gecko/dom/bindings/BindingUtils.h

3349 lines
99 KiB
C
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-02 21:35:38 -07:00
#ifndef mozilla_dom_BindingUtils_h__
#define mozilla_dom_BindingUtils_h__
#include "jsfriendapi.h"
#include "jswrapper.h"
#include "js/Conversions.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Alignment.h"
#include "mozilla/Array.h"
#include "mozilla/Assertions.h"
#include "mozilla/CycleCollectedJSRuntime.h"
#include "mozilla/DeferredFinalize.h"
#include "mozilla/dom/BindingDeclarations.h"
#include "mozilla/dom/CallbackObject.h"
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-02 21:35:38 -07:00
#include "mozilla/dom/DOMJSClass.h"
#include "mozilla/dom/DOMJSProxyHandler.h"
#include "mozilla/dom/Exceptions.h"
#include "mozilla/dom/NonRefcountedDOMObject.h"
#include "mozilla/dom/Nullable.h"
#include "mozilla/dom/RootedDictionary.h"
#include "mozilla/dom/workers/Workers.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "nsIDocument.h"
#include "nsIGlobalObject.h"
#include "nsIXPConnect.h"
#include "nsJSUtils.h"
#include "nsISupportsImpl.h"
#include "qsObjectHelper.h"
#include "xpcpublic.h"
#include "nsIVariant.h"
#include "nsWrapperCacheInlines.h"
class nsIJSID;
class nsPIDOMWindow;
namespace mozilla {
enum UseCounter : int16_t;
namespace dom {
template<typename DataType> class MozMap;
nsresult
UnwrapArgImpl(JS::Handle<JSObject*> src, const nsIID& iid, void** ppArg);
/** Convert a jsval to an XPCOM pointer. */
template <class Interface>
inline nsresult
UnwrapArg(JS::Handle<JSObject*> src, Interface** ppArg)
{
return UnwrapArgImpl(src, NS_GET_TEMPLATE_IID(Interface),
reinterpret_cast<void**>(ppArg));
}
inline const ErrNum
GetInvalidThisErrorForMethod(bool aSecurityError)
{
return aSecurityError ? MSG_METHOD_THIS_UNWRAPPING_DENIED :
MSG_METHOD_THIS_DOES_NOT_IMPLEMENT_INTERFACE;
}
inline const ErrNum
GetInvalidThisErrorForGetter(bool aSecurityError)
{
return aSecurityError ? MSG_GETTER_THIS_UNWRAPPING_DENIED :
MSG_GETTER_THIS_DOES_NOT_IMPLEMENT_INTERFACE;
}
inline const ErrNum
GetInvalidThisErrorForSetter(bool aSecurityError)
{
return aSecurityError ? MSG_SETTER_THIS_UNWRAPPING_DENIED :
MSG_SETTER_THIS_DOES_NOT_IMPLEMENT_INTERFACE;
}
bool
ThrowInvalidThis(JSContext* aCx, const JS::CallArgs& aArgs,
const ErrNum aErrorNumber,
const char* aInterfaceName);
bool
ThrowInvalidThis(JSContext* aCx, const JS::CallArgs& aArgs,
const ErrNum aErrorNumber,
prototypes::ID aProtoId);
// Returns true if the JSClass is used for DOM objects.
inline bool
IsDOMClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMJSCLASS;
}
inline bool
IsDOMClass(const js::Class* clasp)
{
return IsDOMClass(Jsvalify(clasp));
}
// Return true if the JSClass is used for non-proxy DOM objects.
inline bool
IsNonProxyDOMClass(const js::Class* clasp)
{
return IsDOMClass(clasp) && !clasp->isProxy();
}
inline bool
IsNonProxyDOMClass(const JSClass* clasp)
{
return IsNonProxyDOMClass(js::Valueify(clasp));
}
// Returns true if the JSClass is used for DOM interface and interface
// prototype objects.
inline bool
IsDOMIfaceAndProtoClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMIFACEANDPROTOJSCLASS;
}
inline bool
IsDOMIfaceAndProtoClass(const js::Class* clasp)
{
return IsDOMIfaceAndProtoClass(Jsvalify(clasp));
}
static_assert(DOM_OBJECT_SLOT == 0,
"DOM_OBJECT_SLOT doesn't match the proxy private slot. "
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
"Expect bad things");
template <class T>
inline T*
UnwrapDOMObject(JSObject* obj)
{
MOZ_ASSERT(IsDOMClass(js::GetObjectClass(obj)),
"Don't pass non-DOM objects to this function");
JS::Value val = js::GetReservedOrProxyPrivateSlot(obj, DOM_OBJECT_SLOT);
return static_cast<T*>(val.toPrivate());
}
template <class T>
inline T*
UnwrapPossiblyNotInitializedDOMObject(JSObject* obj)
{
// This is used by the OjectMoved JSClass hook which can be called before
// JS_NewObject has returned and so before we have a chance to set
// DOM_OBJECT_SLOT to anything useful.
MOZ_ASSERT(IsDOMClass(js::GetObjectClass(obj)),
"Don't pass non-DOM objects to this function");
JS::Value val = js::GetReservedOrProxyPrivateSlot(obj, DOM_OBJECT_SLOT);
if (val.isUndefined()) {
return nullptr;
}
return static_cast<T*>(val.toPrivate());
}
inline const DOMJSClass*
GetDOMClass(const js::Class* clasp)
{
return IsDOMClass(clasp) ? DOMJSClass::FromJSClass(clasp) : nullptr;
}
inline const DOMJSClass*
GetDOMClass(JSObject* obj)
{
return GetDOMClass(js::GetObjectClass(obj));
}
inline nsISupports*
UnwrapDOMObjectToISupports(JSObject* aObject)
{
const DOMJSClass* clasp = GetDOMClass(aObject);
if (!clasp || !clasp->mDOMObjectIsISupports) {
return nullptr;
}
return UnwrapPossiblyNotInitializedDOMObject<nsISupports>(aObject);
}
inline bool
IsDOMObject(JSObject* obj)
{
return IsDOMClass(js::GetObjectClass(obj));
}
#define UNWRAP_OBJECT(Interface, obj, value) \
mozilla::dom::UnwrapObject<mozilla::dom::prototypes::id::Interface, \
mozilla::dom::Interface##Binding::NativeType>(obj, value)
#define UNWRAP_WORKER_OBJECT(Interface, obj, value) \
UnwrapObject<prototypes::id::Interface##_workers, \
mozilla::dom::Interface##Binding_workers::NativeType>(obj, value)
// Some callers don't want to set an exception when unwrapping fails
// (for example, overload resolution uses unwrapping to tell what sort
// of thing it's looking at).
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
// U must be something that a T* can be assigned to (e.g. T* or an RefPtr<T>).
template <class T, typename U>
MOZ_ALWAYS_INLINE nsresult
UnwrapObject(JSObject* obj, U& value, prototypes::ID protoID,
uint32_t protoDepth)
{
/* First check to see whether we have a DOM object */
const DOMJSClass* domClass = GetDOMClass(obj);
if (!domClass) {
/* Maybe we have a security wrapper or outer window? */
if (!js::IsWrapper(obj)) {
/* Not a DOM object, not a wrapper, just bail */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
obj = js::CheckedUnwrap(obj, /* stopAtWindowProxy = */ false);
if (!obj) {
return NS_ERROR_XPC_SECURITY_MANAGER_VETO;
}
MOZ_ASSERT(!js::IsWrapper(obj));
domClass = GetDOMClass(obj);
if (!domClass) {
/* We don't have a DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
}
/* This object is a DOM object. Double-check that it is safely
castable to T by checking whether it claims to inherit from the
class identified by protoID. */
if (domClass->mInterfaceChain[protoDepth] == protoID) {
value = UnwrapDOMObject<T>(obj);
return NS_OK;
}
/* It's the wrong sort of DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
template <prototypes::ID PrototypeID, class T, typename U>
MOZ_ALWAYS_INLINE nsresult
UnwrapObject(JSObject* obj, U& value)
{
return UnwrapObject<T>(obj, value, PrototypeID,
PrototypeTraits<PrototypeID>::Depth);
}
inline bool
IsNotDateOrRegExp(JSContext* cx, JS::Handle<JSObject*> obj,
bool* notDateOrRegExp)
{
MOZ_ASSERT(obj);
js::ESClassValue cls;
if (!js::GetBuiltinClass(cx, obj, &cls)) {
return false;
}
*notDateOrRegExp = cls != js::ESClass_Date && cls != js::ESClass_RegExp;
return true;
}
MOZ_ALWAYS_INLINE bool
IsObjectValueConvertibleToDictionary(JSContext* cx,
JS::Handle<JS::Value> objVal,
bool* convertible)
{
JS::Rooted<JSObject*> obj(cx, &objVal.toObject());
return IsNotDateOrRegExp(cx, obj, convertible);
}
MOZ_ALWAYS_INLINE bool
IsConvertibleToDictionary(JSContext* cx, JS::Handle<JS::Value> val,
bool* convertible)
{
if (val.isNullOrUndefined()) {
*convertible = true;
return true;
}
if (!val.isObject()) {
*convertible = false;
return true;
}
return IsObjectValueConvertibleToDictionary(cx, val, convertible);
}
MOZ_ALWAYS_INLINE bool
IsConvertibleToCallbackInterface(JSContext* cx, JS::Handle<JSObject*> obj,
bool* convertible)
{
return IsNotDateOrRegExp(cx, obj, convertible);
}
// The items in the protoAndIfaceCache are indexed by the prototypes::id::ID,
// constructors::id::ID and namedpropertiesobjects::id::ID enums, in that order.
// The end of the prototype objects should be the start of the interface
// objects, and the end of the interface objects should be the start of the
// named properties objects.
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
static_assert((size_t)constructors::id::_ID_Start ==
(size_t)prototypes::id::_ID_Count &&
(size_t)namedpropertiesobjects::id::_ID_Start ==
(size_t)constructors::id::_ID_Count,
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
"Overlapping or discontiguous indexes.");
const size_t kProtoAndIfaceCacheCount = namedpropertiesobjects::id::_ID_Count;
class ProtoAndIfaceCache
{
// The caching strategy we use depends on what sort of global we're dealing
// with. For a window-like global, we want everything to be as fast as
// possible, so we use a flat array, indexed by prototype/constructor ID.
// For everything else (e.g. globals for JSMs), space is more important than
// speed, so we use a two-level lookup table.
