gecko/layout/generic/nsTextRunTransformations.cpp

934 lines
32 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2012-05-21 04:12:37 -07:00
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTextRunTransformations.h"
#include "mozilla/MemoryReporting.h"
2012-03-30 23:08:46 -07:00
#include "nsGkAtoms.h"
#include "nsStyleConsts.h"
#include "nsStyleContext.h"
#include "nsUnicodeProperties.h"
#include "nsSpecialCasingData.h"
#include "mozilla/gfx/2D.h"
#include "nsTextFrameUtils.h"
#include "nsIPersistentProperties2.h"
#include "nsNetUtil.h"
// Unicode characters needing special casing treatment in tr/az languages
#define LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE 0x0130
#define LATIN_SMALL_LETTER_DOTLESS_I 0x0131
// Greek sigma needs custom handling for the lowercase transform; for details
// see comments under "case NS_STYLE_TEXT_TRANSFORM_LOWERCASE" within
// nsCaseTransformTextRunFactory::RebuildTextRun(), and bug 740120.
#define GREEK_CAPITAL_LETTER_SIGMA 0x03A3
#define GREEK_SMALL_LETTER_FINAL_SIGMA 0x03C2
#define GREEK_SMALL_LETTER_SIGMA 0x03C3
// Custom uppercase mapping for Greek; see bug 307039 for details
#define GREEK_LOWER_ALPHA 0x03B1
#define GREEK_LOWER_ALPHA_TONOS 0x03AC
#define GREEK_LOWER_ALPHA_OXIA 0x1F71
#define GREEK_LOWER_EPSILON 0x03B5
#define GREEK_LOWER_EPSILON_TONOS 0x03AD
#define GREEK_LOWER_EPSILON_OXIA 0x1F73
#define GREEK_LOWER_ETA 0x03B7
#define GREEK_LOWER_ETA_TONOS 0x03AE
#define GREEK_LOWER_ETA_OXIA 0x1F75
#define GREEK_LOWER_IOTA 0x03B9
#define GREEK_LOWER_IOTA_TONOS 0x03AF
#define GREEK_LOWER_IOTA_OXIA 0x1F77
#define GREEK_LOWER_IOTA_DIALYTIKA 0x03CA
#define GREEK_LOWER_IOTA_DIALYTIKA_TONOS 0x0390
#define GREEK_LOWER_IOTA_DIALYTIKA_OXIA 0x1FD3
#define GREEK_LOWER_OMICRON 0x03BF
#define GREEK_LOWER_OMICRON_TONOS 0x03CC
#define GREEK_LOWER_OMICRON_OXIA 0x1F79
#define GREEK_LOWER_UPSILON 0x03C5
#define GREEK_LOWER_UPSILON_TONOS 0x03CD
#define GREEK_LOWER_UPSILON_OXIA 0x1F7B
#define GREEK_LOWER_UPSILON_DIALYTIKA 0x03CB
#define GREEK_LOWER_UPSILON_DIALYTIKA_TONOS 0x03B0
#define GREEK_LOWER_UPSILON_DIALYTIKA_OXIA 0x1FE3
#define GREEK_LOWER_OMEGA 0x03C9
#define GREEK_LOWER_OMEGA_TONOS 0x03CE
#define GREEK_LOWER_OMEGA_OXIA 0x1F7D
#define GREEK_UPPER_ALPHA 0x0391
#define GREEK_UPPER_EPSILON 0x0395
#define GREEK_UPPER_ETA 0x0397
#define GREEK_UPPER_IOTA 0x0399
#define GREEK_UPPER_IOTA_DIALYTIKA 0x03AA
#define GREEK_UPPER_OMICRON 0x039F
#define GREEK_UPPER_UPSILON 0x03A5
#define GREEK_UPPER_UPSILON_DIALYTIKA 0x03AB
#define GREEK_UPPER_OMEGA 0x03A9
#define GREEK_UPPER_ALPHA_TONOS 0x0386
#define GREEK_UPPER_ALPHA_OXIA 0x1FBB
#define GREEK_UPPER_EPSILON_TONOS 0x0388
#define GREEK_UPPER_EPSILON_OXIA 0x1FC9
#define GREEK_UPPER_ETA_TONOS 0x0389
#define GREEK_UPPER_ETA_OXIA 0x1FCB
#define GREEK_UPPER_IOTA_TONOS 0x038A
#define GREEK_UPPER_IOTA_OXIA 0x1FDB
#define GREEK_UPPER_OMICRON_TONOS 0x038C
#define GREEK_UPPER_OMICRON_OXIA 0x1FF9
#define GREEK_UPPER_UPSILON_TONOS 0x038E
#define GREEK_UPPER_UPSILON_OXIA 0x1FEB
#define GREEK_UPPER_OMEGA_TONOS 0x038F
#define GREEK_UPPER_OMEGA_OXIA 0x1FFB
#define COMBINING_ACUTE_ACCENT 0x0301
#define COMBINING_DIAERESIS 0x0308
#define COMBINING_ACUTE_TONE_MARK 0x0341
#define COMBINING_GREEK_DIALYTIKA_TONOS 0x0344
// When doing an Uppercase transform in Greek, we need to keep track of the
// current state while iterating through the string, to recognize and process
// diphthongs correctly. For clarity, we define a state for each vowel and
// each vowel with accent, although a few of these do not actually need any
// special treatment and could be folded into kStart.
