gecko/hal/gonk/GonkHal.cpp

1628 lines
45 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=8 et ft=cpp : */
/* Copyright 2012 Mozilla Foundation and Mozilla contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/android_alarm.h>
#include <math.h>
#include <regex.h>
#include <sched.h>
#include <stdio.h>
#include <sys/klog.h>
#include <sys/syscall.h>
#include <sys/resource.h>
#include <time.h>
#include <asm/page.h>
#include "mozilla/DebugOnly.h"
#include "android/log.h"
#include "cutils/properties.h"
#include "hardware/hardware.h"
#include "hardware/lights.h"
#include "hardware_legacy/uevent.h"
#include "hardware_legacy/vibrator.h"
#include "hardware_legacy/power.h"
#include "libdisplay/GonkDisplay.h"
#include "utils/threads.h"
#include "base/message_loop.h"
#include "Hal.h"
#include "HalImpl.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/dom/battery/Constants.h"
#include "mozilla/FileUtils.h"
#include "mozilla/Monitor.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/Preferences.h"
#include "nsAlgorithm.h"
#include "nsPrintfCString.h"
#include "nsIObserver.h"
#include "nsIObserverService.h"
#include "nsIRecoveryService.h"
#include "nsIRunnable.h"
#include "nsScreenManagerGonk.h"
#include "nsThreadUtils.h"
#include "nsThreadUtils.h"
#include "nsIThread.h"
#include "nsXULAppAPI.h"
#include "OrientationObserver.h"
#include "UeventPoller.h"
#include <algorithm>
#define LOG(args...) __android_log_print(ANDROID_LOG_INFO, "Gonk", args)
#define NsecPerMsec 1000000LL
#define NsecPerSec 1000000000
// The header linux/oom.h is not available in bionic libc. We
// redefine some of its constants here.
#ifndef OOM_DISABLE
#define OOM_DISABLE (-17)
#endif
#ifndef OOM_ADJUST_MIN
#define OOM_ADJUST_MIN (-16)
#endif
#ifndef OOM_ADJUST_MAX
#define OOM_ADJUST_MAX 15
#endif
#ifndef OOM_SCORE_ADJ_MIN
#define OOM_SCORE_ADJ_MIN (-1000)
#endif
#ifndef OOM_SCORE_ADJ_MAX
#define OOM_SCORE_ADJ_MAX 1000
#endif
#ifndef BATTERY_CHARGING_ARGB
#define BATTERY_CHARGING_ARGB 0x00FF0000
#endif
#ifndef BATTERY_FULL_ARGB
#define BATTERY_FULL_ARGB 0x0000FF00
#endif
using namespace mozilla;
using namespace mozilla::hal;
namespace mozilla {
namespace hal_impl {
namespace {
/**
* This runnable runs for the lifetime of the program, once started. It's
* responsible for "playing" vibration patterns.
*/
class VibratorRunnable
: public nsIRunnable
, public nsIObserver
{
public:
VibratorRunnable()
: mMonitor("VibratorRunnable")
, mIndex(0)
{
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (!os) {
NS_WARNING("Could not get observer service!");
return;
}
os->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
}
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIRUNNABLE
NS_DECL_NSIOBSERVER
// Run on the main thread, not the vibrator thread.
void Vibrate(const nsTArray<uint32_t> &pattern);
void CancelVibrate();
static bool ShuttingDown() { return sShuttingDown; }
private:
Monitor mMonitor;
// The currently-playing pattern.
nsTArray<uint32_t> mPattern;
// The index we're at in the currently-playing pattern. If mIndex >=
// mPattern.Length(), then we're not currently playing anything.
uint32_t mIndex;
// Set to true in our shutdown observer. When this is true, we kill the
// vibrator thread.
static bool sShuttingDown;
};
NS_IMPL_ISUPPORTS(VibratorRunnable, nsIRunnable, nsIObserver);
bool VibratorRunnable::sShuttingDown = false;
static StaticRefPtr<VibratorRunnable> sVibratorRunnable;
NS_IMETHODIMP
VibratorRunnable::Run()
{
MonitorAutoLock lock(mMonitor);
// We currently assume that mMonitor.Wait(X) waits for X milliseconds. But in
// reality, the kernel might not switch to this thread for some time after the
// wait expires. So there's potential for some inaccuracy here.
//
// This doesn't worry me too much. Note that we don't even start vibrating
// immediately when VibratorRunnable::Vibrate is called -- we go through a
// condvar onto another thread. Better just to be chill about small errors in
// the timing here.
while (!sShuttingDown) {
if (mIndex < mPattern.Length()) {
uint32_t duration = mPattern[mIndex];
if (mIndex % 2 == 0) {
vibrator_on(duration);
}
mIndex++;
mMonitor.Wait(PR_MillisecondsToInterval(duration));
}
else {
mMonitor.Wait();
}
}
sVibratorRunnable = nullptr;
return NS_OK;
}
NS_IMETHODIMP
VibratorRunnable::Observe(nsISupports *subject, const char *topic,
const char16_t *data)
{
MOZ_ASSERT(strcmp(topic, NS_XPCOM_SHUTDOWN_OBSERVER_ID) == 0);
MonitorAutoLock lock(mMonitor);
sShuttingDown = true;
mMonitor.Notify();
return NS_OK;
}
void
VibratorRunnable::Vibrate(const nsTArray<uint32_t> &pattern)
{
MonitorAutoLock lock(mMonitor);
mPattern = pattern;
mIndex = 0;
mMonitor.Notify();
}
void
VibratorRunnable::CancelVibrate()
{
MonitorAutoLock lock(mMonitor);
mPattern.Clear();
mPattern.AppendElement(0);
mIndex = 0;
mMonitor.Notify();
}
void
EnsureVibratorThreadInitialized()
{
if (sVibratorRunnable) {
return;
}
sVibratorRunnable = new VibratorRunnable();
nsCOMPtr<nsIThread> thread;
NS_NewThread(getter_AddRefs(thread), sVibratorRunnable);
}
} // anonymous namespace
void
Vibrate(const nsTArray<uint32_t> &pattern, const hal::WindowIdentifier &)
{
MOZ_ASSERT(NS_IsMainThread());
if (VibratorRunnable::ShuttingDown()) {
return;
}
EnsureVibratorThreadInitialized();
sVibratorRunnable->Vibrate(pattern);
}
void
CancelVibrate(const hal::WindowIdentifier &)
{
MOZ_ASSERT(NS_IsMainThread());
if (VibratorRunnable::ShuttingDown()) {
return;
}
EnsureVibratorThreadInitialized();
sVibratorRunnable->CancelVibrate();
}
namespace {
class BatteryUpdater : public nsRunnable {
public:
NS_IMETHOD Run()
{
hal::BatteryInformation info;
hal_impl::GetCurrentBatteryInformation(&info);
// Control the battery indicator (led light) here using BatteryInformation
// we just retrieved.