class ArrayCache : public Array<JS::Heap<JSObject*>, kProtoAndIfaceCacheCount>
{
public:
JSObject* EntrySlotIfExists(size_t i) {
return (*this)[i];
}
JS::Heap<JSObject*>& EntrySlotOrCreate(size_t i) {
return (*this)[i];
}
JS::Heap<JSObject*>& EntrySlotMustExist(size_t i) {
return (*this)[i];
}
void Trace(JSTracer* aTracer) {
for (size_t i = 0; i < ArrayLength(*this); ++i) {
if ((*this)[i]) {
JS_CallObjectTracer(aTracer, &(*this)[i], "protoAndIfaceCache[i]");
}
}
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
return aMallocSizeOf(this);
}
};
class PageTableCache
{
public:
PageTableCache() {
memset(&mPages, 0, sizeof(mPages));
}
~PageTableCache() {
for (size_t i = 0; i < ArrayLength(mPages); ++i) {
delete mPages[i];
}
}
JSObject* EntrySlotIfExists(size_t i) {
MOZ_ASSERT(i < kProtoAndIfaceCacheCount);
size_t pageIndex = i / kPageSize;
size_t leafIndex = i % kPageSize;
Page* p = mPages[pageIndex];
if (!p) {
return nullptr;
}
return (*p)[leafIndex];
}
JS::Heap<JSObject*>& EntrySlotOrCreate(size_t i) {
MOZ_ASSERT(i < kProtoAndIfaceCacheCount);
size_t pageIndex = i / kPageSize;
size_t leafIndex = i % kPageSize;
Page* p = mPages[pageIndex];
if (!p) {
p = new Page;
mPages[pageIndex] = p;
}
return (*p)[leafIndex];
}
JS::Heap<JSObject*>& EntrySlotMustExist(size_t i) {
MOZ_ASSERT(i < kProtoAndIfaceCacheCount);
size_t pageIndex = i / kPageSize;
size_t leafIndex = i % kPageSize;
Page* p = mPages[pageIndex];
MOZ_ASSERT(p);
return (*p)[leafIndex];
}
void Trace(JSTracer* trc) {
for (size_t i = 0; i < ArrayLength(mPages); ++i) {
Page* p = mPages[i];
if (p) {
for (size_t j = 0; j < ArrayLength(*p); ++j) {
if ((*p)[j]) {
JS_CallObjectTracer(trc, &(*p)[j], "protoAndIfaceCache[i]");
}
}
}
}
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
size_t n = aMallocSizeOf(this);
for (size_t i = 0; i < ArrayLength(mPages); ++i) {
n += aMallocSizeOf(mPages[i]);
}
return n;
}
private:
static const size_t kPageSize = 16;
typedef Array<JS::Heap<JSObject*>, kPageSize> Page;
static const size_t kNPages = kProtoAndIfaceCacheCount / kPageSize +
size_t(bool(kProtoAndIfaceCacheCount % kPageSize));
Array<Page*, kNPages> mPages;
};
public:
enum Kind {
WindowLike,
NonWindowLike
};
explicit ProtoAndIfaceCache(Kind aKind) : mKind(aKind) {
MOZ_COUNT_CTOR(ProtoAndIfaceCache);
if (aKind == WindowLike) {
mArrayCache = new ArrayCache();
} else {
mPageTableCache = new PageTableCache();
}
}
~ProtoAndIfaceCache() {
if (mKind == WindowLike) {
delete mArrayCache;
} else {
delete mPageTableCache;
}
MOZ_COUNT_DTOR(ProtoAndIfaceCache);
}
#define FORWARD_OPERATION(opName, args) \
do { \
if (mKind == WindowLike) { \
return mArrayCache->opName args; \
} else { \
return mPageTableCache->opName args; \
} \
} while(0)
// Return the JSObject stored in slot i, if that slot exists. If
// the slot does not exist, return null.
JSObject* EntrySlotIfExists(size_t i) {
FORWARD_OPERATION(EntrySlotIfExists, (i));
}
// Return a reference to slot i, creating it if necessary. There
// may not be an object in the returned slot.
JS::Heap<JSObject*>& EntrySlotOrCreate(size_t i) {
FORWARD_OPERATION(EntrySlotOrCreate, (i));
}
// Return a reference to slot i, which is guaranteed to already
// exist. There may not be an object in the slot, if prototype and
// constructor initialization for one of our bindings failed.
JS::Heap<JSObject*>& EntrySlotMustExist(size_t i) {
FORWARD_OPERATION(EntrySlotMustExist, (i));
}
void Trace(JSTracer *aTracer) {
FORWARD_OPERATION(Trace, (aTracer));
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
size_t n = aMallocSizeOf(this);
n += (mKind == WindowLike
? mArrayCache->SizeOfIncludingThis(aMallocSizeOf)
: mPageTableCache->SizeOfIncludingThis(aMallocSizeOf));
return n;
}
#undef FORWARD_OPERATION
private:
union {
ArrayCache *mArrayCache;
PageTableCache *mPageTableCache;
};
Kind mKind;
};
inline void
AllocateProtoAndIfaceCache(JSObject* obj, ProtoAndIfaceCache::Kind aKind)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
MOZ_ASSERT(js::GetReservedSlot(obj, DOM_PROTOTYPE_SLOT).isUndefined());
ProtoAndIfaceCache* protoAndIfaceCache = new ProtoAndIfaceCache(aKind);
js::SetReservedSlot(obj, DOM_PROTOTYPE_SLOT,
JS::PrivateValue(protoAndIfaceCache));
}
#ifdef DEBUG
struct VerifyTraceProtoAndIfaceCacheCalledTracer : public JS::CallbackTracer
{
bool ok;
explicit VerifyTraceProtoAndIfaceCacheCalledTracer(JSRuntime *rt)
: JS::CallbackTracer(rt), ok(false)
{}
void onChild(const JS::GCCellPtr&) override {
// We don't do anything here, we only want to verify that
// TraceProtoAndIfaceCache was called.
}
TracerKind getTracerKind() const override { return TracerKind::VerifyTraceProtoAndIface; }
};
#endif
inline void
TraceProtoAndIfaceCache(JSTracer* trc, JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
#ifdef DEBUG
if (trc->isCallbackTracer() &&
(trc->asCallbackTracer()->getTracerKind() ==
JS::CallbackTracer::TracerKind::VerifyTraceProtoAndIface)) {
// We don't do anything here, we only want to verify that
// TraceProtoAndIfaceCache was called.
static_cast<VerifyTraceProtoAndIfaceCacheCalledTracer*>(trc)->ok = true;
return;
}
#endif
if (!HasProtoAndIfaceCache(obj))
return;
ProtoAndIfaceCache* protoAndIfaceCache = GetProtoAndIfaceCache(obj);
protoAndIfaceCache->Trace(trc);
}
inline void
DestroyProtoAndIfaceCache(JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
ProtoAndIfaceCache* protoAndIfaceCache = GetProtoAndIfaceCache(obj);
delete protoAndIfaceCache;
}
/**
* Add constants to an object.
*/
bool
DefineConstants(JSContext* cx, JS::Handle<JSObject*> obj,
const ConstantSpec* cs);
struct JSNativeHolder
{
JSNative mNative;
const NativePropertyHooks* mPropertyHooks;
};
struct NamedConstructor
{
const char* mName;
const JSNativeHolder mHolder;
unsigned mNargs;
};
/*
* Create a DOM interface object (if constructorClass is non-null) and/or a
* DOM interface prototype object (if protoClass is non-null).
*
* global is used as the parent of the interface object and the interface
* prototype object
* protoProto is the prototype to use for the interface prototype object.
* interfaceProto is the prototype to use for the interface object.
* protoClass is the JSClass to use for the interface prototype object.
* This is null if we should not create an interface prototype
* object.
* protoCache a pointer to a JSObject pointer where we should cache the
* interface prototype object. This must be null if protoClass is and
* vice versa.
* constructorClass is the JSClass to use for the interface object.
* This is null if we should not create an interface object or
* if it should be a function object.
* constructor holds the JSNative to back the interface object which should be a
* Function, unless constructorClass is non-null in which case it is
* ignored. If this is null and constructorClass is also null then
* we should not create an interface object at all.
* ctorNargs is the length of the constructor function; 0 if no constructor
* constructorCache a pointer to a JSObject pointer where we should cache the
* interface object. This must be null if both constructorClass
* and constructor are null, and non-null otherwise.
* properties contains the methods, attributes and constants to be defined on
* objects in any compartment.
* chromeProperties contains the methods, attributes and constants to be defined
* on objects in chrome compartments. This must be null if the
* interface doesn't have any ChromeOnly properties or if the
* object is being created in non-chrome compartment.
* defineOnGlobal controls whether properties should be defined on the given
* global for the interface object (if any) and named
* constructors (if any) for this interface. This can be
* false in situations where we want the properties to only
* appear on privileged Xrays but not on the unprivileged
* underlying global.
*
* At least one of protoClass, constructorClass or constructor should be
* non-null. If constructorClass or constructor are non-null, the resulting
* interface object will be defined on the given global with property name
* |name|, which must also be non-null.
*/
void
CreateInterfaceObjects(JSContext* cx, JS::Handle<JSObject*> global,
JS::Handle<JSObject*> protoProto,
const js::Class* protoClass, JS::Heap<JSObject*>* protoCache,
JS::Handle<JSObject*> interfaceProto,
const js::Class* constructorClass, const JSNativeHolder* constructor,
unsigned ctorNargs, const NamedConstructor* namedConstructors,
JS::Heap<JSObject*>* constructorCache,
const NativeProperties* regularProperties,
const NativeProperties* chromeOnlyProperties,
const char* name, bool defineOnGlobal);
/**
* Define the properties (regular and chrome-only) on obj.
*
* obj the object to instal the properties on. This should be the interface
* prototype object for regular interfaces and the instance object for
* interfaces marked with Global.
* properties contains the methods, attributes and constants to be defined on
* objects in any compartment.
* chromeProperties contains the methods, attributes and constants to be defined
* on objects in chrome compartments. This must be null if the
* interface doesn't have any ChromeOnly properties or if the
* object is being created in non-chrome compartment.
*/
bool
DefineProperties(JSContext* cx, JS::Handle<JSObject*> obj,
const NativeProperties* properties,
const NativeProperties* chromeOnlyProperties);
/*
* Define the unforgeable methods on an object.
*/
bool
DefineUnforgeableMethods(JSContext* cx, JS::Handle<JSObject*> obj,
const Prefable<const JSFunctionSpec>* props);
/*
* Define the unforgeable attributes on an object.
*/
bool
DefineUnforgeableAttributes(JSContext* cx, JS::Handle<JSObject*> obj,
const Prefable<const JSPropertySpec>* props);
bool
DefineWebIDLBindingUnforgeablePropertiesOnXPCObject(JSContext* cx,
JS::Handle<JSObject*> obj,
const NativeProperties* properties);
bool
DefineWebIDLBindingPropertiesOnXPCObject(JSContext* cx,
JS::Handle<JSObject*> obj,
const NativeProperties* properties);
#define HAS_MEMBER_TYPEDEFS \
private: \
typedef char yes[1]; \
typedef char no[2]
#ifdef _MSC_VER
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check##_name(char (*)[(&V::_name == 0) + 1])
#else
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check##_name(char (*)[sizeof(&V::_name) + 1])
#endif
#define HAS_MEMBER(_memberName, _valueName) \
private: \
HAS_MEMBER_CHECK(_memberName); \
template<typename V> static no& Check##_memberName(...); \
\
public: \
static bool const _valueName = \
sizeof(Check##_memberName<T>(nullptr)) == sizeof(yes)
template<class T>
struct NativeHasMember
{
HAS_MEMBER_TYPEDEFS;
HAS_MEMBER(GetParentObject, GetParentObject);
HAS_MEMBER(WrapObject, WrapObject);
};
template<class T>
struct IsSmartPtr
{
HAS_MEMBER_TYPEDEFS;
HAS_MEMBER(get, value);
};
template<class T>
struct IsRefcounted
{
HAS_MEMBER_TYPEDEFS;
HAS_MEMBER(AddRef, HasAddref);
HAS_MEMBER(Release, HasRelease);
public:
static bool const value = HasAddref && HasRelease;
private:
// This struct only works if T is fully declared (not just forward declared).
// The IsBaseOf check will ensure that, we don't really need it for any other
// reason (the static assert will of course always be true).
static_assert(!IsBaseOf<nsISupports, T>::value || IsRefcounted::value,
"Classes derived from nsISupports are refcounted!");
};
#undef HAS_MEMBER
#undef HAS_MEMBER_CHECK
#undef HAS_MEMBER_TYPEDEFS
#ifdef DEBUG
template <class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct
CheckWrapperCacheCast
{
static bool Check()
{
return reinterpret_cast<uintptr_t>(
static_cast<nsWrapperCache*>(
reinterpret_cast<T*>(1))) == 1;
}
};
template <class T>
struct
CheckWrapperCacheCast<T, true>
{
static bool Check()
{
return true;
}
};
#endif
MOZ_ALWAYS_INLINE bool
CouldBeDOMBinding(void*)
{
return true;
}
MOZ_ALWAYS_INLINE bool
CouldBeDOMBinding(nsWrapperCache* aCache)
{
return aCache->IsDOMBinding();
}
inline bool
TryToOuterize(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
if (js::IsWindow(&rval.toObject())) {
JSObject* obj = js::ToWindowProxyIfWindow(&rval.toObject());
MOZ_ASSERT(obj);
rval.set(JS::ObjectValue(*obj));
}
return true;
}
// Make sure to wrap the given string value into the right compartment, as
// needed.
MOZ_ALWAYS_INLINE
bool
MaybeWrapStringValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isString());
JSString* str = rval.toString();
if (JS::GetStringZone(str) != js::GetContextZone(cx)) {
return JS_WrapValue(cx, rval);
}
return true;
}
// Make sure to wrap the given object value into the right compartment as
// needed. This will work correctly, but possibly slowly, on all objects.
