSlow(ExclusiveContext *cx, uint32_t index, MutableHandleId idp)
{
JS_ASSERT(index > JSID_INT_MAX);
jschar buf[UINT32_CHAR_BUFFER_LENGTH];
RangedPtr<jschar> end(ArrayEnd(buf), buf, ArrayEnd(buf));
RangedPtr<jschar> start = BackfillIndexInCharBuffer(index, end);
JSAtom *atom = AtomizeChars(cx, start.get(), end - start);
if (!atom)
return false;
idp.set(JSID_FROM_BITS((size_t)atom));
return true;
}
template <AllowGC allowGC>
static JSAtom *
ToAtomSlow(ExclusiveContext *cx, typename MaybeRooted<Value, allowGC>::HandleType arg)
{
JS_ASSERT(!arg.isString());
Value v = arg;
if (!v.isPrimitive()) {
if (!cx->shouldBeJSContext() || !allowGC)
return nullptr;
RootedValue v2(cx, v);
if (!ToPrimitive(cx->asJSContext(), JSTYPE_STRING, &v2))
return nullptr;
v = v2;
}
if (v.isString())
return AtomizeString(cx, v.toString());
if (v.isInt32())
return Int32ToAtom(cx, v.toInt32());
if (v.isDouble())
return NumberToAtom(cx, v.toDouble());
if (v.isBoolean())
return v.toBoolean() ? cx->names().true_ : cx->names().false_;
if (v.isNull())
return cx->names().null;
return cx->names().undefined;
}
template <AllowGC allowGC>
JSAtom *
js::ToAtom(ExclusiveContext *cx, typename MaybeRooted<Value, allowGC>::HandleType v)
{
if (!v.isString())
return ToAtomSlow<allowGC>(cx, v);
JSString *str = v.toString();
if (str->isAtom())
return &str->asAtom();
return AtomizeString(cx, str);
}
template JSAtom *
js::ToAtom<CanGC>(ExclusiveContext *cx, HandleValue v);
template JSAtom *
js::ToAtom<NoGC>(ExclusiveContext *cx, Value v);
template<XDRMode mode>
bool
js::XDRAtom(XDRState<mode> *xdr, MutableHandleAtom atomp)
{
if (mode == XDR_ENCODE) {
static_assert(JSString::MAX_LENGTH <= INT32_MAX, "String length must fit in 31 bits");
uint32_t length = atomp->length();
uint32_t lengthAndEncoding = (length << 1) | uint32_t(atomp->hasLatin1Chars());
if (!xdr->codeUint32(&lengthAndEncoding))
return false;
JS::AutoCheckCannotGC nogc;
return atomp->hasLatin1Chars()
? xdr->codeChars(atomp->latin1Chars(nogc), length)
: xdr->codeChars(const_cast<jschar*>(atomp->twoByteChars(nogc)), length);
}
/* Avoid JSString allocation for already existing atoms. See bug 321985. */
uint32_t lengthAndEncoding;
if (!xdr->codeUint32(&lengthAndEncoding))
return false;
uint32_t length = lengthAndEncoding >> 1;
bool latin1 = lengthAndEncoding & 0x1;
JSContext *cx = xdr->cx();
JSAtom *atom;
if (latin1) {
const Latin1Char *chars = reinterpret_cast<const Latin1Char *>(xdr->buf.read(length));
atom = AtomizeChars(cx, chars, length);
} else {
#if IS_LITTLE_ENDIAN
/* Directly access the little endian chars in the XDR buffer. */
const jschar *chars = reinterpret_cast<const jschar *>(xdr->buf.read(length * sizeof(jschar)));
atom = AtomizeChars(cx, chars, length);
#else
/*
* We must copy chars to a temporary buffer to convert between little and
* big endian data.
*/
jschar *chars;
jschar stackChars[256];
if (length <= ArrayLength(stackChars)) {
chars = stackChars;
} else {
/*
* This is very uncommon. Don't use the tempLifoAlloc arena for this as
* most allocations here will be bigger than tempLifoAlloc's default
* chunk size.
*/
chars = cx->runtime()->pod_malloc<jschar>(length);
if (!chars)
return false;
}
JS_ALWAYS_TRUE(xdr->codeChars(chars, length));
atom = AtomizeChars(cx, chars, length);
if (chars != stackChars)
js_free(chars);
#endif /* !IS_LITTLE_ENDIAN */
}
if (!atom)
return false;
atomp.set(atom);
return true;
}
template bool
js::XDRAtom(XDRState<XDR_ENCODE> *xdr, MutableHandleAtom atomp);
template bool
js::XDRAtom(XDRState<XDR_DECODE> *xdr, MutableHandleAtom atomp);