enum GreekCasingState {
kStart,
kAlpha,
kEpsilon,
kEta,
kIota,
kOmicron,
kUpsilon,
kOmega,
kAlphaAcc,
kEpsilonAcc,
kEtaAcc,
kIotaAcc,
kOmicronAcc,
kUpsilonAcc,
kOmegaAcc,
kOmicronUpsilon,
kDiaeresis
};
static uint32_t
GreekUpperCase(uint32_t aCh, GreekCasingState* aState)
{
switch (aCh) {
case GREEK_UPPER_ALPHA:
case GREEK_LOWER_ALPHA:
*aState = kAlpha;
return GREEK_UPPER_ALPHA;
case GREEK_UPPER_EPSILON:
case GREEK_LOWER_EPSILON:
*aState = kEpsilon;
return GREEK_UPPER_EPSILON;
case GREEK_UPPER_ETA:
case GREEK_LOWER_ETA:
*aState = kEta;
return GREEK_UPPER_ETA;
case GREEK_UPPER_IOTA:
*aState = kIota;
return GREEK_UPPER_IOTA;
case GREEK_UPPER_OMICRON:
case GREEK_LOWER_OMICRON:
*aState = kOmicron;
return GREEK_UPPER_OMICRON;
case GREEK_UPPER_UPSILON:
switch (*aState) {
case kOmicron:
*aState = kOmicronUpsilon;
break;
default:
*aState = kUpsilon;
break;
}
return GREEK_UPPER_UPSILON;
case GREEK_UPPER_OMEGA:
case GREEK_LOWER_OMEGA:
*aState = kOmega;
return GREEK_UPPER_OMEGA;
// iota and upsilon may be the second vowel of a diphthong
case GREEK_LOWER_IOTA:
switch (*aState) {
case kAlphaAcc:
case kEpsilonAcc:
case kOmicronAcc:
case kUpsilonAcc:
*aState = kStart;
return GREEK_UPPER_IOTA_DIALYTIKA;
default:
break;
}
*aState = kIota;
return GREEK_UPPER_IOTA;
case GREEK_LOWER_UPSILON:
switch (*aState) {
case kAlphaAcc:
case kEpsilonAcc:
case kEtaAcc:
case kOmicronAcc:
*aState = kStart;
return GREEK_UPPER_UPSILON_DIALYTIKA;
case kOmicron:
*aState = kOmicronUpsilon;
break;
default:
*aState = kUpsilon;
break;
}
return GREEK_UPPER_UPSILON;
case GREEK_UPPER_IOTA_DIALYTIKA:
case GREEK_LOWER_IOTA_DIALYTIKA:
case GREEK_UPPER_UPSILON_DIALYTIKA:
case GREEK_LOWER_UPSILON_DIALYTIKA:
case COMBINING_DIAERESIS:
*aState = kDiaeresis;
return ToUpperCase(aCh);
// remove accent if it follows a vowel or diaeresis,
// and set appropriate state for diphthong detection
case COMBINING_ACUTE_ACCENT:
case COMBINING_ACUTE_TONE_MARK:
switch (*aState) {
case kAlpha:
*aState = kAlphaAcc;
return uint32_t(-1); // omit this char from result string
case kEpsilon:
*aState = kEpsilonAcc;
return uint32_t(-1);
case kEta:
*aState = kEtaAcc;
return uint32_t(-1);
case kIota:
*aState = kIotaAcc;
return uint32_t(-1);
case kOmicron:
*aState = kOmicronAcc;
return uint32_t(-1);
case kUpsilon:
*aState = kUpsilonAcc;
return uint32_t(-1);
case kOmicronUpsilon:
*aState = kStart; // this completed a diphthong
return uint32_t(-1);
case kOmega:
*aState = kOmegaAcc;
return uint32_t(-1);
case kDiaeresis:
*aState = kStart;
return uint32_t(-1);
default:
break;
}
break;
// combinations with dieresis+accent just strip the accent,
// and reset to start state (don't form diphthong with following vowel)
case GREEK_LOWER_IOTA_DIALYTIKA_TONOS:
case GREEK_LOWER_IOTA_DIALYTIKA_OXIA:
*aState = kStart;
return GREEK_UPPER_IOTA_DIALYTIKA;
case GREEK_LOWER_UPSILON_DIALYTIKA_TONOS:
case GREEK_LOWER_UPSILON_DIALYTIKA_OXIA:
*aState = kStart;