MOZ_ALWAYS_INLINE
bool
MaybeWrapObjectValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObject());
// Cross-compartment always requires wrapping.
JSObject* obj = &rval.toObject();
if (js::GetObjectCompartment(obj) != js::GetContextCompartment(cx)) {
return JS_WrapValue(cx, rval);
}
// We're same-compartment, but even then we might need to wrap
// objects specially. Check for that.
if (IsDOMObject(obj)) {
return TryToOuterize(cx, rval);
}
// It's not a WebIDL object. But it might be an XPConnect one, in which case
// we may need to outerize here, so make sure to call JS_WrapValue.
return JS_WrapValue(cx, rval);
}
// Like MaybeWrapObjectValue, but also allows null
MOZ_ALWAYS_INLINE
bool
MaybeWrapObjectOrNullValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObjectOrNull());
if (rval.isNull()) {
return true;
}
return MaybeWrapObjectValue(cx, rval);
}
// Wrapping for objects that are known to not be DOM or XPConnect objects
MOZ_ALWAYS_INLINE
bool
MaybeWrapNonDOMObjectValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObject());
MOZ_ASSERT(!GetDOMClass(&rval.toObject()));
MOZ_ASSERT(!(js::GetObjectClass(&rval.toObject())->flags &
JSCLASS_PRIVATE_IS_NSISUPPORTS));
JSObject* obj = &rval.toObject();
if (js::GetObjectCompartment(obj) == js::GetContextCompartment(cx)) {
return true;
}
return JS_WrapValue(cx, rval);
}
// Like MaybeWrapNonDOMObjectValue but allows null
MOZ_ALWAYS_INLINE
bool
MaybeWrapNonDOMObjectOrNullValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObjectOrNull());
if (rval.isNull()) {
return true;
}
return MaybeWrapNonDOMObjectValue(cx, rval);
}
// If rval is a gcthing and is not in the compartment of cx, wrap rval
// into the compartment of cx (typically by replacing it with an Xray or
// cross-compartment wrapper around the original object).
MOZ_ALWAYS_INLINE bool
MaybeWrapValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
if (rval.isString()) {
return MaybeWrapStringValue(cx, rval);
}
if (!rval.isObject()) {
return true;
}
return MaybeWrapObjectValue(cx, rval);
}
namespace binding_detail {
enum GetOrCreateReflectorWrapBehavior {
eWrapIntoContextCompartment,
eDontWrapIntoContextCompartment
};
template <class T>
struct TypeNeedsOuterization
{
// We only need to outerize Window objects, so anything inheriting from
// nsGlobalWindow (which inherits from EventTarget itself).
static const bool value =
IsBaseOf<nsGlobalWindow, T>::value || IsSame<EventTarget, T>::value;
};
#ifdef DEBUG
template<typename T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct CheckWrapperCacheTracing
{
static inline void Check(T* aObject)
{
}
};
template<typename T>
struct CheckWrapperCacheTracing<T, true>
{
static void Check(T* aObject)
{
// Rooting analysis thinks QueryInterface may GC, but we're dealing with
// a subset of QueryInterface, C++ only types here.
JS::AutoSuppressGCAnalysis nogc;
nsWrapperCache* wrapperCacheFromQI = nullptr;
aObject->QueryInterface(NS_GET_IID(nsWrapperCache),
reinterpret_cast<void**>(&wrapperCacheFromQI));
MOZ_ASSERT(wrapperCacheFromQI,
"Missing nsWrapperCache from QueryInterface implementation?");
if (!wrapperCacheFromQI->GetWrapperPreserveColor()) {
// Can't assert that we trace the wrapper, since we don't have any
// wrapper to trace.
return;
}
nsISupports* ccISupports = nullptr;
aObject->QueryInterface(NS_GET_IID(nsCycleCollectionISupports),
reinterpret_cast<void**>(&ccISupports));
MOZ_ASSERT(ccISupports,
"nsWrapperCache object which isn't cycle collectable?");
nsXPCOMCycleCollectionParticipant* participant = nullptr;
CallQueryInterface(ccISupports, &participant);
MOZ_ASSERT(participant, "Can't QI to CycleCollectionParticipant?");
bool wasPreservingWrapper = wrapperCacheFromQI->PreservingWrapper();
wrapperCacheFromQI->SetPreservingWrapper(true);
wrapperCacheFromQI->CheckCCWrapperTraversal(ccISupports, participant);
wrapperCacheFromQI->SetPreservingWrapper(wasPreservingWrapper);
}
};
void
AssertReflectorHasGivenProto(JSContext* aCx, JSObject* aReflector,
JS::Handle<JSObject*> aGivenProto);
#endif // DEBUG
template <class T, GetOrCreateReflectorWrapBehavior wrapBehavior>
MOZ_ALWAYS_INLINE bool
DoGetOrCreateDOMReflector(JSContext* cx, T* value,
JS::Handle<JSObject*> givenProto,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(value);
2014-03-19 09:35:45 -07:00
// We can get rid of this when we remove support for hasXPConnectImpls.
bool couldBeDOMBinding = CouldBeDOMBinding(value);
JSObject* obj = value->GetWrapper();
if (obj) {
#ifdef DEBUG
AssertReflectorHasGivenProto(cx, obj, givenProto);
// Have to reget obj because AssertReflectorHasGivenProto can
// trigger gc so the pointer may now be invalid.
obj = value->GetWrapper();
#endif
} else {
// Inline this here while we have non-dom objects in wrapper caches.
if (!couldBeDOMBinding) {
return false;
}
obj = value->WrapObject(cx, givenProto);
if (!obj) {
// At this point, obj is null, so just return false.
// Callers seem to be testing JS_IsExceptionPending(cx) to
// figure out whether WrapObject() threw.
return false;
}
#ifdef DEBUG
if (IsBaseOf<nsWrapperCache, T>::value) {
CheckWrapperCacheTracing<T>::Check(value);
}
#endif
}
#ifdef DEBUG
const DOMJSClass* clasp = GetDOMClass(obj);
// clasp can be null if the cache contained a non-DOM object.
if (clasp) {
// Some sanity asserts about our object. Specifically:
// 1) If our class claims we're nsISupports, we better be nsISupports
// XXXbz ideally, we could assert that reinterpret_cast to nsISupports
// does the right thing, but I don't see a way to do it. :(
// 2) If our class doesn't claim we're nsISupports we better be
// reinterpret_castable to nsWrapperCache.
MOZ_ASSERT(clasp, "What happened here?");
MOZ_ASSERT_IF(clasp->mDOMObjectIsISupports, (IsBaseOf<nsISupports, T>::value));
MOZ_ASSERT(CheckWrapperCacheCast<T>::Check());
}
#endif
rval.set(JS::ObjectValue(*obj));
bool sameCompartment =
js::GetObjectCompartment(obj) == js::GetContextCompartment(cx);
if (sameCompartment && couldBeDOMBinding) {
return TypeNeedsOuterization<T>::value ? TryToOuterize(cx, rval) : true;
}
if (wrapBehavior == eDontWrapIntoContextCompartment) {
if (TypeNeedsOuterization<T>::value) {
JSAutoCompartment ac(cx, obj);
return TryToOuterize(cx, rval);
}
return true;
}
return JS_WrapValue(cx, rval);
}
} // namespace binding_detail
// Create a JSObject wrapping "value", if there isn't one already, and store it
// in rval. "value" must be a concrete class that implements a
// GetWrapperPreserveColor() which can return its existing wrapper, if any, and
// a WrapObject() which will try to create a wrapper. Typically, this is done by
// having "value" inherit from nsWrapperCache.
//
// The value stored in rval will be ready to be exposed to whatever JS
// is running on cx right now. In particular, it will be in the
// compartment of cx, and outerized as needed.
template <class T>
MOZ_ALWAYS_INLINE bool
GetOrCreateDOMReflector(JSContext* cx, T* value,
JS::MutableHandle<JS::Value> rval,
JS::Handle<JSObject*> givenProto = nullptr)
{
using namespace binding_detail;
return DoGetOrCreateDOMReflector<T, eWrapIntoContextCompartment>(cx, value,
givenProto,
rval);
}
// Like GetOrCreateDOMReflector but doesn't wrap into the context compartment,
// and hence does not actually require cx to be in a compartment.
template <class T>
MOZ_ALWAYS_INLINE bool
GetOrCreateDOMReflectorNoWrap(JSContext* cx, T* value,
JS::MutableHandle<JS::Value> rval)
{
using namespace binding_detail;
return DoGetOrCreateDOMReflector<T, eDontWrapIntoContextCompartment>(cx,
value,
nullptr,
rval);
}
// Create a JSObject wrapping "value", for cases when "value" is a
// non-wrapper-cached object using WebIDL bindings. "value" must implement a
// WrapObject() method taking a JSContext and a scope.
template <class T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx,
JS::Handle<JSObject*> scopeArg,
T* value,
JS::MutableHandle<JS::Value> rval,
JS::Handle<JSObject*> givenProto = nullptr)
{
static_assert(IsRefcounted<T>::value, "Don't pass owned classes in here.");
MOZ_ASSERT(value);
// We try to wrap in the compartment of the underlying object of "scope"
JS::Rooted<JSObject*> obj(cx);
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
// Maybe<Handle> doesn't so much work, and in any case, adding
// more Maybe (one for a Rooted and one for a Handle) adds more
// code (and branches!) than just adding a single rooted.
JS::Rooted<JSObject*> scope(cx, scopeArg);
JS::Rooted<JSObject*> proto(cx, givenProto);
if (js::IsWrapper(scope)) {
scope = js::CheckedUnwrap(scope, /* stopAtWindowProxy = */ false);
if (!scope)
return false;
ac.emplace(cx, scope);
if (!JS_WrapObject(cx, &proto)) {
return false;
}
}
MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx));
if (!value->WrapObject(cx, proto, &obj)) {
return false;
}
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
rval.set(JS::ObjectValue(*obj));
return MaybeWrapObjectValue(cx, rval);
}
// Create a JSObject wrapping "value", for cases when "value" is a
// non-wrapper-cached owned object using WebIDL bindings. "value" must implement a
// WrapObject() method taking a JSContext, a scope, and a boolean outparam that
// is true if the JSObject took ownership
template <class T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx,
JS::Handle<JSObject*> scopeArg,
nsAutoPtr<T>& value,
JS::MutableHandle<JS::Value> rval,
JS::Handle<JSObject*> givenProto = nullptr)
{
static_assert(!IsRefcounted<T>::value, "Only pass owned classes in here.");
// We do a runtime check on value, because otherwise we might in
// fact end up wrapping a null and invoking methods on it later.
if (!value) {
NS_RUNTIMEABORT("Don't try to wrap null objects");
}
// We try to wrap in the compartment of the underlying object of "scope"
JS::Rooted<JSObject*> obj(cx);
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
// Maybe<Handle> doesn't so much work, and in any case, adding
// more Maybe (one for a Rooted and one for a Handle) adds more
// code (and branches!) than just adding a single rooted.
JS::Rooted<JSObject*> scope(cx, scopeArg);
JS::Rooted<JSObject*> proto(cx, givenProto);
if (js::IsWrapper(scope)) {
scope = js::CheckedUnwrap(scope, /* stopAtWindowProxy = */ false);
if (!scope)
return false;
ac.emplace(cx, scope);
if (!JS_WrapObject(cx, &proto)) {
return false;
}
}
MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx));
if (!value->WrapObject(cx, proto, &obj)) {
return false;
}
value.forget();
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
rval.set(JS::ObjectValue(*obj));
return MaybeWrapObjectValue(cx, rval);
}
// Helper for smart pointers (nsRefPtr/nsCOMPtr).
template <template <typename> class SmartPtr, typename T,
typename U=typename EnableIf<IsRefcounted<T>::value, T>::Type>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx, JS::Handle<JSObject*> scope,
const SmartPtr<T>& value,
JS::MutableHandle<JS::Value> rval,
JS::Handle<JSObject*> givenProto = nullptr)
{
return WrapNewBindingNonWrapperCachedObject(cx, scope, value.get(), rval,
givenProto);
}
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
NativeInterface2JSObjectAndThrowIfFailed(JSContext* aCx,
JS::Handle<JSObject*> aScope,
JS::MutableHandle<JS::Value> aRetval,
xpcObjectHelper& aHelper,
const nsIID* aIID,
bool aAllowNativeWrapper);
/**
* A method to handle new-binding wrap failure, by possibly falling back to
* wrapping as a non-new-binding object.