uint32_t color = 0; // Format: 0x00rrggbb.
if (info.charging() && (info.level() == 1)) {
// Charging and battery full.
color = BATTERY_FULL_ARGB;
} else if (info.charging() && (info.level() < 1)) {
// Charging but not full.
color = BATTERY_CHARGING_ARGB;
} // else turn off battery indicator.
hal::LightConfiguration aConfig(hal::eHalLightID_Battery,
hal::eHalLightMode_User,
hal::eHalLightFlash_None,
0,
0,
color);
hal_impl::SetLight(hal::eHalLightID_Battery, aConfig);
hal::NotifyBatteryChange(info);
return NS_OK;
}
};
} // anonymous namespace
class BatteryObserver : public IUeventObserver
{
public:
NS_INLINE_DECL_REFCOUNTING(BatteryObserver)
BatteryObserver()
:mUpdater(new BatteryUpdater())
{
}
virtual void Notify(const NetlinkEvent &aEvent)
{
// this will run on IO thread
NetlinkEvent *event = const_cast<NetlinkEvent*>(&aEvent);
const char *subsystem = event->getSubsystem();
// e.g. DEVPATH=/devices/platform/sec-battery/power_supply/battery
const char *devpath = event->findParam("DEVPATH");
if (strcmp(subsystem, "power_supply") == 0 &&
strstr(devpath, "battery")) {
// aEvent will be valid only in this method.
NS_DispatchToMainThread(mUpdater);
}
}
private:
nsRefPtr<BatteryUpdater> mUpdater;
};
// sBatteryObserver is owned by the IO thread. Only the IO thread may
// create or destroy it.
static StaticRefPtr<BatteryObserver> sBatteryObserver;
static void
RegisterBatteryObserverIOThread()
{
MOZ_ASSERT(MessageLoop::current() == XRE_GetIOMessageLoop());
MOZ_ASSERT(!sBatteryObserver);
sBatteryObserver = new BatteryObserver();
RegisterUeventListener(sBatteryObserver);
}
void
EnableBatteryNotifications()
{
XRE_GetIOMessageLoop()->PostTask(
FROM_HERE,
NewRunnableFunction(RegisterBatteryObserverIOThread));
}
static void
UnregisterBatteryObserverIOThread()
{
MOZ_ASSERT(MessageLoop::current() == XRE_GetIOMessageLoop());
MOZ_ASSERT(sBatteryObserver);
UnregisterUeventListener(sBatteryObserver);
sBatteryObserver = nullptr;
}
void
DisableBatteryNotifications()
{
XRE_GetIOMessageLoop()->PostTask(
FROM_HERE,
NewRunnableFunction(UnregisterBatteryObserverIOThread));
}
static bool
GetCurrentBatteryCharge(int* aCharge)
{
bool success = ReadSysFile("/sys/class/power_supply/battery/capacity",
aCharge);
if (!success) {
return false;
}
#ifdef DEBUG
if ((*aCharge < 0) || (*aCharge > 100)) {
HAL_LOG(("charge level contains unknown value: %d", *aCharge));
}
#endif
return (*aCharge >= 0) && (*aCharge <= 100);
}
static bool
GetCurrentBatteryCharging(int* aCharging)
{
static const int BATTERY_NOT_CHARGING = 0;
static const int BATTERY_CHARGING_USB = 1;
static const int BATTERY_CHARGING_AC = 2;
// Generic device support
int chargingSrc;
bool success =
ReadSysFile("/sys/class/power_supply/battery/charging_source", &chargingSrc);
if (success) {
#ifdef DEBUG
if (chargingSrc != BATTERY_NOT_CHARGING &&
chargingSrc != BATTERY_CHARGING_USB &&
chargingSrc != BATTERY_CHARGING_AC) {
HAL_LOG(("charging_source contained unknown value: %d", chargingSrc));
}
#endif
*aCharging = (chargingSrc == BATTERY_CHARGING_USB ||
chargingSrc == BATTERY_CHARGING_AC);
return true;
}
// Otoro device support
char chargingSrcString[16];
success = ReadSysFile("/sys/class/power_supply/battery/status",
chargingSrcString, sizeof(chargingSrcString));
if (success) {
*aCharging = strcmp(chargingSrcString, "Charging") == 0 ||
strcmp(chargingSrcString, "Full") == 0;
return true;
}
return false;
}
void
GetCurrentBatteryInformation(hal::BatteryInformation* aBatteryInfo)
{
int charge;
if (GetCurrentBatteryCharge(&charge)) {
aBatteryInfo->level() = (double)charge / 100.0;
} else {
aBatteryInfo->level() = dom::battery::kDefaultLevel;
}
int charging;
if (GetCurrentBatteryCharging(&charging)) {
aBatteryInfo->charging() = charging;
} else {
aBatteryInfo->charging() = true;
}
if (!aBatteryInfo->charging() || (aBatteryInfo->level() < 1.0)) {
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
} else {
aBatteryInfo->remainingTime() = dom::battery::kDefaultRemainingTime;
}
}
namespace {
/**
* RAII class to help us remember to close file descriptors.