return GREEK_UPPER_UPSILON_DIALYTIKA;
case COMBINING_GREEK_DIALYTIKA_TONOS:
*aState = kStart;
return COMBINING_DIAERESIS;
// strip accents from vowels, and note the vowel seen so that we can detect
// diphthongs where diaeresis needs to be added
case GREEK_LOWER_ALPHA_TONOS:
case GREEK_LOWER_ALPHA_OXIA:
case GREEK_UPPER_ALPHA_TONOS:
case GREEK_UPPER_ALPHA_OXIA:
*aState = kAlphaAcc;
return GREEK_UPPER_ALPHA;
case GREEK_LOWER_EPSILON_TONOS:
case GREEK_LOWER_EPSILON_OXIA:
case GREEK_UPPER_EPSILON_TONOS:
case GREEK_UPPER_EPSILON_OXIA:
*aState = kEpsilonAcc;
return GREEK_UPPER_EPSILON;
case GREEK_LOWER_ETA_TONOS:
case GREEK_LOWER_ETA_OXIA:
case GREEK_UPPER_ETA_TONOS:
case GREEK_UPPER_ETA_OXIA:
*aState = kEtaAcc;
return GREEK_UPPER_ETA;
case GREEK_LOWER_IOTA_TONOS:
case GREEK_LOWER_IOTA_OXIA:
case GREEK_UPPER_IOTA_TONOS:
case GREEK_UPPER_IOTA_OXIA:
*aState = kIotaAcc;
return GREEK_UPPER_IOTA;
case GREEK_LOWER_OMICRON_TONOS:
case GREEK_LOWER_OMICRON_OXIA:
case GREEK_UPPER_OMICRON_TONOS:
case GREEK_UPPER_OMICRON_OXIA:
*aState = kOmicronAcc;
return GREEK_UPPER_OMICRON;
case GREEK_LOWER_UPSILON_TONOS:
case GREEK_LOWER_UPSILON_OXIA:
case GREEK_UPPER_UPSILON_TONOS:
case GREEK_UPPER_UPSILON_OXIA:
switch (*aState) {
case kOmicron:
*aState = kStart; // this completed a diphthong
break;
default:
*aState = kUpsilonAcc;
break;
}
return GREEK_UPPER_UPSILON;
case GREEK_LOWER_OMEGA_TONOS:
case GREEK_LOWER_OMEGA_OXIA:
case GREEK_UPPER_OMEGA_TONOS:
case GREEK_UPPER_OMEGA_OXIA:
*aState = kOmegaAcc;
return GREEK_UPPER_OMEGA;
}
// all other characters just reset the state, and use standard mappings
*aState = kStart;
return ToUpperCase(aCh);
}
nsTransformedTextRun *
nsTransformedTextRun::Create(const gfxTextRunFactory::Parameters* aParams,
nsTransformingTextRunFactory* aFactory,
gfxFontGroup* aFontGroup,
const char16_t* aString, uint32_t aLength,
const uint32_t aFlags, nsStyleContext** aStyles,
bool aOwnsFactory)
{
NS_ASSERTION(!(aFlags & gfxTextRunFactory::TEXT_IS_8BIT),
"didn't expect text to be marked as 8-bit here");
void *storage = AllocateStorageForTextRun(sizeof(nsTransformedTextRun), aLength);
if (!storage) {
return nullptr;
}
return new (storage) nsTransformedTextRun(aParams, aFactory, aFontGroup,
aString, aLength,
aFlags, aStyles, aOwnsFactory);
}
void
nsTransformedTextRun::SetCapitalization(uint32_t aStart, uint32_t aLength,
bool* aCapitalization,
gfxContext* aRefContext)
{
if (mCapitalize.IsEmpty()) {
if (!mCapitalize.AppendElements(GetLength()))
return;
memset(mCapitalize.Elements(), 0, GetLength()*sizeof(bool));
}
memcpy(mCapitalize.Elements() + aStart, aCapitalization, aLength*sizeof(bool));
mNeedsRebuild = true;
}
bool
nsTransformedTextRun::SetPotentialLineBreaks(uint32_t aStart, uint32_t aLength,
uint8_t* aBreakBefore,
gfxContext* aRefContext)
{
bool changed = gfxTextRun::SetPotentialLineBreaks(aStart, aLength,
aBreakBefore, aRefContext);
if (changed) {