*/
template <class T>
MOZ_ALWAYS_INLINE bool
HandleNewBindingWrappingFailure(JSContext* cx, JS::Handle<JSObject*> scope,
T* value, JS::MutableHandle<JS::Value> rval)
{
if (JS_IsExceptionPending(cx)) {
return false;
}
qsObjectHelper helper(value, GetWrapperCache(value));
return NativeInterface2JSObjectAndThrowIfFailed(cx, scope, rval,
helper, nullptr, true);
}
// Helper for calling HandleNewBindingWrappingFailure with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
template <class T, bool isSmartPtr=IsSmartPtr<T>::value>
struct HandleNewBindingWrappingFailureHelper
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
const T& value, JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailure(cx, scope, value.get(), rval);
}
};
template <class T>
struct HandleNewBindingWrappingFailureHelper<T, false>
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope, T& value,
JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailure(cx, scope, &value, rval);
}
};
template<class T>
inline bool
HandleNewBindingWrappingFailure(JSContext* cx, JS::Handle<JSObject*> scope,
T& value, JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailureHelper<T>::Wrap(cx, scope, value, rval);
}
template<bool Fatal>
inline bool
EnumValueNotFound(JSContext* cx, JSString* str, const char* type,
const char* sourceDescription)
{
return false;
}
template<>
inline bool
EnumValueNotFound<false>(JSContext* cx, JSString* str, const char* type,
const char* sourceDescription)
{
// TODO: Log a warning to the console.
return true;
}
template<>
inline bool
EnumValueNotFound<true>(JSContext* cx, JSString* str, const char* type,
const char* sourceDescription)
{
JSAutoByteString deflated(cx, str);
if (!deflated) {
return false;
}
return ThrowErrorMessage(cx, MSG_INVALID_ENUM_VALUE, sourceDescription,
deflated.ptr(), type);
}
template<typename CharT>
inline int
FindEnumStringIndexImpl(const CharT* chars, size_t length, const EnumEntry* values)
{
int i = 0;
for (const EnumEntry* value = values; value->value; ++value, ++i) {
if (length != value->length) {
continue;
}
bool equal = true;
const char* val = value->value;
for (size_t j = 0; j != length; ++j) {
if (unsigned(val[j]) != unsigned(chars[j])) {
equal = false;
break;
}
}
if (equal) {
return i;
}
}
return -1;
}
template<bool InvalidValueFatal>
inline int
FindEnumStringIndex(JSContext* cx, JS::Handle<JS::Value> v, const EnumEntry* values,
const char* type, const char* sourceDescription, bool* ok)
{
// JS_StringEqualsAscii is slow as molasses, so don't use it here.
JSString* str = JS::ToString(cx, v);
if (!str) {
*ok = false;
return 0;
}
{
int index;
size_t length;
JS::AutoCheckCannotGC nogc;
if (js::StringHasLatin1Chars(str)) {
const JS::Latin1Char* chars = JS_GetLatin1StringCharsAndLength(cx, nogc, str,
&length);
if (!chars) {
*ok = false;
return 0;
}
index = FindEnumStringIndexImpl(chars, length, values);
} else {
const char16_t* chars = JS_GetTwoByteStringCharsAndLength(cx, nogc, str,
&length);
if (!chars) {
*ok = false;
return 0;
}
index = FindEnumStringIndexImpl(chars, length, values);
}
if (index >= 0) {
*ok = true;
return index;
}
}
*ok = EnumValueNotFound<InvalidValueFatal>(cx, str, type, sourceDescription);
return -1;
}
inline nsWrapperCache*
GetWrapperCache(const ParentObject& aParentObject)
{
return aParentObject.mWrapperCache;
}
template<class T>
inline T*
GetParentPointer(T* aObject)
{
return aObject;
}
inline nsISupports*
GetParentPointer(const ParentObject& aObject)
{
return aObject.mObject;
}
template <typename T>
inline bool
GetUseXBLScope(T* aParentObject)
{
return false;
}
inline bool
GetUseXBLScope(const ParentObject& aParentObject)
{
return aParentObject.mUseXBLScope;
}
template<class T>
inline void
ClearWrapper(T* p, nsWrapperCache* cache)
{
cache->ClearWrapper();
}
template<class T>
inline void
ClearWrapper(T* p, void*)
{
nsWrapperCache* cache;
CallQueryInterface(p, &cache);
ClearWrapper(p, cache);
}
template<class T>
inline void
UpdateWrapper(T* p, nsWrapperCache* cache, JSObject* obj, const JSObject* old)
{
JS::AutoAssertGCCallback inCallback(obj);
cache->UpdateWrapper(obj, old);
}
template<class T>
inline void
UpdateWrapper(T* p, void*, JSObject* obj, const JSObject* old)
{
JS::AutoAssertGCCallback inCallback(obj);
nsWrapperCache* cache;
CallQueryInterface(p, &cache);
UpdateWrapper(p, cache, obj, old);
}
// Attempt to preserve the wrapper, if any, for a Paris DOM bindings object.
// Return true if we successfully preserved the wrapper, or there is no wrapper
// to preserve. In the latter case we don't need to preserve the wrapper, because
// the object can only be obtained by JS once, or they cannot be meaningfully
// owned from the native side.
//
// This operation will return false only for non-nsISupports cycle-collected
// objects, because we cannot determine if they are wrappercached or not.
bool
TryPreserveWrapper(JSObject* obj);
// Can only be called with a DOM JSClass.
bool
InstanceClassHasProtoAtDepth(const js::Class* clasp,
uint32_t protoID, uint32_t depth);
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
XPCOMObjectToJsval(JSContext* cx, JS::Handle<JSObject*> scope,
xpcObjectHelper& helper, const nsIID* iid,
bool allowNativeWrapper, JS::MutableHandle<JS::Value> rval);
// Special-cased wrapping for variants
bool
VariantToJsval(JSContext* aCx, nsIVariant* aVariant,
JS::MutableHandle<JS::Value> aRetval);
// Wrap an object "p" which is not using WebIDL bindings yet. This _will_
// actually work on WebIDL binding objects that are wrappercached, but will be
// much slower than GetOrCreateDOMReflector. "cache" must either be null or be
// the nsWrapperCache for "p".
template<class T>
inline bool
WrapObject(JSContext* cx, T* p, nsWrapperCache* cache, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
if (xpc_FastGetCachedWrapper(cx, cache, rval))
return true;
qsObjectHelper helper(p, cache);
JS::Rooted<JSObject*> scope(cx, JS::CurrentGlobalOrNull(cx));
return XPCOMObjectToJsval(cx, scope, helper, iid, true, rval);
}
// A specialization of the above for nsIVariant, because that needs to
// do something different.
template<>
inline bool
WrapObject<nsIVariant>(JSContext* cx, nsIVariant* p,
nsWrapperCache* cache, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(iid);
MOZ_ASSERT(iid->Equals(NS_GET_IID(nsIVariant)));
return VariantToJsval(cx, p, rval);
}
// Wrap an object "p" which is not using WebIDL bindings yet. Just like the
// variant that takes an nsWrapperCache above, but will try to auto-derive the
// nsWrapperCache* from "p".
template<class T>
inline bool
WrapObject(JSContext* cx, T* p, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, GetWrapperCache(p), iid, rval);
}
// Just like the WrapObject above, but without requiring you to pick which
// interface you're wrapping as. This should only be used for objects that have
// classinfo, for which it doesn't matter what IID is used to wrap.
template<class T>
inline bool
WrapObject(JSContext* cx, T* p, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, nullptr, rval);
}
// Helper to make it possible to wrap directly out of an nsCOMPtr
template<class T>
inline bool
WrapObject(JSContext* cx, const nsCOMPtr<T>& p,
const nsIID* iid, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p.get(), iid, rval);
}
// Helper to make it possible to wrap directly out of an nsCOMPtr
template<class T>
inline bool
WrapObject(JSContext* cx, const nsCOMPtr<T>& p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, nullptr, rval);
}
// Helper to make it possible to wrap directly out of an nsRefPtr
template<class T>
inline bool
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
WrapObject(JSContext* cx, const RefPtr<T>& p,
const nsIID* iid, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p.get(), iid, rval);
}
// Helper to make it possible to wrap directly out of an nsRefPtr
template<class T>
inline bool
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
WrapObject(JSContext* cx, const RefPtr<T>& p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, nullptr, rval);
}
// Specialization to make it easy to use WrapObject in codegen.
template<>
inline bool
WrapObject<JSObject>(JSContext* cx, JSObject* p,
JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectOrNullValue(p));
return true;
}
inline bool
WrapObject(JSContext* cx, JSObject& p, JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectValue(p));
return true;
}
// Given an object "p" that inherits from nsISupports, wrap it and return the
// result. Null is returned on wrapping failure. This is somewhat similar to
// WrapObject() above, but does NOT allow Xrays around the result, since we
// don't want those for our parent object.
template<typename T>
static inline JSObject*
WrapNativeISupportsParent(JSContext* cx, T* p, nsWrapperCache* cache)
{
qsObjectHelper helper(ToSupports(p), cache);
JS::Rooted<JSObject*> scope(cx, JS::CurrentGlobalOrNull(cx));
JS::Rooted<JS::Value> v(cx);
return XPCOMObjectToJsval(cx, scope, helper, nullptr, false, &v) ?
v.toObjectOrNull() :
nullptr;
}
// Fallback for when our parent is not a WebIDL binding object.
template<typename T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct WrapNativeParentFallback
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
return nullptr;
}
};
// Fallback for when our parent is not a WebIDL binding object but _is_ an
// nsISupports object.
template<typename T >
struct WrapNativeParentFallback<T, true >
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
return WrapNativeISupportsParent(cx, parent, cache);
}
};
// Wrapping of our native parent, for cases when it's a WebIDL object (though
// possibly preffed off).
template<typename T, bool hasWrapObject=NativeHasMember<T>::WrapObject>
struct WrapNativeParentHelper
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
MOZ_ASSERT(cache);
JSObject* obj;
if ((obj = cache->GetWrapper())) {
return obj;
}
// Inline this here while we have non-dom objects in wrapper caches.
if (!CouldBeDOMBinding(parent)) {
obj = WrapNativeParentFallback<T>::Wrap(cx, parent, cache);
} else {
obj = parent->WrapObject(cx, nullptr);
}
return obj;
}
};
// Wrapping of our native parent, for cases when it's not a WebIDL object. In
// this case it must be nsISupports.
template<typename T>
struct WrapNativeParentHelper<T, false>
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
JSObject* obj;
if (cache && (obj = cache->GetWrapper())) {
#ifdef DEBUG
JS::Rooted<JSObject*> rootedObj(cx, obj);
NS_ASSERTION(WrapNativeISupportsParent(cx, parent, cache) == rootedObj,
"Unexpected object in nsWrapperCache");
obj = rootedObj;
#endif
return obj;
}
return WrapNativeISupportsParent(cx, parent, cache);
}
};
// Wrapping of our native parent.
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, T* p, nsWrapperCache* cache,
bool useXBLScope = false)
{
if (!p) {
return JS::CurrentGlobalOrNull(cx);
}
JSObject* parent = WrapNativeParentHelper<T>::Wrap(cx, p, cache);
if (!useXBLScope) {
return parent;
}
// If useXBLScope is true, it means that the canonical reflector for this
// native object should live in the content XBL scope. Note that we never put
// anonymous content inside an add-on scope.
if (xpc::IsInContentXBLScope(parent)) {
return parent;
}
JS::Rooted<JSObject*> rootedParent(cx, parent);
JS::Rooted<JSObject*> xblScope(cx, xpc::GetXBLScope(cx, rootedParent));
NS_ENSURE_TRUE(xblScope, nullptr);
JSAutoCompartment ac(cx, xblScope);
if (NS_WARN_IF(!JS_WrapObject(cx, &rootedParent))) {
return nullptr;
}
return rootedParent;
}
// Wrapping of our native parent, when we don't want to explicitly pass in
// things like the nsWrapperCache for it.