*/
const char *wakeLockFilename = "/sys/power/wake_lock";
const char *wakeUnlockFilename = "/sys/power/wake_unlock";
template<ssize_t n>
bool ReadFromFile(const char *filename, char (&buf)[n])
{
int fd = open(filename, O_RDONLY);
ScopedClose autoClose(fd);
if (fd < 0) {
HAL_LOG(("Unable to open file %s.", filename));
return false;
}
ssize_t numRead = read(fd, buf, n);
if (numRead < 0) {
HAL_LOG(("Error reading from file %s.", filename));
return false;
}
buf[std::min(numRead, n - 1)] = '\0';
return true;
}
bool WriteToFile(const char *filename, const char *toWrite)
{
int fd = open(filename, O_WRONLY);
ScopedClose autoClose(fd);
if (fd < 0) {
HAL_LOG(("Unable to open file %s.", filename));
return false;
}
if (write(fd, toWrite, strlen(toWrite)) < 0) {
HAL_LOG(("Unable to write to file %s.", filename));
return false;
}
return true;
}
// We can write to screenEnabledFilename to enable/disable the screen, but when
// we read, we always get "mem"! So we have to keep track ourselves whether
// the screen is on or not.
bool sScreenEnabled = true;
// We can read wakeLockFilename to find out whether the cpu wake lock
// is already acquired, but reading and parsing it is a lot more work
// than tracking it ourselves, and it won't be accurate anyway (kernel
// internal wake locks aren't counted here.)
bool sCpuSleepAllowed = true;
// Some CPU wake locks may be acquired internally in HAL. We use a counter to
// keep track of these needs. Note we have to hold |sInternalLockCpuMonitor|
// when reading or writing this variable to ensure thread-safe.
int32_t sInternalLockCpuCount = 0;
} // anonymous namespace
bool
GetScreenEnabled()
{
return sScreenEnabled;
}
void
SetScreenEnabled(bool enabled)
{
GetGonkDisplay()->SetEnabled(enabled);
sScreenEnabled = enabled;
}
double
GetScreenBrightness()
{
hal::LightConfiguration aConfig;
hal::LightType light = hal::eHalLightID_Backlight;
hal::GetLight(light, &aConfig);
// backlight is brightness only, so using one of the RGB elements as value.
int brightness = aConfig.color() & 0xFF;
return brightness / 255.0;
}
void
SetScreenBrightness(double brightness)
{
// Don't use De Morgan's law to push the ! into this expression; we want to
// catch NaN too.
if (!(0 <= brightness && brightness <= 1)) {
HAL_LOG(("SetScreenBrightness: Dropping illegal brightness %f.",
brightness));
return;
}
// Convert the value in [0, 1] to an int between 0 and 255 and convert to a color
// note that the high byte is FF, corresponding to the alpha channel.
int val = static_cast<int>(round(brightness * 255));
uint32_t color = (0xff<<24) + (val<<16) + (val<<8) + val;
hal::LightConfiguration aConfig;
aConfig.mode() = hal::eHalLightMode_User;
aConfig.flash() = hal::eHalLightFlash_None;
aConfig.flashOnMS() = aConfig.flashOffMS() = 0;
aConfig.color() = color;
hal::SetLight(hal::eHalLightID_Backlight, aConfig);
hal::SetLight(hal::eHalLightID_Buttons, aConfig);
}
static Monitor* sInternalLockCpuMonitor = nullptr;
static void
UpdateCpuSleepState()
{
sInternalLockCpuMonitor->AssertCurrentThreadOwns();
bool allowed = sCpuSleepAllowed && !sInternalLockCpuCount;
WriteToFile(allowed ? wakeUnlockFilename : wakeLockFilename, "gecko");
}
static void
InternalLockCpu() {
MonitorAutoLock monitor(*sInternalLockCpuMonitor);
++sInternalLockCpuCount;
UpdateCpuSleepState();
}
static void
InternalUnlockCpu() {
MonitorAutoLock monitor(*sInternalLockCpuMonitor);
--sInternalLockCpuCount;
UpdateCpuSleepState();
}
bool
GetCpuSleepAllowed()
{
return sCpuSleepAllowed;
}
void
SetCpuSleepAllowed(bool aAllowed)
{
MonitorAutoLock monitor(*sInternalLockCpuMonitor);
sCpuSleepAllowed = aAllowed;
UpdateCpuSleepState();
}
static light_device_t* sLights[hal::eHalLightID_Count]; // will be initialized to nullptr
light_device_t* GetDevice(hw_module_t* module, char const* name)
{
int err;
hw_device_t* device;
err = module->methods->open(module, name, &device);
if (err == 0) {
return (light_device_t*)device;
} else {
return nullptr;
}
}
void
InitLights()
{
// assume that if backlight is nullptr, nothing has been set yet
// if this is not true, the initialization will occur everytime a light is read or set!
if (!sLights[hal::eHalLightID_Backlight]) {
int err;
hw_module_t* module;
err = hw_get_module(LIGHTS_HARDWARE_MODULE_ID, (hw_module_t const**)&module);
if (err == 0) {
sLights[hal::eHalLightID_Backlight]
= GetDevice(module, LIGHT_ID_BACKLIGHT);
sLights[hal::eHalLightID_Keyboard]
= GetDevice(module, LIGHT_ID_KEYBOARD);
sLights[hal::eHalLightID_Buttons]
= GetDevice(module, LIGHT_ID_BUTTONS);
sLights[hal::eHalLightID_Battery]
= GetDevice(module, LIGHT_ID_BATTERY);
sLights[hal::eHalLightID_Notifications]
= GetDevice(module, LIGHT_ID_NOTIFICATIONS);
sLights[hal::eHalLightID_Attention]
= GetDevice(module, LIGHT_ID_ATTENTION);
sLights[hal::eHalLightID_Bluetooth]
= GetDevice(module, LIGHT_ID_BLUETOOTH);
sLights[hal::eHalLightID_Wifi]
= GetDevice(module, LIGHT_ID_WIFI);
}
}
}
/**
* The state last set for the lights until liblights supports
* getting the light state.