mNeedsRebuild = true;
}
return changed;
}
size_t
nsTransformedTextRun::SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
size_t total = gfxTextRun::SizeOfExcludingThis(aMallocSizeOf);
total += mStyles.SizeOfExcludingThis(aMallocSizeOf);
total += mCapitalize.SizeOfExcludingThis(aMallocSizeOf);
if (mOwnsFactory) {
total += aMallocSizeOf(mFactory);
}
return total;
}
size_t
nsTransformedTextRun::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
nsTransformedTextRun*
nsTransformingTextRunFactory::MakeTextRun(const char16_t* aString, uint32_t aLength,
const gfxTextRunFactory::Parameters* aParams,
gfxFontGroup* aFontGroup, uint32_t aFlags,
nsStyleContext** aStyles, bool aOwnsFactory)
{
return nsTransformedTextRun::Create(aParams, this, aFontGroup,
aString, aLength, aFlags, aStyles, aOwnsFactory);
}
nsTransformedTextRun*
nsTransformingTextRunFactory::MakeTextRun(const uint8_t* aString, uint32_t aLength,
const gfxTextRunFactory::Parameters* aParams,
gfxFontGroup* aFontGroup, uint32_t aFlags,
nsStyleContext** aStyles, bool aOwnsFactory)
{
// We'll only have a Unicode code path to minimize the amount of code needed
// for these rarely used features
NS_ConvertASCIItoUTF16 unicodeString(reinterpret_cast<const char*>(aString), aLength);
return MakeTextRun(unicodeString.get(), aLength, aParams, aFontGroup,
aFlags & ~(gfxFontGroup::TEXT_IS_PERSISTENT | gfxFontGroup::TEXT_IS_8BIT),
aStyles, aOwnsFactory);
}
void
MergeCharactersInTextRun(gfxTextRun* aDest, gfxTextRun* aSrc,
const bool* aCharsToMerge, const bool* aDeletedChars)
{
aDest->ResetGlyphRuns();
gfxTextRun::GlyphRunIterator iter(aSrc, 0, aSrc->GetLength());
uint32_t offset = 0;
nsAutoTArray<gfxTextRun::DetailedGlyph,2> glyphs;
while (iter.NextRun()) {
gfxTextRun::GlyphRun* run = iter.GetGlyphRun();
nsresult rv = aDest->AddGlyphRun(run->mFont, run->mMatchType,
offset, false);
if (NS_FAILED(rv))
return;
bool anyMissing = false;
uint32_t mergeRunStart = iter.GetStringStart();
const gfxTextRun::CompressedGlyph *srcGlyphs = aSrc->GetCharacterGlyphs();
gfxTextRun::CompressedGlyph mergedGlyph = srcGlyphs[mergeRunStart];
uint32_t stringEnd = iter.GetStringEnd();
for (uint32_t k = iter.GetStringStart(); k < stringEnd; ++k) {
const gfxTextRun::CompressedGlyph g = srcGlyphs[k];
if (g.IsSimpleGlyph()) {
if (!anyMissing) {
gfxTextRun::DetailedGlyph details;
details.mGlyphID = g.GetSimpleGlyph();
details.mAdvance = g.GetSimpleAdvance();
details.mXOffset = 0;
details.mYOffset = 0;
glyphs.AppendElement(details);
}
} else {
if (g.IsMissing()) {
anyMissing = true;
glyphs.Clear();
}
if (g.GetGlyphCount() > 0) {
glyphs.AppendElements(aSrc->GetDetailedGlyphs(k), g.GetGlyphCount());
}
}
if (k + 1 < iter.GetStringEnd() && aCharsToMerge[k + 1]) {
// next char is supposed to merge with current, so loop without
// writing current merged glyph to the destination
continue;
}
// If the start of the merge run is actually a character that should