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, const T& p)
{
return WrapNativeParent(cx, GetParentPointer(p), GetWrapperCache(p), GetUseXBLScope(p));
}
// Specialization for the case of nsIGlobalObject, since in that case
// we can just get the JSObject* directly.
template<>
inline JSObject*
WrapNativeParent(JSContext* cx, nsIGlobalObject* const& p)
{
return p ? p->GetGlobalJSObject() : JS::CurrentGlobalOrNull(cx);
}
template<typename T, bool WrapperCached=NativeHasMember<T>::GetParentObject>
struct GetParentObject
{
static JSObject* Get(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_ASSERT(js::IsObjectInContextCompartment(obj, cx));
T* native = UnwrapDOMObject<T>(obj);
JSObject* wrappedParent = WrapNativeParent(cx, native->GetParentObject());
return wrappedParent ? js::GetGlobalForObjectCrossCompartment(wrappedParent) : nullptr;
}
};
template<typename T>
struct GetParentObject<T, false>
{
static JSObject* Get(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_CRASH();
return nullptr;
}
};
// Helper for calling GetOrCreateDOMReflector with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
template <class T, bool isSmartPtr=IsSmartPtr<T>::value>
struct GetOrCreateDOMReflectorHelper
{
static inline bool GetOrCreate(JSContext* cx, const T& value,
JS::Handle<JSObject*> givenProto,
JS::MutableHandle<JS::Value> rval)
{
return GetOrCreateDOMReflector(cx, value.get(), rval, givenProto);
}
};
template <class T>
struct GetOrCreateDOMReflectorHelper<T, false>
{
static inline bool GetOrCreate(JSContext* cx, T& value,
JS::Handle<JSObject*> givenProto,
JS::MutableHandle<JS::Value> rval)
{
static_assert(IsRefcounted<T>::value, "Don't pass owned classes in here.");
return GetOrCreateDOMReflector(cx, &value, rval, givenProto);
}
};
template<class T>
inline bool
GetOrCreateDOMReflector(JSContext* cx, T& value,
JS::MutableHandle<JS::Value> rval,
JS::Handle<JSObject*> givenProto = nullptr)
{
return GetOrCreateDOMReflectorHelper<T>::GetOrCreate(cx, value, givenProto,
rval);
}
// Helper for calling GetOrCreateDOMReflectorNoWrap with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
template <class T, bool isSmartPtr=IsSmartPtr<T>::value>
struct GetOrCreateDOMReflectorNoWrapHelper
{
static inline bool GetOrCreate(JSContext* cx, const T& value,
JS::MutableHandle<JS::Value> rval)
{
return GetOrCreateDOMReflectorNoWrap(cx, value.get(), rval);
}
};
template <class T>
struct GetOrCreateDOMReflectorNoWrapHelper<T, false>
{
static inline bool GetOrCreate(JSContext* cx, T& value,
JS::MutableHandle<JS::Value> rval)
{
return GetOrCreateDOMReflectorNoWrap(cx, &value, rval);
}
};
template<class T>
inline bool
GetOrCreateDOMReflectorNoWrap(JSContext* cx, T& value,
JS::MutableHandle<JS::Value> rval)
{
return
GetOrCreateDOMReflectorNoWrapHelper<T>::GetOrCreate(cx, value, rval);
}
template <class T>
inline JSObject*
GetCallbackFromCallbackObject(T* aObj)
{
return aObj->Callback();
}
// Helper for getting the callback JSObject* of a smart ptr around a
// CallbackObject or a reference to a CallbackObject or something like
// that.
template <class T, bool isSmartPtr=IsSmartPtr<T>::value>
struct GetCallbackFromCallbackObjectHelper
{
static inline JSObject* Get(const T& aObj)
{
return GetCallbackFromCallbackObject(aObj.get());
}
};
template <class T>
struct GetCallbackFromCallbackObjectHelper<T, false>
{
static inline JSObject* Get(T& aObj)
{
return GetCallbackFromCallbackObject(&aObj);
}
};
template<class T>
inline JSObject*
GetCallbackFromCallbackObject(T& aObj)
{
return GetCallbackFromCallbackObjectHelper<T>::Get(aObj);
}
static inline bool
AtomizeAndPinJSString(JSContext* cx, jsid& id, const char* chars)
{
if (JSString *str = ::JS_AtomizeAndPinString(cx, chars)) {
id = INTERNED_STRING_TO_JSID(cx, str);
return true;
}
return false;
}
// Spec needs a name property
template <typename Spec>
static bool
InitIds(JSContext* cx, const Prefable<Spec>* prefableSpecs, jsid* ids)
{
MOZ_ASSERT(prefableSpecs);
MOZ_ASSERT(prefableSpecs->specs);
do {
// We ignore whether the set of ids is enabled and just intern all the IDs,
// because this is only done once per application runtime.
Spec* spec = prefableSpecs->specs;
do {
if (!JS::PropertySpecNameToPermanentId(cx, spec->name, ids)) {
return false;
}
} while (++ids, (++spec)->name);
// We ran out of ids for that pref. Put a JSID_VOID in on the id
// corresponding to the list terminator for the pref.
*ids = JSID_VOID;
++ids;
} while ((++prefableSpecs)->specs);
return true;
}
bool
QueryInterface(JSContext* cx, unsigned argc, JS::Value* vp);
template <class T>
struct
WantsQueryInterface
{
static_assert(IsBaseOf<nsISupports, T>::value,
"QueryInterface can't work without an nsISupports.");
static bool Enabled(JSContext* aCx, JSObject* aGlobal)
{
return NS_IsMainThread() && IsChromeOrXBL(aCx, aGlobal);
}
};
void
GetInterfaceImpl(JSContext* aCx, nsIInterfaceRequestor* aRequestor,
nsWrapperCache* aCache, nsIJSID* aIID,
JS::MutableHandle<JS::Value> aRetval, ErrorResult& aError);
template<class T>
void
GetInterface(JSContext* aCx, T* aThis, nsIJSID* aIID,
JS::MutableHandle<JS::Value> aRetval, ErrorResult& aError)
{
GetInterfaceImpl(aCx, aThis, aThis, aIID, aRetval, aError);
}
bool
UnforgeableValueOf(JSContext* cx, unsigned argc, JS::Value* vp);
bool
ThrowingConstructor(JSContext* cx, unsigned argc, JS::Value* vp);
bool
ThrowConstructorWithoutNew(JSContext* cx, const char* name);
bool
GetPropertyOnPrototype(JSContext* cx, JS::Handle<JSObject*> proxy,
JS::Handle<JS::Value> receiver, JS::Handle<jsid> id,
bool* found, JS::MutableHandle<JS::Value> vp);
//
bool
HasPropertyOnPrototype(JSContext* cx, JS::Handle<JSObject*> proxy,
JS::Handle<jsid> id, bool* has);
// Append the property names in "names" to "props". If
// shadowPrototypeProperties is false then skip properties that are also
// present on the proto chain of proxy. If shadowPrototypeProperties is true,
// then the "proxy" argument is ignored.
bool
AppendNamedPropertyIds(JSContext* cx, JS::Handle<JSObject*> proxy,
nsTArray<nsString>& names,
bool shadowPrototypeProperties, JS::AutoIdVector& props);
namespace binding_detail {
// A struct that has the same layout as an nsString but much faster
// constructor and destructor behavior. FakeString uses inline storage
// for small strings and a nsStringBuffer for longer strings.
struct FakeString {
FakeString() :
mFlags(nsString::F_TERMINATED)
{
}
~FakeString() {
if (mFlags & nsString::F_SHARED) {
nsStringBuffer::FromData(mData)->Release();
}
}
void Rebind(const nsString::char_type* aData, nsString::size_type aLength) {
MOZ_ASSERT(mFlags == nsString::F_TERMINATED);
mData = const_cast<nsString::char_type*>(aData);
mLength = aLength;
}
void Truncate() {
MOZ_ASSERT(mFlags == nsString::F_TERMINATED);
mData = nsString::char_traits::sEmptyBuffer;
mLength = 0;
}
void SetIsVoid(bool aValue) {
MOZ_ASSERT(aValue,
"We don't support SetIsVoid(false) on FakeString!");
Truncate();
mFlags |= nsString::F_VOIDED;
}
const nsString::char_type* Data() const
{
return mData;
}
nsString::char_type* BeginWriting()
{
return mData;
}
nsString::size_type Length() const
{
return mLength;
}
// Reserve space to write aLength chars, not including null-terminator.
bool SetLength(nsString::size_type aLength, mozilla::fallible_t const&) {
// Use mInlineStorage for small strings.
if (aLength < sInlineCapacity) {
SetData(mInlineStorage);
} else {
nsStringBuffer *buf = nsStringBuffer::Alloc((aLength + 1) * sizeof(nsString::char_type)).take();
if (MOZ_UNLIKELY(!buf)) {
return false;
}
SetData(static_cast<nsString::char_type*>(buf->Data()));
mFlags = nsString::F_SHARED | nsString::F_TERMINATED;
}
mLength = aLength;
mData[mLength] = char16_t(0);
return true;
}
// If this ever changes, change the corresponding code in the
// Optional<nsAString> specialization as well.
const nsAString* ToAStringPtr() const {
return reinterpret_cast<const nsString*>(this);
}
operator const nsAString& () const {
return *reinterpret_cast<const nsString*>(this);
}
private:
nsAString* ToAStringPtr() {
return reinterpret_cast<nsString*>(this);
}
nsString::char_type* mData;
nsString::size_type mLength;
uint32_t mFlags;
static const size_t sInlineCapacity = 64;
nsString::char_type mInlineStorage[sInlineCapacity];
FakeString(const FakeString& other) = delete;
void operator=(const FakeString& other) = delete;
void SetData(nsString::char_type* aData) {
MOZ_ASSERT(mFlags == nsString::F_TERMINATED);
mData = const_cast<nsString::char_type*>(aData);
}
friend class NonNull<nsAString>;
// A class to use for our static asserts to ensure our object layout
// matches that of nsString.
class StringAsserter;
friend class StringAsserter;
class StringAsserter : public nsString {
public:
static void StaticAsserts() {
static_assert(offsetof(FakeString, mInlineStorage) ==
sizeof(nsString),
"FakeString should include all nsString members");
static_assert(offsetof(FakeString, mData) ==
offsetof(StringAsserter, mData),
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
"Offset of mData should match");
static_assert(offsetof(FakeString, mLength) ==
offsetof(StringAsserter, mLength),
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
"Offset of mLength should match");
static_assert(offsetof(FakeString, mFlags) ==
offsetof(StringAsserter, mFlags),
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
"Offset of mFlags should match");
}
};
};
} // namespace binding_detail
enum StringificationBehavior {
eStringify,
eEmpty,
eNull
};
template<typename T>
static inline bool
ConvertJSValueToString(JSContext* cx, JS::Handle<JS::Value> v,
StringificationBehavior nullBehavior,
StringificationBehavior undefinedBehavior,
T& result)
{
JSString *s;
if (v.isString()) {
s = v.toString();
} else {
StringificationBehavior behavior;
if (v.isNull()) {
behavior = nullBehavior;
} else if (v.isUndefined()) {
behavior = undefinedBehavior;
} else {
behavior = eStringify;
}
if (behavior != eStringify) {
if (behavior == eEmpty) {
result.Truncate();
} else {
result.SetIsVoid(true);
}
return true;
}
s = JS::ToString(cx, v);
if (!s) {
return false;
}
}
return AssignJSString(cx, result, s);
}
void
NormalizeUSVString(JSContext* aCx, nsAString& aString);
void
NormalizeUSVString(JSContext* aCx, binding_detail::FakeString& aString);
template<typename T>
inline bool
ConvertIdToString(JSContext* cx, JS::HandleId id, T& result, bool& isSymbol)
{
if (MOZ_LIKELY(JSID_IS_STRING(id))) {
if (!AssignJSString(cx, result, JSID_TO_STRING(id))) {
return false;
}
} else if (JSID_IS_SYMBOL(id)) {
isSymbol = true;
return true;
} else {
JS::RootedValue nameVal(cx, js::IdToValue(id));
if (!ConvertJSValueToString(cx, nameVal, eStringify, eStringify, result)) {
return false;
}
}
isSymbol = false;
return true;
}
bool
ConvertJSValueToByteString(JSContext* cx, JS::Handle<JS::Value> v,
bool nullable, nsACString& result);
template<typename T>
void DoTraceSequence(JSTracer* trc, FallibleTArray<T>& seq);
template<typename T>
void DoTraceSequence(JSTracer* trc, InfallibleTArray<T>& seq);
// Class for simple sequence arguments, only used internally by codegen.