*/
static light_state_t sStoredLightState[hal::eHalLightID_Count];
bool
SetLight(hal::LightType light, const hal::LightConfiguration& aConfig)
{
light_state_t state;
InitLights();
if (light < 0 || light >= hal::eHalLightID_Count ||
sLights[light] == nullptr) {
return false;
}
memset(&state, 0, sizeof(light_state_t));
state.color = aConfig.color();
state.flashMode = aConfig.flash();
state.flashOnMS = aConfig.flashOnMS();
state.flashOffMS = aConfig.flashOffMS();
state.brightnessMode = aConfig.mode();
sLights[light]->set_light(sLights[light], &state);
sStoredLightState[light] = state;
return true;
}
bool
GetLight(hal::LightType light, hal::LightConfiguration* aConfig)
{
light_state_t state;
#ifdef HAVEGETLIGHT
InitLights();
#endif
if (light < 0 || light >= hal::eHalLightID_Count ||
sLights[light] == nullptr) {
return false;
}
memset(&state, 0, sizeof(light_state_t));
#ifdef HAVEGETLIGHT
sLights[light]->get_light(sLights[light], &state);
#else
state = sStoredLightState[light];
#endif
aConfig->light() = light;
aConfig->color() = state.color;
aConfig->flash() = hal::FlashMode(state.flashMode);
aConfig->flashOnMS() = state.flashOnMS;
aConfig->flashOffMS() = state.flashOffMS;
aConfig->mode() = hal::LightMode(state.brightnessMode);
return true;
}
void
AdjustSystemClock(int64_t aDeltaMilliseconds)
{
int fd;
struct timespec now;
if (aDeltaMilliseconds == 0) {
return;
}
// Preventing context switch before setting system clock
sched_yield();
clock_gettime(CLOCK_REALTIME, &now);
now.tv_sec += (time_t)(aDeltaMilliseconds / 1000LL);
now.tv_nsec += (long)((aDeltaMilliseconds % 1000LL) * NsecPerMsec);
if (now.tv_nsec >= NsecPerSec) {
now.tv_sec += 1;
now.tv_nsec -= NsecPerSec;
}
if (now.tv_nsec < 0) {
now.tv_nsec += NsecPerSec;
now.tv_sec -= 1;
}
do {
fd = open("/dev/alarm", O_RDWR);
} while (fd == -1 && errno == EINTR);
ScopedClose autoClose(fd);
if (fd < 0) {
HAL_LOG(("Failed to open /dev/alarm: %s", strerror(errno)));
return;
}
if (ioctl(fd, ANDROID_ALARM_SET_RTC, &now) < 0) {
HAL_LOG(("ANDROID_ALARM_SET_RTC failed: %s", strerror(errno)));
}
hal::NotifySystemClockChange(aDeltaMilliseconds);
}
int32_t
GetTimezoneOffset()
{
PRExplodedTime prTime;
PR_ExplodeTime(PR_Now(), PR_LocalTimeParameters, &prTime);
// Daylight saving time (DST) will be taken into account.
int32_t offset = prTime.tm_params.tp_gmt_offset;
offset += prTime.tm_params.tp_dst_offset;
// Returns the timezone offset relative to UTC in minutes.
return -(offset / 60);
}
static int32_t sKernelTimezoneOffset = 0;
static void
UpdateKernelTimezone(int32_t timezoneOffset)
{
if (sKernelTimezoneOffset == timezoneOffset) {
return;
}
// Tell the kernel about the new time zone as well, so that FAT filesystems
// will get local timestamps rather than UTC timestamps.
//
// We assume that /init.rc has a sysclktz entry so that settimeofday has
// already been called once before we call it (there is a side-effect in
// the kernel the very first time settimeofday is called where it does some
// special processing if you only set the timezone).
struct timezone tz;
memset(&tz, 0, sizeof(tz));
tz.tz_minuteswest = timezoneOffset;
settimeofday(nullptr, &tz);
sKernelTimezoneOffset = timezoneOffset;
}
void
SetTimezone(const nsCString& aTimezoneSpec)
{
if (aTimezoneSpec.Equals(GetTimezone())) {
// Even though the timezone hasn't changed, we still need to tell the
// kernel what the current timezone is. The timezone is persisted in
// a property and doesn't change across reboots, but the kernel still
// needs to be updated on every boot.
UpdateKernelTimezone(GetTimezoneOffset());
return;
}
int32_t oldTimezoneOffsetMinutes = GetTimezoneOffset();
property_set("persist.sys.timezone", aTimezoneSpec.get());
// This function is automatically called by the other time conversion
// functions that depend on the timezone. To be safe, we call it manually.
tzset();
int32_t newTimezoneOffsetMinutes = GetTimezoneOffset();
UpdateKernelTimezone(newTimezoneOffsetMinutes);
hal::NotifySystemTimezoneChange(
hal::SystemTimezoneChangeInformation(
oldTimezoneOffsetMinutes, newTimezoneOffsetMinutes));
}
nsCString
GetTimezone()
{
char timezone[32];
property_get("persist.sys.timezone", timezone, "");
return nsCString(timezone);
}
void
EnableSystemClockChangeNotifications()
{
}
void
DisableSystemClockChangeNotifications()
{
}
void
EnableSystemTimezoneChangeNotifications()
{
}
void
DisableSystemTimezoneChangeNotifications()
{
}
// Nothing to do here. Gonk widgetry always listens for screen
// orientation changes.
void
EnableScreenConfigurationNotifications()
{
}
void
DisableScreenConfigurationNotifications()
{
}
void
GetCurrentScreenConfiguration(hal::ScreenConfiguration* aScreenConfiguration)
{
*aScreenConfiguration = nsScreenGonk::GetConfiguration();
}
bool
LockScreenOrientation(const dom::ScreenOrientation& aOrientation)
{
return OrientationObserver::GetInstance()->LockScreenOrientation(aOrientation);
}
void
UnlockScreenOrientation()
{
OrientationObserver::GetInstance()->UnlockScreenOrientation();
}
// This thread will wait for the alarm firing by a blocking IO.
static pthread_t sAlarmFireWatcherThread;
// If |sAlarmData| is non-null, it's owned by the alarm-watcher thread.
struct AlarmData {
public:
AlarmData(int aFd) : mFd(aFd),
mGeneration(sNextGeneration++),
mShuttingDown(false) {}
ScopedClose mFd;
int mGeneration;
bool mShuttingDown;
static int sNextGeneration;
};
int AlarmData::sNextGeneration = 0;
AlarmData* sAlarmData = nullptr;
class AlarmFiredEvent : public nsRunnable {
public:
AlarmFiredEvent(int aGeneration) : mGeneration(aGeneration) {}
NS_IMETHOD Run() {
// Guard against spurious notifications caused by an alarm firing
// concurrently with it being disabled.
if (sAlarmData && !sAlarmData->mShuttingDown &&
mGeneration == sAlarmData->mGeneration) {
hal::NotifyAlarmFired();
}
// The fired alarm event has been delivered to the observer (if needed);
// we can now release a CPU wake lock.