// have been merged with the previous character (this can happen
// if there's a font change in the middle of a case-mapped character,
// that decomposed into a sequence of base+diacritics, for example),
// just discard the entire merge run. See comment at start of this
// function.
NS_WARN_IF_FALSE(!aCharsToMerge[mergeRunStart],
"unable to merge across a glyph run boundary, "
"glyph(s) discarded");
if (!aCharsToMerge[mergeRunStart]) {
if (anyMissing) {
mergedGlyph.SetMissing(glyphs.Length());
} else {
mergedGlyph.SetComplex(mergedGlyph.IsClusterStart(),
mergedGlyph.IsLigatureGroupStart(),
glyphs.Length());
}
aDest->SetGlyphs(offset, mergedGlyph, glyphs.Elements());
++offset;
while (offset < aDest->GetLength() && aDeletedChars[offset]) {
aDest->SetGlyphs(offset++, gfxTextRun::CompressedGlyph(), nullptr);
}
}
glyphs.Clear();
anyMissing = false;
mergeRunStart = k + 1;
if (mergeRunStart < stringEnd) {
mergedGlyph = srcGlyphs[mergeRunStart];
}
}
NS_ASSERTION(glyphs.Length() == 0,
"Leftover glyphs, don't request merging of the last character with its next!");
}
NS_ASSERTION(offset == aDest->GetLength(), "Bad offset calculations");
}
gfxTextRunFactory::Parameters
GetParametersForInner(nsTransformedTextRun* aTextRun, uint32_t* aFlags,
gfxContext* aRefContext)
{
gfxTextRunFactory::Parameters params =
{ aRefContext, nullptr, nullptr,
nullptr, 0, aTextRun->GetAppUnitsPerDevUnit()
};
*aFlags = aTextRun->GetFlags() & ~gfxFontGroup::TEXT_IS_PERSISTENT;
return params;
}
void
nsFontVariantTextRunFactory::RebuildTextRun(nsTransformedTextRun* aTextRun,
gfxContext* aRefContext)
{
gfxFontGroup* fontGroup = aTextRun->GetFontGroup();
gfxFontStyle fontStyle = *fontGroup->GetStyle();
fontStyle.size *= 0.8;
nsRefPtr<gfxFontGroup> smallFont = fontGroup->Copy(&fontStyle);
if (!smallFont)
return;
uint32_t flags;
gfxTextRunFactory::Parameters innerParams =
GetParametersForInner(aTextRun, &flags, aRefContext);
uint32_t length = aTextRun->GetLength();
const char16_t* str = aTextRun->mString.BeginReading();
nsRefPtr<nsStyleContext>* styles = aTextRun->mStyles.Elements();
// Create a textrun so we can check cluster-start properties
nsAutoPtr<gfxTextRun> inner(fontGroup->MakeTextRun(str, length, &innerParams, flags));
if (!inner.get())
return;
nsCaseTransformTextRunFactory uppercaseFactory(nullptr, true);
aTextRun->ResetGlyphRuns();
uint32_t runStart = 0;
nsAutoTArray<nsStyleContext*,50> styleArray;
nsAutoTArray<uint8_t,50> canBreakBeforeArray;
enum RunCaseState {
kUpperOrCaseless, // will be untouched by font-variant:small-caps
kLowercase, // will be uppercased and reduced
kSpecialUpper // specials: don't shrink, but apply uppercase mapping
};
RunCaseState runCase = kUpperOrCaseless;
// Note that this loop runs from 0 to length *inclusive*, so the last
// iteration is in effect beyond the end of the input text, to give a
// chance to finish the last casing run we've found.