namespace binding_detail {
template<typename T>
class AutoSequence : public AutoFallibleTArray<T, 16>
{
public:
AutoSequence() : AutoFallibleTArray<T, 16>()
{}
// Allow converting to const sequences as needed
operator const Sequence<T>&() const {
return *reinterpret_cast<const Sequence<T>*>(this);
}
};
} // namespace binding_detail
// Class used to trace sequences, with specializations for various
// sequence types.
template<typename T,
bool isDictionary=IsBaseOf<DictionaryBase, T>::value,
bool isTypedArray=IsBaseOf<AllTypedArraysBase, T>::value,
bool isOwningUnion=IsBaseOf<AllOwningUnionBase, T>::value>
class SequenceTracer
{
explicit SequenceTracer() = delete; // Should never be instantiated
};
// sequence<object> or sequence<object?>
template<>
class SequenceTracer<JSObject*, false, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, JSObject** objp, JSObject** end) {
for (; objp != end; ++objp) {
JS_CallUnbarrieredObjectTracer(trc, objp, "sequence<object>");
}
}
};
// sequence<any>
template<>
class SequenceTracer<JS::Value, false, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, JS::Value* valp, JS::Value* end) {
for (; valp != end; ++valp) {
JS_CallUnbarrieredValueTracer(trc, valp, "sequence<any>");
}
}
};
// sequence<sequence<T>>
template<typename T>
class SequenceTracer<Sequence<T>, false, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, Sequence<T>* seqp, Sequence<T>* end) {
for (; seqp != end; ++seqp) {
DoTraceSequence(trc, *seqp);
}
}
};
// sequence<sequence<T>> as return value
template<typename T>
class SequenceTracer<nsTArray<T>, false, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, nsTArray<T>* seqp, nsTArray<T>* end) {
for (; seqp != end; ++seqp) {
DoTraceSequence(trc, *seqp);
}
}
};
// sequence<someDictionary>
template<typename T>
class SequenceTracer<T, true, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* dictp, T* end) {
for (; dictp != end; ++dictp) {
dictp->TraceDictionary(trc);
}
}
};
// sequence<SomeTypedArray>
template<typename T>
class SequenceTracer<T, false, true, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* arrayp, T* end) {
for (; arrayp != end; ++arrayp) {
arrayp->TraceSelf(trc);
}
}
};
// sequence<SomeOwningUnion>
template<typename T>
class SequenceTracer<T, false, false, true>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* arrayp, T* end) {
for (; arrayp != end; ++arrayp) {
arrayp->TraceUnion(trc);
}
}
};
// sequence<T?> with T? being a Nullable<T>
template<typename T>
class SequenceTracer<Nullable<T>, false, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, Nullable<T>* seqp,
Nullable<T>* end) {
for (; seqp != end; ++seqp) {
if (!seqp->IsNull()) {
// Pretend like we actually have a length-one sequence here so
// we can do template instantiation correctly for T.
T& val = seqp->Value();
T* ptr = &val;
SequenceTracer<T>::TraceSequence(trc, ptr, ptr+1);
}
}
}
};
template<typename T>
static void
TraceMozMapValue(T* aValue, void* aClosure)
{
JSTracer* trc = static_cast<JSTracer*>(aClosure);
// Act like it's a one-element sequence to leverage all that infrastructure.
SequenceTracer<T>::TraceSequence(trc, aValue, aValue + 1);
}
template<typename T>
void TraceMozMap(JSTracer* trc, MozMap<T>& map)
{
map.EnumerateValues(TraceMozMapValue<T>, trc);
}
// sequence<MozMap>
template<typename T>
class SequenceTracer<MozMap<T>, false, false, false>
{
explicit SequenceTracer() = delete; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, MozMap<T>* seqp, MozMap<T>* end) {
for (; seqp != end; ++seqp) {
seqp->EnumerateValues(TraceMozMapValue<T>, trc);
}
}
};
template<typename T>
void DoTraceSequence(JSTracer* trc, FallibleTArray<T>& seq)
{
SequenceTracer<T>::TraceSequence(trc, seq.Elements(),
seq.Elements() + seq.Length());
}
template<typename T>
void DoTraceSequence(JSTracer* trc, InfallibleTArray<T>& seq)
{
SequenceTracer<T>::TraceSequence(trc, seq.Elements(),
seq.Elements() + seq.Length());
}
// Rooter class for sequences; this is what we mostly use in the codegen
template<typename T>
class MOZ_RAII SequenceRooter : private JS::CustomAutoRooter
{
public:
SequenceRooter(JSContext *aCx, FallibleTArray<T>* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mFallibleArray(aSequence),
mSequenceType(eFallibleArray)
{
}
SequenceRooter(JSContext *aCx, InfallibleTArray<T>* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mInfallibleArray(aSequence),
mSequenceType(eInfallibleArray)
{
}
SequenceRooter(JSContext *aCx, Nullable<nsTArray<T> >* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mNullableArray(aSequence),
mSequenceType(eNullableArray)
{
}
private:
enum SequenceType {
eInfallibleArray,
eFallibleArray,
eNullableArray
};
virtual void trace(JSTracer *trc) override
{
if (mSequenceType == eFallibleArray) {
DoTraceSequence(trc, *mFallibleArray);
} else if (mSequenceType == eInfallibleArray) {
DoTraceSequence(trc, *mInfallibleArray);
} else {
MOZ_ASSERT(mSequenceType == eNullableArray);
if (!mNullableArray->IsNull()) {
DoTraceSequence(trc, mNullableArray->Value());
}
}
}
union {
InfallibleTArray<T>* mInfallibleArray;
FallibleTArray<T>* mFallibleArray;
Nullable<nsTArray<T> >* mNullableArray;
};
SequenceType mSequenceType;
};
// Rooter class for MozMap; this is what we mostly use in the codegen.
template<typename T>
class MOZ_RAII MozMapRooter : private JS::CustomAutoRooter
{
public:
MozMapRooter(JSContext *aCx, MozMap<T>* aMozMap
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mMozMap(aMozMap),
mMozMapType(eMozMap)
{
}
MozMapRooter(JSContext *aCx, Nullable<MozMap<T>>* aMozMap
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mNullableMozMap(aMozMap),
mMozMapType(eNullableMozMap)
{
}
private:
enum MozMapType {
eMozMap,
eNullableMozMap
};
virtual void trace(JSTracer *trc) override
{
if (mMozMapType == eMozMap) {
TraceMozMap(trc, *mMozMap);
} else {
MOZ_ASSERT(mMozMapType == eNullableMozMap);
if (!mNullableMozMap->IsNull()) {
TraceMozMap(trc, mNullableMozMap->Value());
}
}
}
union {
MozMap<T>* mMozMap;
Nullable<MozMap<T>>* mNullableMozMap;
};
MozMapType mMozMapType;
};
template<typename T>
class MOZ_RAII RootedUnion : public T,
private JS::CustomAutoRooter
{
public:
explicit RootedUnion(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) :
T(),
JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT)
{
}
virtual void trace(JSTracer *trc) override
{
this->TraceUnion(trc);
}
};
template<typename T>
class MOZ_STACK_CLASS NullableRootedUnion : public Nullable<T>,
private JS::CustomAutoRooter
{
public:
explicit NullableRootedUnion(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) :
Nullable<T>(),
JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT)
{
}
virtual void trace(JSTracer *trc) override
{
if (!this->IsNull()) {
this->Value().TraceUnion(trc);
}
}
};
inline bool
IdEquals(jsid id, const char* string)
{
return JSID_IS_STRING(id) &&
JS_FlatStringEqualsAscii(JSID_TO_FLAT_STRING(id), string);
}
inline bool
AddStringToIDVector(JSContext* cx, JS::AutoIdVector& vector, const char* name)
{
return vector.growBy(1) &&
AtomizeAndPinJSString(cx, *(vector[vector.length() - 1]).address(), name);
}
// Implementation of the bits that XrayWrapper needs
/**
* This resolves operations, attributes and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveOwnProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
JS::Handle<jsid> id,
JS::MutableHandle<JSPropertyDescriptor> desc,
bool& cacheOnHolder);
/**
* Define a property on obj through an Xray wrapper.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* id and desc are the parameters for the property to be defined.
* result is the out-parameter indicating success (read it only if
* this returns true and also sets *defined to true).
* defined will be set to true if a property was set as a result of this call.
*/
bool
XrayDefineProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj, JS::Handle<jsid> id,
JS::Handle<JSPropertyDescriptor> desc,
JS::ObjectOpResult &result,
bool *defined);
/**
* Add to props the property keys of all indexed or named properties of obj and
* operations, attributes and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* flags are JSITER_* flags.
*/
bool
XrayOwnPropertyKeys(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
unsigned flags, JS::AutoIdVector& props);
/**
* Returns the prototype to use for an Xray for a DOM object, wrapped in cx's
* compartment. This always returns the prototype that would be used for a DOM
* object if we ignore any changes that might have been done to the prototype
* chain by JS, the XBL code or plugins.
*
* cx should be in the Xray's compartment.
* obj is the target object of the Xray, a binding's instance object or an
* interface or interface prototype object.
*/
inline bool
XrayGetNativeProto(JSContext* cx, JS::Handle<JSObject*> obj,
JS::MutableHandle<JSObject*> protop)
{
JS::Rooted<JSObject*> global(cx, js::GetGlobalForObjectCrossCompartment(obj));
{
JSAutoCompartment ac(cx, global);
const DOMJSClass* domClass = GetDOMClass(obj);
if (domClass) {
ProtoHandleGetter protoGetter = domClass->mGetProto;
if (protoGetter) {
protop.set(protoGetter(cx, global));
} else {
protop.set(JS_GetObjectPrototype(cx, global));
}
} else {
const js::Class* clasp = js::GetObjectClass(obj);
MOZ_ASSERT(IsDOMIfaceAndProtoClass(clasp));
ProtoGetter protoGetter =
DOMIfaceAndProtoJSClass::FromJSClass(clasp)->mGetParentProto;
protop.set(protoGetter(cx, global));
}
}
return JS_WrapObject(cx, protop);
}
extern NativePropertyHooks sEmptyNativePropertyHooks;
// We use one constructor JSNative to represent all DOM interface objects (so
// we can easily detect when we need to wrap them in an Xray wrapper). We store
// the real JSNative in the mNative member of a JSNativeHolder in the
// CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT slot of the JSFunction object for a
// specific interface object. We also store the NativeProperties in the
// JSNativeHolder.
// Note that some interface objects are not yet a JSFunction but a normal
// JSObject with a DOMJSClass, those do not use these slots.
enum {
CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT = 0
};
bool
Constructor(JSContext* cx, unsigned argc, JS::Value* vp);
inline bool
UseDOMXray(JSObject* obj)
{
const js::Class* clasp = js::GetObjectClass(obj);
return IsDOMClass(clasp) ||
JS_IsNativeFunction(obj, Constructor) ||
IsDOMIfaceAndProtoClass(clasp);
}
#ifdef DEBUG
inline bool
HasConstructor(JSObject* obj)
{
return JS_IsNativeFunction(obj, Constructor) ||
js::GetObjectClass(obj)->construct;
}
#endif
// Helpers for creating a const version of a type.
template<typename T>
const T& Constify(T& arg)
{
return arg;
}
// Helper for turning (Owning)NonNull<T> into T&
template<typename T>
T& NonNullHelper(T& aArg)
{
return aArg;
}
template<typename T>
T& NonNullHelper(NonNull<T>& aArg)
{
return aArg;
}
template<typename T>
const T& NonNullHelper(const NonNull<T>& aArg)
{
return aArg;
}
template<typename T>
T& NonNullHelper(OwningNonNull<T>& aArg)
{
return aArg;
}
template<typename T>
const T& NonNullHelper(const OwningNonNull<T>& aArg)
{
return aArg;
}
inline
void NonNullHelper(NonNull<binding_detail::FakeString>& aArg)
{
// This overload is here to make sure that we never end up applying
// NonNullHelper to a NonNull<binding_detail::FakeString>. If we
// try to, it should fail to compile, since presumably the caller will try to
// use our nonexistent return value.