InternalUnlockCpu();
return NS_OK;
}
private:
int mGeneration;
};
// Runs on alarm-watcher thread.
static void
DestroyAlarmData(void* aData)
{
AlarmData* alarmData = static_cast<AlarmData*>(aData);
delete alarmData;
}
// Runs on alarm-watcher thread.
void ShutDownAlarm(int aSigno)
{
if (aSigno == SIGUSR1 && sAlarmData) {
sAlarmData->mShuttingDown = true;
}
return;
}
static void*
WaitForAlarm(void* aData)
{
pthread_cleanup_push(DestroyAlarmData, aData);
AlarmData* alarmData = static_cast<AlarmData*>(aData);
while (!alarmData->mShuttingDown) {
int alarmTypeFlags = 0;
// ALARM_WAIT apparently will block even if an alarm hasn't been
// programmed, although this behavior doesn't seem to be
// documented. We rely on that here to avoid spinning the CPU
// while awaiting an alarm to be programmed.
do {
alarmTypeFlags = ioctl(alarmData->mFd, ANDROID_ALARM_WAIT);
} while (alarmTypeFlags < 0 && errno == EINTR &&
!alarmData->mShuttingDown);
if (!alarmData->mShuttingDown && alarmTypeFlags >= 0 &&
(alarmTypeFlags & ANDROID_ALARM_RTC_WAKEUP_MASK)) {
// To make sure the observer can get the alarm firing notification
// *on time* (the system won't sleep during the process in any way),
// we need to acquire a CPU wake lock before firing the alarm event.
InternalLockCpu();
nsRefPtr<AlarmFiredEvent> event =
new AlarmFiredEvent(alarmData->mGeneration);
NS_DispatchToMainThread(event);
}
}
pthread_cleanup_pop(1);
return nullptr;
}
bool
EnableAlarm()
{
MOZ_ASSERT(!sAlarmData);
int alarmFd = open("/dev/alarm", O_RDWR);
if (alarmFd < 0) {
HAL_LOG(("Failed to open alarm device: %s.", strerror(errno)));
return false;
}
nsAutoPtr<AlarmData> alarmData(new AlarmData(alarmFd));
struct sigaction actions;
memset(&actions, 0, sizeof(actions));
sigemptyset(&actions.sa_mask);
actions.sa_flags = 0;
actions.sa_handler = ShutDownAlarm;
if (sigaction(SIGUSR1, &actions, nullptr)) {
HAL_LOG(("Failed to set SIGUSR1 signal for alarm-watcher thread."));
return false;
}
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
// Initialize the monitor for internally locking CPU to ensure thread-safe
// before running the alarm-watcher thread.
sInternalLockCpuMonitor = new Monitor("sInternalLockCpuMonitor");
int status = pthread_create(&sAlarmFireWatcherThread, &attr, WaitForAlarm,
alarmData.get());
if (status) {
alarmData = nullptr;
delete sInternalLockCpuMonitor;
HAL_LOG(("Failed to create alarm-watcher thread. Status: %d.", status));
return false;
}
pthread_attr_destroy(&attr);
// The thread owns this now. We only hold a pointer.
sAlarmData = alarmData.forget();
return true;
}
void
DisableAlarm()
{
MOZ_ASSERT(sAlarmData);
// NB: this must happen-before the thread cancellation.
sAlarmData = nullptr;
// The cancel will interrupt the thread and destroy it, freeing the
// data pointed at by sAlarmData.
DebugOnly<int> err = pthread_kill(sAlarmFireWatcherThread, SIGUSR1);
MOZ_ASSERT(!err);
delete sInternalLockCpuMonitor;
}
bool
SetAlarm(int32_t aSeconds, int32_t aNanoseconds)
{
if (!sAlarmData) {
HAL_LOG(("We should have enabled the alarm."));
return false;
}
struct timespec ts;
ts.tv_sec = aSeconds;
ts.tv_nsec = aNanoseconds;
// Currently we only support RTC wakeup alarm type.
const int result = ioctl(sAlarmData->mFd,
ANDROID_ALARM_SET(ANDROID_ALARM_RTC_WAKEUP), &ts);
if (result < 0) {
HAL_LOG(("Unable to set alarm: %s.", strerror(errno)));
return false;
}
return true;
}
static int
OomAdjOfOomScoreAdj(int aOomScoreAdj)
{
// Convert OOM adjustment from the domain of /proc/<pid>/oom_score_adj
// to the domain of /proc/<pid>/oom_adj.
int adj;
if (aOomScoreAdj < 0) {
adj = (OOM_DISABLE * aOomScoreAdj) / OOM_SCORE_ADJ_MIN;
} else {
adj = (OOM_ADJUST_MAX * aOomScoreAdj) / OOM_SCORE_ADJ_MAX;
}
return adj;
}
static void
RoundOomScoreAdjUpWithBackroundLRU(int& aOomScoreAdj, uint32_t aBackgroundLRU)
{
// We want to add minimum value to round OomScoreAdj up according to
// the steps by aBackgroundLRU.
aOomScoreAdj +=
ceil(((float)OOM_SCORE_ADJ_MAX / OOM_ADJUST_MAX) * aBackgroundLRU);
}
#define OOM_LOG(level, args...) __android_log_print(level, "OomLogger", ##args)
class OomVictimLogger MOZ_FINAL
: public nsIObserver
{
public:
OomVictimLogger()
: mLastLineChecked(-1.0),
mRegexes(nullptr)
{
// Enable timestamps in kernel's printk
WriteToFile("/sys/module/printk/parameters/time", "Y");
}
NS_DECL_ISUPPORTS
NS_DECL_NSIOBSERVER
private:
double mLastLineChecked;
ScopedFreePtr<regex_t> mRegexes;
};
NS_IMPL_ISUPPORTS(OomVictimLogger, nsIObserver);
NS_IMETHODIMP
OomVictimLogger::Observe(
nsISupports* aSubject,
const char* aTopic,
const char16_t* aData)
{
nsDependentCString event_type(aTopic);
if (!event_type.EqualsLiteral("ipc:content-shutdown")) {
return NS_OK;
}
// OOM message finding regexes
const char* const regexes_raw[] = {
".*select.*to kill.*",
".*send sigkill to.*",
".*lowmem_shrink.*, return",
".*lowmem_shrink.*, ofree.*"};
const size_t regex_count = ArrayLength(regexes_raw);
// Compile our regex just in time
if (!mRegexes) {
mRegexes = static_cast<regex_t*>(malloc(sizeof(regex_t) * regex_count));
for (size_t i = 0; i < regex_count; i++) {
int compilation_err = regcomp(&(mRegexes[i]), regexes_raw[i], REG_NOSUB);
if (compilation_err) {
OOM_LOG(ANDROID_LOG_ERROR, "Cannot compile regex \"%s\"\n", regexes_raw[i]);
return NS_OK;
}
}
}
#ifndef KLOG_SIZE_BUFFER
// Upstream bionic in commit
// e249b059637b49a285ed9f58a2a18bfd054e5d95
// deprecated the old klog defs.