// The last iteration, when i==length, must not attempt to look at the
// character position [i] or the style data for styles[i], as this would
// be beyond the valid length of the textrun or its style array.
for (uint32_t i = 0; i <= length; ++i) {
RunCaseState chCase = kUpperOrCaseless;
// Unless we're at the end, figure out what treatment the current
// character will need.
if (i < length) {
nsStyleContext* styleContext = styles[i];
// Characters that aren't the start of a cluster are ignored here. They
// get added to whatever lowercase/non-lowercase run we're in.
if (!inner->IsClusterStart(i)) {
chCase = runCase;
} else {
if (styleContext->StyleFont()->mFont.variant == NS_STYLE_FONT_VARIANT_SMALL_CAPS) {
uint32_t ch = str[i];
if (NS_IS_HIGH_SURROGATE(ch) && i < length - 1 && NS_IS_LOW_SURROGATE(str[i + 1])) {
ch = SURROGATE_TO_UCS4(ch, str[i + 1]);
}
uint32_t ch2 = ToUpperCase(ch);
if (ch != ch2 || mozilla::unicode::SpecialUpper(ch)) {
chCase = kLowercase;
} else if (styleContext->StyleFont()->mLanguage == nsGkAtoms::el) {
// In Greek, check for characters that will be modified by the
// GreekUpperCase mapping - this catches accented capitals where
// the accent is to be removed (bug 307039). These are handled by
// a transformed child run using the full-size font.
GreekCasingState state = kStart; // don't need exact context here
ch2 = GreekUpperCase(ch, &state);
if (ch != ch2) {
chCase = kSpecialUpper;
}
}
} else {
// Don't transform the character! I.e., pretend that it's not lowercase
}
}
}
// At the end of the text, or when the current character needs different
// casing treatment from the current run, finish the run-in-progress
// and prepare to accumulate a new run.
// Note that we do not look at any source data for offset [i] here,
// as that would be invalid in the case where i==length.
if ((i == length || runCase != chCase) && runStart < i) {
nsAutoPtr<nsTransformedTextRun> transformedChild;
nsAutoPtr<gfxTextRun> cachedChild;
gfxTextRun* child;
switch (runCase) {
case kUpperOrCaseless:
cachedChild =
fontGroup->MakeTextRun(str + runStart, i - runStart, &innerParams,
flags);
child = cachedChild.get();
break;
case kLowercase:
transformedChild =
uppercaseFactory.MakeTextRun(str + runStart, i - runStart,
&innerParams, smallFont, flags,
styleArray.Elements(), false);
child = transformedChild;
break;
case kSpecialUpper:
transformedChild =
uppercaseFactory.MakeTextRun(str + runStart, i - runStart,
&innerParams, fontGroup, flags,
styleArray.Elements(), false);
child = transformedChild;
break;
}
if (!child)
return;
// Copy potential linebreaks into child so they're preserved
// (and also child will be shaped appropriately)
NS_ASSERTION(canBreakBeforeArray.Length() == i - runStart,
"lost some break-before values?");
child->SetPotentialLineBreaks(0, canBreakBeforeArray.Length(),
canBreakBeforeArray.Elements(), aRefContext);
if (transformedChild) {
transformedChild->FinishSettingProperties(aRefContext);
}
aTextRun->CopyGlyphDataFrom(child, 0, child->GetLength(), runStart);
runStart = i;
styleArray.Clear();
canBreakBeforeArray.Clear();
}
if (i < length) {
runCase = chCase;
styleArray.AppendElement(styles[i]);
canBreakBeforeArray.AppendElement(aTextRun->CanBreakLineBefore(i));
}
}
}
void
nsCaseTransformTextRunFactory::RebuildTextRun(nsTransformedTextRun* aTextRun,
gfxContext* aRefContext)
{
uint32_t length = aTextRun->GetLength();
const char16_t* str = aTextRun->mString.BeginReading();
nsRefPtr<nsStyleContext>* styles = aTextRun->mStyles.Elements();
nsAutoString convertedString;
nsAutoTArray<bool,50> charsToMergeArray;
nsAutoTArray<bool,50> deletedCharsArray;
nsAutoTArray<nsStyleContext*,50> styleArray;
nsAutoTArray<uint8_t,50> canBreakBeforeArray;
bool mergeNeeded = false;
// Some languages have special casing conventions that differ from the
// default Unicode mappings.