}
inline
void NonNullHelper(const NonNull<binding_detail::FakeString>& aArg)
{
// This overload is here to make sure that we never end up applying
// NonNullHelper to a NonNull<binding_detail::FakeString>. If we
// try to, it should fail to compile, since presumably the caller will try to
// use our nonexistent return value.
}
inline
void NonNullHelper(binding_detail::FakeString& aArg)
{
// This overload is here to make sure that we never end up applying
// NonNullHelper to a FakeString before we've constified it. If we
// try to, it should fail to compile, since presumably the caller will try to
// use our nonexistent return value.
}
MOZ_ALWAYS_INLINE
const nsAString& NonNullHelper(const binding_detail::FakeString& aArg)
{
return aArg;
}
// Reparent the wrapper of aObj to whatever its native now thinks its
// parent should be.
nsresult
ReparentWrapper(JSContext* aCx, JS::Handle<JSObject*> aObj);
/**
* Used to implement the hasInstance hook of an interface object.
*
* instance should not be a security wrapper.
*/
bool
InterfaceHasInstance(JSContext* cx, JS::Handle<JSObject*> obj,
JS::Handle<JSObject*> instance,
bool* bp);
bool
InterfaceHasInstance(JSContext* cx, JS::Handle<JSObject*> obj, JS::MutableHandle<JS::Value> vp,
bool* bp);
bool
InterfaceHasInstance(JSContext* cx, int prototypeID, int depth,
JS::Handle<JSObject*> instance,
bool* bp);
// Helper for lenient getters/setters to report to console. If this
// returns false, we couldn't even get a global.
bool
ReportLenientThisUnwrappingFailure(JSContext* cx, JSObject* obj);
// Given a JSObject* that represents the chrome side of a JS-implemented WebIDL
// interface, get the nsIGlobalObject corresponding to the content side, if any.
// A false return means an exception was thrown.
bool
GetContentGlobalForJSImplementedObject(JSContext* cx, JS::Handle<JSObject*> obj,
nsIGlobalObject** global);
void
ConstructJSImplementation(JSContext* aCx, const char* aContractId,
nsIGlobalObject* aGlobal,
JS::MutableHandle<JSObject*> aObject,
ErrorResult& aRv);
already_AddRefed<nsIGlobalObject>
ConstructJSImplementation(JSContext* aCx, const char* aContractId,
const GlobalObject& aGlobal,
JS::MutableHandle<JSObject*> aObject,
ErrorResult& aRv);
/**
* Convert an nsCString to jsval, returning true on success.
* These functions are intended for ByteString implementations.
* As such, the string is not UTF-8 encoded. Any UTF8 strings passed to these
* methods will be mangled.
*/
bool NonVoidByteStringToJsval(JSContext *cx, const nsACString &str,
JS::MutableHandle<JS::Value> rval);
inline bool ByteStringToJsval(JSContext *cx, const nsACString &str,
JS::MutableHandle<JS::Value> rval)
{
if (str.IsVoid()) {
rval.setNull();
return true;
}
return NonVoidByteStringToJsval(cx, str, rval);
}
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct PreserveWrapperHelper
{
static void PreserveWrapper(T* aObject)
{
aObject->PreserveWrapper(aObject, NS_CYCLE_COLLECTION_PARTICIPANT(T));
}
};
template<class T>
struct PreserveWrapperHelper<T, true>
{
static void PreserveWrapper(T* aObject)
{
aObject->PreserveWrapper(reinterpret_cast<nsISupports*>(aObject));
}
};
template<class T>
void PreserveWrapper(T* aObject)
{
PreserveWrapperHelper<T>::PreserveWrapper(aObject);
}
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct CastingAssertions
{
static bool ToSupportsIsCorrect(T*)
{
return true;
}
static bool ToSupportsIsOnPrimaryInheritanceChain(T*, nsWrapperCache*)
{
return true;
}
};
template<class T>
struct CastingAssertions<T, true>
{
static bool ToSupportsIsCorrect(T* aObject)
{
return ToSupports(aObject) == reinterpret_cast<nsISupports*>(aObject);
}
static bool ToSupportsIsOnPrimaryInheritanceChain(T* aObject,
nsWrapperCache* aCache)
{
return reinterpret_cast<void*>(aObject) != aCache;
}
};
template<class T>
bool
ToSupportsIsCorrect(T* aObject)
{
return CastingAssertions<T>::ToSupportsIsCorrect(aObject);
}
template<class T>
bool
ToSupportsIsOnPrimaryInheritanceChain(T* aObject, nsWrapperCache* aCache)
{
return CastingAssertions<T>::ToSupportsIsOnPrimaryInheritanceChain(aObject,
aCache);
}
// The BindingJSObjectCreator class is supposed to be used by a caller that
// wants to create and initialise a binding JSObject. After initialisation has
// been successfully completed it should call ForgetObject().
// The BindingJSObjectCreator object will root the JSObject until ForgetObject()
// is called on it. If the native object for the binding is refcounted it will
// also hold a strong reference to it, that reference is transferred to the
// JSObject (which holds the native in a slot) when ForgetObject() is called. If
// the BindingJSObjectCreator object is destroyed and ForgetObject() was never
// called on it then the JSObject's slot holding the native will be set to
// undefined, and for a refcounted native the strong reference will be released.
template<class T>
class MOZ_STACK_CLASS BindingJSObjectCreator
{
public:
explicit BindingJSObjectCreator(JSContext* aCx)
: mReflector(aCx)
{
}
~BindingJSObjectCreator()
{
if (mReflector) {
js::SetReservedOrProxyPrivateSlot(mReflector, DOM_OBJECT_SLOT,
JS::UndefinedValue());
}
}
void
CreateProxyObject(JSContext* aCx, const js::Class* aClass,
const DOMProxyHandler* aHandler,
JS::Handle<JSObject*> aProto, T* aNative,
JS::MutableHandle<JSObject*> aReflector)
{
js::ProxyOptions options;
options.setClass(aClass);
JS::Rooted<JS::Value> proxyPrivateVal(aCx, JS::PrivateValue(aNative));
aReflector.set(js::NewProxyObject(aCx, aHandler, proxyPrivateVal, aProto,
options));
if (aReflector) {
mNative = aNative;
mReflector = aReflector;
}
}
void
CreateObject(JSContext* aCx, const JSClass* aClass,
JS::Handle<JSObject*> aProto,
T* aNative, JS::MutableHandle<JSObject*> aReflector)
{
aReflector.set(JS_NewObjectWithGivenProto(aCx, aClass, aProto));
if (aReflector) {
js::SetReservedSlot(aReflector, DOM_OBJECT_SLOT, JS::PrivateValue(aNative));
mNative = aNative;
mReflector = aReflector;
}
}
void
InitializationSucceeded()
{
void* dummy;
mNative.forget(&dummy);
mReflector = nullptr;
}
private:
struct OwnedNative
{
// Make sure the native objects inherit from NonRefcountedDOMObject so
// that we log their ctor and dtor.
static_assert(IsBaseOf<NonRefcountedDOMObject, T>::value,
"Non-refcounted objects with DOM bindings should inherit "
"from NonRefcountedDOMObject.");
OwnedNative&
operator=(T* aNative)
{
return *this;
}
// This signature sucks, but it's the only one that will make a nsRefPtr
// just forget about its pointer without warning.
void
forget(void**)
{
}
};
JS::Rooted<JSObject*> mReflector;
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
typename Conditional<IsRefcounted<T>::value, RefPtr<T>, OwnedNative>::Type mNative;
};
template<class T>
struct DeferredFinalizerImpl
{
typedef typename Conditional<IsSame<T, nsISupports>::value,
nsCOMPtr<T>,
typename Conditional<IsRefcounted<T>::value,
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
RefPtr<T>,
nsAutoPtr<T>>::Type>::Type SmartPtr;
typedef nsTArray<SmartPtr> SmartPtrArray;
static_assert(IsSame<T, nsISupports>::value || !IsBaseOf<nsISupports, T>::value,
"nsISupports classes should all use the nsISupports instantiation");
static inline void
AppendAndTake(nsTArray<nsCOMPtr<nsISupports>>& smartPtrArray, nsISupports* ptr)
{
smartPtrArray.AppendElement(dont_AddRef(ptr));
}
template<class U>
static inline void
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
AppendAndTake(nsTArray<RefPtr<U>>& smartPtrArray, U* ptr)
{
smartPtrArray.AppendElement(dont_AddRef(ptr));
}
template<class U>
static inline void
AppendAndTake(nsTArray<nsAutoPtr<U>>& smartPtrArray, U* ptr)
{
smartPtrArray.AppendElement(ptr);
}
static void*
AppendDeferredFinalizePointer(void* aData, void* aObject)
{
SmartPtrArray* pointers = static_cast<SmartPtrArray*>(aData);
if (!pointers) {
pointers = new SmartPtrArray();
}
AppendAndTake(*pointers, static_cast<T*>(aObject));
return pointers;
}
static bool
DeferredFinalize(uint32_t aSlice, void* aData)
{
MOZ_ASSERT(aSlice > 0, "nonsensical/useless call with aSlice == 0");
SmartPtrArray* pointers = static_cast<SmartPtrArray*>(aData);
uint32_t oldLen = pointers->Length();
if (oldLen < aSlice) {
aSlice = oldLen;
}
uint32_t newLen = oldLen - aSlice;
pointers->RemoveElementsAt(newLen, aSlice);
if (newLen == 0) {
delete pointers;
return true;
}
return false;
}
};
template<class T,
bool isISupports=IsBaseOf<nsISupports, T>::value>
struct DeferredFinalizer
{
static void
AddForDeferredFinalization(T* aObject)
{
typedef DeferredFinalizerImpl<T> Impl;
DeferredFinalize(Impl::AppendDeferredFinalizePointer,
Impl::DeferredFinalize, aObject);
}
};
template<class T>
struct DeferredFinalizer<T, true>
{
static void
AddForDeferredFinalization(T* aObject)
{
DeferredFinalize(reinterpret_cast<nsISupports*>(aObject));
}
};
template<class T>
static void
AddForDeferredFinalization(T* aObject)
{
DeferredFinalizer<T>::AddForDeferredFinalization(aObject);
}
// This returns T's CC participant if it participates in CC or null if it
// doesn't. This also returns null for classes that don't inherit from
// nsISupports (QI should be used to get the participant for those).
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
class GetCCParticipant
{
// Helper for GetCCParticipant for classes that participate in CC.
template<class U>
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
GetHelper(int, typename U::NS_CYCLE_COLLECTION_INNERCLASS* dummy=nullptr)
{
return T::NS_CYCLE_COLLECTION_INNERCLASS::GetParticipant();
}
// Helper for GetCCParticipant for classes that don't participate in CC.
template<class U>
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
GetHelper(double)
{
return nullptr;
}
public:
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
Get()
{
// Passing int() here will try to call the GetHelper that takes an int as
// its firt argument. If T doesn't participate in CC then substitution for
// the second argument (with a default value) will fail and because of
// SFINAE the next best match (the variant taking a double) will be called.
return GetHelper<T>(int());
}
};
template<class T>
class GetCCParticipant<T, true>
{
public:
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
Get()
{
return nullptr;
}
};
/*
* Helper function for testing whether the given object comes from a
* privileged app.
*/
bool
IsInPrivilegedApp(JSContext* aCx, JSObject* aObj);
/*
* Helper function for testing whether the given object comes from a
* certified app.