// Our current bionic does not hit this
// change yet so handle the future change.
#define KLOG_SIZE_BUFFER KLOG_WRITE
#else
// Once the change hits our bionic this ifndef
// can be removed.
#warning "Please remove KLOG_UNREAD_SIZE compatability def"
#endif
// Retreive kernel log
int msg_buf_size = klogctl(KLOG_SIZE_BUFFER, NULL, 0);
ScopedFreePtr<char> msg_buf(static_cast<char *>(malloc(msg_buf_size + 1)));
int read_size = klogctl(KLOG_READ_ALL, msg_buf.rwget(), msg_buf_size);
// Turn buffer into cstring
read_size = read_size > msg_buf_size ? msg_buf_size : read_size;
msg_buf.rwget()[read_size] = '\0';
// Foreach line
char* line_end;
char* line_begin = msg_buf.rwget();
for (; (line_end = strchr(line_begin, '\n')); line_begin = line_end + 1) {
// make line into cstring
*line_end = '\0';
// Note: Kernel messages look like:
// <5>[63648.286409] sd 35:0:0:0: Attached scsi generic sg1 type 0
// 5 is the loging level
// [*] is the time timestamp, seconds since boot
// last comes the logged message
// Since the logging level can be a string we must
// skip it since scanf lacks wildcard matching
char* timestamp_begin = strchr(line_begin, '[');
char after_float;
double lineTimestamp = -1;
bool lineTimestampFound = false;
if (timestamp_begin &&
// Note: scanf treats a ' ' as [ ]*
// Note: scanf treats [ %lf] as [ %lf thus we must check
// for the closing bracket outselves.
2 == sscanf(timestamp_begin, "[ %lf%c", &lineTimestamp, &after_float) &&
after_float == ']') {
if (lineTimestamp <= mLastLineChecked) {
continue;
}
lineTimestampFound = true;
mLastLineChecked = lineTimestamp;
}
// Log interesting lines
for (size_t i = 0; i < regex_count; i++) {
int matching = !regexec(&(mRegexes[i]), line_begin, 0, NULL, 0);
if (matching) {
// Log content of kernel message. We try to skip the ], but if for
// some reason (most likely due to buffer overflow/wraparound), we
// can't find the ] then we just log the entire line.
char* endOfTimestamp = strchr(line_begin, ']');
if (endOfTimestamp && endOfTimestamp[1] == ' ') {
// skip the ] and the space that follows it
line_begin = endOfTimestamp + 2;
}
if (!lineTimestampFound) {
OOM_LOG(ANDROID_LOG_WARN, "following kill message may be a duplicate");
}
OOM_LOG(ANDROID_LOG_ERROR, "[Kill]: %s\n", line_begin);
break;
}
}
}
return NS_OK;
}
static void
EnsureKernelLowMemKillerParamsSet()
{
static bool kernelLowMemKillerParamsSet;
if (kernelLowMemKillerParamsSet) {
return;
}
kernelLowMemKillerParamsSet = true;
HAL_LOG(("Setting kernel's low-mem killer parameters."));
// Set /sys/module/lowmemorykiller/parameters/{adj,minfree,notify_trigger}
// according to our prefs. These files let us tune when the kernel kills
// processes when we're low on memory, and when it notifies us that we're
// running low on available memory.
//
// adj and minfree are both comma-separated lists of integers. If adj="A,B"
// and minfree="X,Y", then the kernel will kill processes with oom_adj
// A or higher once we have fewer than X pages of memory free, and will kill
// processes with oom_adj B or higher once we have fewer than Y pages of
// memory free.
//
// notify_trigger is a single integer. If we set notify_trigger=Z, then
// we'll get notified when there are fewer than Z pages of memory free. (See
// GonkMemoryPressureMonitoring.cpp.)
// Build the adj and minfree strings.
nsAutoCString adjParams;
nsAutoCString minfreeParams;
int32_t lowerBoundOfNextOomScoreAdj = OOM_SCORE_ADJ_MIN - 1;
int32_t lowerBoundOfNextKillUnderKB = 0;
int32_t countOfLowmemorykillerParametersSets = 0;
for (int i = NUM_PROCESS_PRIORITY - 1; i >= 0; i--) {
// The system doesn't function correctly if we're missing these prefs, so
// crash loudly.
ProcessPriority priority = static_cast<ProcessPriority>(i);
int32_t oomScoreAdj;
if (!NS_SUCCEEDED(Preferences::GetInt(
nsPrintfCString("hal.processPriorityManager.gonk.%s.OomScoreAdjust",
ProcessPriorityToString(priority)).get(),
&oomScoreAdj))) {
MOZ_CRASH();
}
int32_t killUnderKB;
if (!NS_SUCCEEDED(Preferences::GetInt(
nsPrintfCString("hal.processPriorityManager.gonk.%s.KillUnderKB",
ProcessPriorityToString(priority)).get(),
&killUnderKB))) {
// ProcessPriority values like PROCESS_PRIORITY_FOREGROUND_KEYBOARD,
// which has only OomScoreAdjust but lacks KillUnderMB value, will not
// create new LMK parameters.
continue;
}
// The LMK in kernel silently malfunctions if we assign the parameters
// in non-increasing order, so we add this assertion here. See bug 887192.
MOZ_ASSERT(oomScoreAdj > lowerBoundOfNextOomScoreAdj);
MOZ_ASSERT(killUnderKB > lowerBoundOfNextKillUnderKB);
// The LMK in kernel only accept 6 sets of LMK parameters. See bug 914728.