// The enum values here are named for well-known exemplar languages that
// exhibit the behavior in question; multiple lang tags may map to the
// same setting here, if the behavior is shared by other languages.
enum {
eNone, // default non-lang-specific behavior
eTurkish, // preserve dotted/dotless-i distinction in uppercase
eDutch, // treat "ij" digraph as a unit for capitalization
eGreek // strip accent when uppercasing Greek vowels
} languageSpecificCasing = eNone;
const nsIAtom* lang = nullptr;
bool capitalizeDutchIJ = false;
bool prevIsLetter = false;
uint32_t sigmaIndex = uint32_t(-1);
nsIUGenCategory::nsUGenCategory cat;
GreekCasingState greekState = kStart;
uint32_t i;
for (i = 0; i < length; ++i) {
uint32_t ch = str[i];
nsStyleContext* styleContext = styles[i];
uint8_t style = mAllUppercase ? NS_STYLE_TEXT_TRANSFORM_UPPERCASE
: styleContext->StyleText()->mTextTransform;
int extraChars = 0;
const mozilla::unicode::MultiCharMapping *mcm;
if (NS_IS_HIGH_SURROGATE(ch) && i < length - 1 && NS_IS_LOW_SURROGATE(str[i + 1])) {
ch = SURROGATE_TO_UCS4(ch, str[i + 1]);
}
if (lang != styleContext->StyleFont()->mLanguage) {
lang = styleContext->StyleFont()->mLanguage;
2012-03-30 23:08:46 -07:00
if (lang == nsGkAtoms::tr || lang == nsGkAtoms::az ||
lang == nsGkAtoms::ba || lang == nsGkAtoms::crh ||
lang == nsGkAtoms::tt) {
languageSpecificCasing = eTurkish;
2012-03-30 23:08:46 -07:00
} else if (lang == nsGkAtoms::nl) {
languageSpecificCasing = eDutch;
} else if (lang == nsGkAtoms::el) {
languageSpecificCasing = eGreek;
greekState = kStart;
} else {
languageSpecificCasing = eNone;
}
}
switch (style) {
case NS_STYLE_TEXT_TRANSFORM_LOWERCASE:
if (languageSpecificCasing == eTurkish) {
if (ch == 'I') {
ch = LATIN_SMALL_LETTER_DOTLESS_I;
prevIsLetter = true;
sigmaIndex = uint32_t(-1);
break;
}
if (ch == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
ch = 'i';
prevIsLetter = true;
sigmaIndex = uint32_t(-1);
break;
}
}
// Special lowercasing behavior for Greek Sigma: note that this is listed
// as context-sensitive in Unicode's SpecialCasing.txt, but is *not* a
// language-specific mapping; it applies regardless of the language of
// the element.
//
// The lowercase mapping for CAPITAL SIGMA should be to SMALL SIGMA (i.e.
// the non-final form) whenever there is a following letter, or when the
// CAPITAL SIGMA occurs in isolation (neither preceded nor followed by a
// LETTER); and to FINAL SIGMA when it is preceded by another letter but
// not followed by one.