*/
bool
IsInCertifiedApp(JSContext* aCx, JSObject* aObj);
void
FinalizeGlobal(JSFreeOp* aFop, JSObject* aObj);
bool
ResolveGlobal(JSContext* aCx, JS::Handle<JSObject*> aObj,
JS::Handle<jsid> aId, bool* aResolvedp);
bool
MayResolveGlobal(const JSAtomState& aNames, jsid aId, JSObject* aMaybeObj);
bool
EnumerateGlobal(JSContext* aCx, JS::Handle<JSObject*> aObj);
template <class T>
struct CreateGlobalOptions
{
static MOZ_CONSTEXPR_VAR ProtoAndIfaceCache::Kind ProtoAndIfaceCacheKind =
ProtoAndIfaceCache::NonWindowLike;
// Intl API is broken and makes JS_InitStandardClasses fail intermittently,
// see bug 934889.
static MOZ_CONSTEXPR_VAR bool ForceInitStandardClassesToFalse = true;
static void TraceGlobal(JSTracer* aTrc, JSObject* aObj)
{
mozilla::dom::TraceProtoAndIfaceCache(aTrc, aObj);
}
static bool PostCreateGlobal(JSContext* aCx, JS::Handle<JSObject*> aGlobal)
{
MOZ_ALWAYS_TRUE(TryPreserveWrapper(aGlobal));
return true;
}
};
template <>
struct CreateGlobalOptions<nsGlobalWindow>
{
static MOZ_CONSTEXPR_VAR ProtoAndIfaceCache::Kind ProtoAndIfaceCacheKind =
ProtoAndIfaceCache::WindowLike;
static MOZ_CONSTEXPR_VAR bool ForceInitStandardClassesToFalse = false;
static void TraceGlobal(JSTracer* aTrc, JSObject* aObj);
static bool PostCreateGlobal(JSContext* aCx, JS::Handle<JSObject*> aGlobal);
};
nsresult
RegisterDOMNames();
// The return value is whatever the ProtoHandleGetter we used
// returned. This should be the DOM prototype for the global.
template <class T, ProtoHandleGetter GetProto>
JS::Handle<JSObject*>
CreateGlobal(JSContext* aCx, T* aNative, nsWrapperCache* aCache,
const JSClass* aClass, JS::CompartmentOptions& aOptions,
JSPrincipals* aPrincipal, bool aInitStandardClasses,
JS::MutableHandle<JSObject*> aGlobal)
{
aOptions.setTrace(CreateGlobalOptions<T>::TraceGlobal);
aGlobal.set(JS_NewGlobalObject(aCx, aClass, aPrincipal,
JS::DontFireOnNewGlobalHook, aOptions));
if (!aGlobal) {
NS_WARNING("Failed to create global");
return nullptr;
}
JSAutoCompartment ac(aCx, aGlobal);
{
js::SetReservedSlot(aGlobal, DOM_OBJECT_SLOT, JS::PrivateValue(aNative));
NS_ADDREF(aNative);
aCache->SetWrapper(aGlobal);
dom::AllocateProtoAndIfaceCache(aGlobal,
CreateGlobalOptions<T>::ProtoAndIfaceCacheKind);
if (!CreateGlobalOptions<T>::PostCreateGlobal(aCx, aGlobal)) {
return nullptr;
}
}
if (aInitStandardClasses &&
!CreateGlobalOptions<T>::ForceInitStandardClassesToFalse &&
!JS_InitStandardClasses(aCx, aGlobal)) {
NS_WARNING("Failed to init standard classes");
return nullptr;
}
JS::Handle<JSObject*> proto = GetProto(aCx, aGlobal);
if (!proto || !JS_SplicePrototype(aCx, aGlobal, proto)) {
NS_WARNING("Failed to set proto");
return nullptr;
}
bool succeeded;
if (!JS_SetImmutablePrototype(aCx, aGlobal, &succeeded)) {
return nullptr;
}
MOZ_ASSERT(succeeded,
"making a fresh global object's [[Prototype]] immutable can "
"internally fail, but it should never be unsuccessful");
return proto;
}
/*
* Holds a jsid that is initialized to a pinned string, with automatic
* conversion to Handle<jsid>, as it is held live forever by pinning.
*/
class PinnedStringId
{
jsid id;
public:
PinnedStringId() : id(JSID_VOID) {}
bool init(JSContext *cx, const char *string) {
JSString* str = JS_AtomizeAndPinString(cx, string);
if (!str)
return false;
id = INTERNED_STRING_TO_JSID(cx, str);
return true;
}
operator const jsid& () {
return id;
}
operator JS::Handle<jsid> () {
/* This is safe because we have pinned the string. */
return JS::Handle<jsid>::fromMarkedLocation(&id);
}
};
bool
GenericBindingGetter(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GenericBindingSetter(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GenericBindingMethod(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GenericPromiseReturningBindingMethod(JSContext* cx, unsigned argc, JS::Value* vp);
bool
StaticMethodPromiseWrapper(JSContext* cx, unsigned argc, JS::Value* vp);
// ConvertExceptionToPromise should only be called when we have an error
// condition (e.g. returned false from a JSAPI method). Note that there may be
// no exception on cx, in which case this is an uncatchable failure that will
// simply be propagated. Otherwise this method will attempt to convert the
// exception to a Promise rejected with the exception that it will store in
// rval.
//
// promiseScope should be the scope in which the Promise should be created.
bool
ConvertExceptionToPromise(JSContext* cx,
JSObject* promiseScope,
JS::MutableHandle<JS::Value> rval);
// While we wait for the outcome of spec discussions on whether properties for
// DOM global objects live on the object or the prototype, we supply this one
// place to switch the behaviour, so we can easily turn this off on branches.
inline bool
GlobalPropertiesAreOwn()
{
return true;
}
#ifdef DEBUG
void
AssertReturnTypeMatchesJitinfo(const JSJitInfo* aJitinfo,
JS::Handle<JS::Value> aValue);
#endif
// Returns true if aObj's global has any of the permissions named in aPermissions
// set to nsIPermissionManager::ALLOW_ACTION. aPermissions must be null-terminated.
bool
CheckAnyPermissions(JSContext* aCx, JSObject* aObj, const char* const aPermissions[]);
// Returns true if aObj's global has all of the permissions named in aPermissions
// set to nsIPermissionManager::ALLOW_ACTION. aPermissions must be null-terminated.
bool
CheckAllPermissions(JSContext* aCx, JSObject* aObj, const char* const aPermissions[]);
// This function is called by the bindings layer for methods/getters/setters
// that are not safe to be called in prerendering mode. It checks to make sure
// that the |this| object is not running in a global that is in prerendering
// mode. Otherwise, it aborts execution of timers and event handlers, and
// returns false which gets converted to an uncatchable exception by the
// bindings layer.
bool
EnforceNotInPrerendering(JSContext* aCx, JSObject* aObj);
// Handles the violation of a blacklisted action in prerendering mode by
// aborting the scripts, and preventing timers and event handlers from running
// in the window in the future.
void
HandlePrerenderingViolation(nsPIDOMWindow* aWindow);
bool
CallerSubsumes(JSObject* aObject);
MOZ_ALWAYS_INLINE bool
CallerSubsumes(JS::Handle<JS::Value> aValue)
{
if (!aValue.isObject()) {
return true;
}
return CallerSubsumes(&aValue.toObject());
}
template<class T>
inline bool
WrappedJSToDictionary(JSContext* aCx, nsISupports* aObject, T& aDictionary)
{
nsCOMPtr<nsIXPConnectWrappedJS> wrappedObj = do_QueryInterface(aObject);
if (!wrappedObj) {
return false;
}
JS::Rooted<JSObject*> obj(aCx, wrappedObj->GetJSObject());
if (!obj) {
return false;
}
JSAutoCompartment ac(aCx, obj);
JS::Rooted<JS::Value> v(aCx, JS::ObjectValue(*obj));
return aDictionary.Init(aCx, v);
}
template<class T>
inline bool
WrappedJSToDictionary(nsISupports* aObject, T& aDictionary)
{
nsCOMPtr<nsIXPConnectWrappedJS> wrappedObj = do_QueryInterface(aObject);
NS_ENSURE_TRUE(wrappedObj, false);
JS::Rooted<JSObject*> obj(CycleCollectedJSRuntime::Get()->Runtime(),
wrappedObj->GetJSObject());
NS_ENSURE_TRUE(obj, false);
nsIGlobalObject* global = xpc::NativeGlobal(obj);
NS_ENSURE_TRUE(global, false);
// we need this AutoEntryScript here because the spec requires us to execute
// getters when parsing a dictionary
AutoEntryScript aes(global, "WebIDL dictionary creation");
aes.TakeOwnershipOfErrorReporting();
JS::Rooted<JS::Value> v(aes.cx(), JS::ObjectValue(*obj));
return aDictionary.Init(aes.cx(), v);
}
template<class T, class S>
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
inline RefPtr<T>
StrongOrRawPtr(already_AddRefed<S>&& aPtr)
{
return aPtr.template downcast<T>();
}
template<class T,
class ReturnType=typename Conditional<IsRefcounted<T>::value, T*,
nsAutoPtr<T>>::Type>
inline ReturnType
StrongOrRawPtr(T* aPtr)
{
return ReturnType(aPtr);
}
template<class T, template<typename> class SmartPtr, class S>
inline void
StrongOrRawPtr(SmartPtr<S>&& aPtr) = delete;
template<class T>
struct StrongPtrForMember
{
typedef typename Conditional<IsRefcounted<T>::value,
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi
2015-10-17 22:24:48 -07:00
RefPtr<T>, nsAutoPtr<T>>::Type Type;
};
inline
JSObject*
GetErrorPrototype(JSContext* aCx, JS::Handle<JSObject*> aForObj)
{
return JS_GetErrorPrototype(aCx);
}
inline
JSObject*
GetIteratorPrototype(JSContext* aCx, JS::Handle<JSObject*> aForObj)
{
return JS_GetIteratorPrototype(aCx);
}
// Resolve an id on the given global object that wants to be included in
// Exposed=System webidl annotations. False return value means exception
// thrown.
bool SystemGlobalResolve(JSContext* cx, JS::Handle<JSObject*> obj,
JS::Handle<jsid> id, bool* resolvedp);
// Enumerate all ids on the given global object that wants to be included in
// Exposed=System webidl annotations. False return value means exception
// thrown.
bool SystemGlobalEnumerate(JSContext* cx, JS::Handle<JSObject*> obj);
// Slot indexes for maplike/setlike forEach functions
#define FOREACH_CALLBACK_SLOT 0
#define FOREACH_MAPLIKEORSETLIKEOBJ_SLOT 1
// Backing function for running .forEach() on maplike/setlike interfaces.
// Unpacks callback and maplike/setlike object from reserved slots, then runs
// callback for each key (and value, for maplikes)
bool ForEachHandler(JSContext* aCx, unsigned aArgc, JS::Value* aVp);
// Unpacks backing object (ES6 map/set) from the reserved slot of a reflector
// for a maplike/setlike interface. If backing object does not exist, creates
// backing object in the compartment of the reflector involved, making this safe
// to use across compartments/via xrays. Return values of these methods will
// always be in the context compartment.
bool GetMaplikeBackingObject(JSContext* aCx, JS::Handle<JSObject*> aObj,
size_t aSlotIndex,
JS::MutableHandle<JSObject*> aBackingObj,
bool* aBackingObjCreated);
bool GetSetlikeBackingObject(JSContext* aCx, JS::Handle<JSObject*> aObj,
size_t aSlotIndex,
JS::MutableHandle<JSObject*> aBackingObj,
bool* aBackingObjCreated);
// Get the desired prototype object for an object construction from the given
// CallArgs. Null is returned if the default prototype should be used.
bool
GetDesiredProto(JSContext* aCx, const JS::CallArgs& aCallArgs,
JS::MutableHandle<JSObject*> aDesiredProto);
void
SetDocumentAndPageUseCounter(JSContext* aCx, JSObject* aObject,
UseCounter aUseCounter);
// Warnings
void
DeprecationWarning(JSContext* aCx, JSObject* aObject,
nsIDocument::DeprecatedOperations aOperation);
// A callback to perform funToString on an interface object
JSString*
InterfaceObjectToString(JSContext* aCx, JS::Handle<JSObject*> aObject,
unsigned /* indent */);
} // namespace dom
} // namespace mozilla
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-02 21:35:38 -07:00
#endif /* mozilla_dom_BindingUtils_h__ */