MOZ_ASSERT(countOfLowmemorykillerParametersSets < 6);
// adj is in oom_adj units.
adjParams.AppendPrintf("%d,", OomAdjOfOomScoreAdj(oomScoreAdj));
// minfree is in pages.
minfreeParams.AppendPrintf("%d,", killUnderKB * 1024 / PAGE_SIZE);
lowerBoundOfNextOomScoreAdj = oomScoreAdj;
lowerBoundOfNextKillUnderKB = killUnderKB;
countOfLowmemorykillerParametersSets++;
}
// Strip off trailing commas.
adjParams.Cut(adjParams.Length() - 1, 1);
minfreeParams.Cut(minfreeParams.Length() - 1, 1);
if (!adjParams.IsEmpty() && !minfreeParams.IsEmpty()) {
WriteToFile("/sys/module/lowmemorykiller/parameters/adj", adjParams.get());
WriteToFile("/sys/module/lowmemorykiller/parameters/minfree", minfreeParams.get());
}
// Set the low-memory-notification threshold.
int32_t lowMemNotifyThresholdKB;
if (NS_SUCCEEDED(Preferences::GetInt(
"hal.processPriorityManager.gonk.notifyLowMemUnderKB",
&lowMemNotifyThresholdKB))) {
// notify_trigger is in pages.
WriteToFile("/sys/module/lowmemorykiller/parameters/notify_trigger",
nsPrintfCString("%d", lowMemNotifyThresholdKB * 1024 / PAGE_SIZE).get());
}
// Ensure OOM events appear in logcat
nsRefPtr<OomVictimLogger> oomLogger = new OomVictimLogger();
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
os->AddObserver(oomLogger, "ipc:content-shutdown", false);
}
}
static void
SetNiceForPid(int aPid, int aNice)
{
errno = 0;
int origProcPriority = getpriority(PRIO_PROCESS, aPid);
if (errno) {
LOG("Unable to get nice for pid=%d; error %d. SetNiceForPid bailing.",
aPid, errno);
return;
}
int rv = setpriority(PRIO_PROCESS, aPid, aNice);
if (rv) {
LOG("Unable to set nice for pid=%d; error %d. SetNiceForPid bailing.",
aPid, errno);
return;
}
// On Linux, setpriority(aPid) modifies the priority only of the main
// thread of that process. We have to modify the priorities of all of the
// process's threads as well, so iterate over all the threads and increase
// each of their priorites by aNice - origProcPriority (and also ensure that
// none of the tasks has a lower priority than the main thread).
//
// This is horribly racy.
DIR* tasksDir = opendir(nsPrintfCString("/proc/%d/task/", aPid).get());
if (!tasksDir) {
LOG("Unable to open /proc/%d/task. SetNiceForPid bailing.", aPid);
return;
}
// Be careful not to leak tasksDir; after this point, we must call closedir().
while (struct dirent* de = readdir(tasksDir)) {
char* endptr = nullptr;
long tidlong = strtol(de->d_name, &endptr, /* base */ 10);
if (*endptr || tidlong < 0 || tidlong > INT32_MAX || tidlong == aPid) {
// if dp->d_name was not an integer, was negative (?!) or too large, or
// was the same as aPid, we're not interested.
//
// (The |tidlong == aPid| check is very important; without it, we'll
// renice aPid twice, and the second renice will be relative to the
// priority set by the first renice.)
continue;
}
int tid = static_cast<int>(tidlong);
// Do not set the priority of threads running with a real-time policy
// as part of the bulk process adjustment. These threads need to run
// at their specified priority in order to meet timing guarantees.
int schedPolicy = sched_getscheduler(tid);
if (schedPolicy == SCHED_FIFO || schedPolicy == SCHED_RR) {
continue;
}
errno = 0;
// Get and set the task's new priority.
int origtaskpriority = getpriority(PRIO_PROCESS, tid);
if (errno) {
LOG("Unable to get nice for tid=%d (pid=%d); error %d. This isn't "
"necessarily a problem; it could be a benign race condition.",
tid, aPid, errno);
continue;
}
int newtaskpriority =
std::max(origtaskpriority - origProcPriority + aNice, aNice);
// Do not reduce priority of threads already running at priorities greater
// than normal. These threads are likely special service threads that need
// elevated priorities to process audio, display composition, etc.
if (newtaskpriority > origtaskpriority &&
origtaskpriority < ANDROID_PRIORITY_NORMAL) {
continue;
}
rv = setpriority(PRIO_PROCESS, tid, newtaskpriority);
if (rv) {
LOG("Unable to set nice for tid=%d (pid=%d); error %d. This isn't "
"necessarily a problem; it could be a benign race condition.",
tid, aPid, errno);
continue;
}
}
LOG("Changed nice for pid %d from %d to %d.",
aPid, origProcPriority, aNice);
closedir(tasksDir);
}
void
SetProcessPriority(int aPid,
ProcessPriority aPriority,
ProcessCPUPriority aCPUPriority,
uint32_t aBackgroundLRU)
{
HAL_LOG(("SetProcessPriority(pid=%d, priority=%d, cpuPriority=%d, LRU=%u)",
aPid, aPriority, aCPUPriority, aBackgroundLRU));
// If this is the first time SetProcessPriority was called, set the kernel's
// OOM parameters according to our prefs.
//
// We could/should do this on startup instead of waiting for the first
// SetProcessPriorityCall. But in practice, the master process needs to set
// its priority early in the game, so we can reasonably rely on
// SetProcessPriority being called early in startup.
EnsureKernelLowMemKillerParamsSet();
int32_t oomScoreAdj = 0;
nsresult rv = Preferences::GetInt(nsPrintfCString(
"hal.processPriorityManager.gonk.%s.OomScoreAdjust",
ProcessPriorityToString(aPriority)).get(), &oomScoreAdj);
RoundOomScoreAdjUpWithBackroundLRU(oomScoreAdj, aBackgroundLRU);
if (NS_SUCCEEDED(rv)) {
int clampedOomScoreAdj = clamped<int>(oomScoreAdj, OOM_SCORE_ADJ_MIN,
OOM_SCORE_ADJ_MAX);
if(clampedOomScoreAdj != oomScoreAdj) {
HAL_LOG(("Clamping OOM adjustment for pid %d to %d",
aPid, clampedOomScoreAdj));
} else {
HAL_LOG(("Setting OOM adjustment for pid %d to %d",
aPid, clampedOomScoreAdj));
}
// We try the newer interface first, and fall back to the older interface
// on failure.
if (!WriteToFile(nsPrintfCString("/proc/%d/oom_score_adj", aPid).get(),
nsPrintfCString("%d", clampedOomScoreAdj).get()))
{
int oomAdj = OomAdjOfOomScoreAdj(clampedOomScoreAdj);
WriteToFile(nsPrintfCString("/proc/%d/oom_adj", aPid).get(),
nsPrintfCString("%d", oomAdj).get());
}
} else {
LOG("Unable to read oom_score_adj pref for priority %s; "
"are the prefs messed up?",
ProcessPriorityToString(aPriority));
MOZ_ASSERT(false);
}
int32_t nice = 0;
if (aCPUPriority == PROCESS_CPU_PRIORITY_NORMAL) {
rv = Preferences::GetInt(
nsPrintfCString("hal.processPriorityManager.gonk.%s.Nice",
ProcessPriorityToString(aPriority)).get(),
&nice);
} else if (aCPUPriority == PROCESS_CPU_PRIORITY_LOW) {
rv = Preferences::GetInt("hal.processPriorityManager.gonk.LowCPUNice",
&nice);
} else {
LOG("Unable to read niceness pref for priority %s; "
"are the prefs messed up?",
ProcessPriorityToString(aPriority));
MOZ_ASSERT(false);
rv = NS_ERROR_FAILURE;
}
if (NS_SUCCEEDED(rv)) {
LOG("Setting nice for pid %d to %d", aPid, nice);
SetNiceForPid(aPid, nice);
}
}
static bool
IsValidRealTimePriority(int aValue, int aSchedulePolicy)
{
return (aValue >= sched_get_priority_min(aSchedulePolicy)) &&
(aValue <= sched_get_priority_max(aSchedulePolicy));
}
static void
SetThreadNiceValue(pid_t aTid, ThreadPriority aThreadPriority, int aValue)
{
MOZ_ASSERT(aThreadPriority < NUM_THREAD_PRIORITY);
MOZ_ASSERT(aThreadPriority >= 0);
LOG("Setting thread %d to priority level %s; nice level %d",
aTid, ThreadPriorityToString(aThreadPriority), aValue);
int rv = setpriority(PRIO_PROCESS, aTid, aValue);
if (rv) {
LOG("Failed to set thread %d to priority level %s; error %s",
aTid, ThreadPriorityToString(aThreadPriority), strerror(errno));
}
}
static void
SetRealTimeThreadPriority(pid_t aTid,
ThreadPriority aThreadPriority,
int aValue)
{
int policy = SCHED_FIFO;
MOZ_ASSERT(aThreadPriority < NUM_THREAD_PRIORITY);
MOZ_ASSERT(aThreadPriority >= 0);
MOZ_ASSERT(IsValidRealTimePriority(aValue, policy), "Invalid real time priority");
// Setting real time priorities requires using sched_setscheduler
LOG("Setting thread %d to priority level %s; Real Time priority %d, Schedule FIFO",
aTid, ThreadPriorityToString(aThreadPriority), aValue);
sched_param schedParam;
schedParam.sched_priority = aValue;
int rv = sched_setscheduler(aTid, policy, &schedParam);
if (rv) {
LOG("Failed to set thread %d to real time priority level %s; error %s",
aTid, ThreadPriorityToString(aThreadPriority), strerror(errno));
}
}
static void
SetThreadPriority(pid_t aTid, hal::ThreadPriority aThreadPriority)
{
// See bug 999115, we can only read preferences on the main thread otherwise
// we create a race condition in HAL
MOZ_ASSERT(NS_IsMainThread(), "Can only set thread priorities on main thread");
MOZ_ASSERT(aThreadPriority >= 0);
const char* threadPriorityStr;
switch (aThreadPriority) {
case THREAD_PRIORITY_COMPOSITOR:
threadPriorityStr = ThreadPriorityToString(aThreadPriority);
break;
default:
LOG("Unrecognized thread priority %d; Doing nothing", aThreadPriority);
return;
}
int realTimePriority = Preferences::GetInt(
nsPrintfCString("hal.gonk.%s.rt_priority", threadPriorityStr).get());
if (IsValidRealTimePriority(realTimePriority, SCHED_FIFO)) {
SetRealTimeThreadPriority(aTid, aThreadPriority, realTimePriority);
return;
}
int niceValue = Preferences::GetInt(
nsPrintfCString("hal.gonk.%s.nice", threadPriorityStr).get());
SetThreadNiceValue(aTid, aThreadPriority, niceValue);
}
namespace {
/**
* This class sets the priority of threads given the kernel thread's id and a
* value taken from hal::ThreadPriority.
*
* This runnable must always be dispatched to the main thread otherwise it will fail.
* We have to run this from the main thread since preferences can only be read on
* main thread.
*/
class SetThreadPriorityRunnable : public nsRunnable
{
public:
SetThreadPriorityRunnable(pid_t aThreadId, hal::ThreadPriority aThreadPriority)
: mThreadId(aThreadId)
, mThreadPriority(aThreadPriority)
{ }
NS_IMETHOD Run()
{
NS_ASSERTION(NS_IsMainThread(), "Can only set thread priorities on main thread");
hal_impl::SetThreadPriority(mThreadId, mThreadPriority);
return NS_OK;
}
private:
pid_t mThreadId;
hal::ThreadPriority mThreadPriority;
};
} // anonymous namespace
void
SetCurrentThreadPriority(ThreadPriority aThreadPriority)
{
switch (aThreadPriority) {
case THREAD_PRIORITY_COMPOSITOR: {
pid_t threadId = gettid();
nsCOMPtr<nsIRunnable> runnable =
new SetThreadPriorityRunnable(threadId, aThreadPriority);
NS_DispatchToMainThread(runnable);
break;
}
default:
LOG("Unrecognized thread priority %d; Doing nothing", aThreadPriority);
return;
}
}
void
FactoryReset()
{
nsCOMPtr<nsIRecoveryService> recoveryService =
do_GetService("@mozilla.org/recovery-service;1");
if (!recoveryService) {
NS_WARNING("Could not get recovery service!");
return;
}
recoveryService->FactoryReset();
}
} // hal_impl
} // mozilla