//
// To implement the context-sensitive nature of this mapping, we keep
// track of whether the previous character was a letter. If not, CAPITAL
// SIGMA will map directly to SMALL SIGMA. If the previous character
// was a letter, CAPITAL SIGMA maps to FINAL SIGMA and we record the
// position in the converted string; if we then encounter another letter,
// that FINAL SIGMA is replaced with a standard SMALL SIGMA.
cat = mozilla::unicode::GetGenCategory(ch);
// If sigmaIndex is not -1, it marks where we have provisionally mapped
// a CAPITAL SIGMA to FINAL SIGMA; if we now find another letter, we
// need to change it to SMALL SIGMA.
if (sigmaIndex != uint32_t(-1)) {
if (cat == nsIUGenCategory::kLetter) {
convertedString.SetCharAt(GREEK_SMALL_LETTER_SIGMA, sigmaIndex);
}
}
if (ch == GREEK_CAPITAL_LETTER_SIGMA) {
// If preceding char was a letter, map to FINAL instead of SMALL,
// and note where it occurred by setting sigmaIndex; we'll change it
// to standard SMALL SIGMA later if another letter follows
if (prevIsLetter) {
ch = GREEK_SMALL_LETTER_FINAL_SIGMA;
sigmaIndex = convertedString.Length();
} else {
// CAPITAL SIGMA not preceded by a letter is unconditionally mapped
// to SMALL SIGMA
ch = GREEK_SMALL_LETTER_SIGMA;
sigmaIndex = uint32_t(-1);
}
prevIsLetter = true;
break;
}
// ignore diacritics for the purpose of contextual sigma mapping;
// otherwise, reset prevIsLetter appropriately and clear the
// sigmaIndex marker
if (cat != nsIUGenCategory::kMark) {
prevIsLetter = (cat == nsIUGenCategory::kLetter);
sigmaIndex = uint32_t(-1);
}
mcm = mozilla::unicode::SpecialLower(ch);
if (mcm) {
int j = 0;
while (j < 2 && mcm->mMappedChars[j + 1]) {
convertedString.Append(mcm->mMappedChars[j]);
++extraChars;
++j;
}
ch = mcm->mMappedChars[j];
break;
}
ch = ToLowerCase(ch);
break;
case NS_STYLE_TEXT_TRANSFORM_UPPERCASE:
if (languageSpecificCasing == eTurkish && ch == 'i') {
ch = LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE;
break;
}
if (languageSpecificCasing == eGreek) {
ch = GreekUpperCase(ch, &greekState);
break;
}
mcm = mozilla::unicode::SpecialUpper(ch);
if (mcm) {
int j = 0;
while (j < 2 && mcm->mMappedChars[j + 1]) {
convertedString.Append(mcm->mMappedChars[j]);
++extraChars;
++j;
}
ch = mcm->mMappedChars[j];
break;
}
ch = ToUpperCase(ch);
break;
case NS_STYLE_TEXT_TRANSFORM_CAPITALIZE:
if (capitalizeDutchIJ && ch == 'j') {
ch = 'J';
capitalizeDutchIJ = false;
break;
}
capitalizeDutchIJ = false;
if (i < aTextRun->mCapitalize.Length() && aTextRun->mCapitalize[i]) {
if (languageSpecificCasing == eTurkish && ch == 'i') {
ch = LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE;
break;
}
if (languageSpecificCasing == eDutch && ch == 'i') {
ch = 'I';
capitalizeDutchIJ = true;
break;
}
mcm = mozilla::unicode::SpecialTitle(ch);
if (mcm) {
int j = 0;
while (j < 2 && mcm->mMappedChars[j + 1]) {
convertedString.Append(mcm->mMappedChars[j]);
++extraChars;
++j;
}
ch = mcm->mMappedChars[j];
break;
}
ch = ToTitleCase(ch);
}
break;
case NS_STYLE_TEXT_TRANSFORM_FULLWIDTH:
ch = mozilla::unicode::GetFullWidth(ch);
break;
default:
break;
}
if (ch == uint32_t(-1)) {
deletedCharsArray.AppendElement(true);
mergeNeeded = true;
} else {
deletedCharsArray.AppendElement(false);
charsToMergeArray.AppendElement(false);
styleArray.AppendElement(styleContext);
canBreakBeforeArray.AppendElement(aTextRun->CanBreakLineBefore(i));
if (IS_IN_BMP(ch)) {
convertedString.Append(ch);
} else {
convertedString.Append(H_SURROGATE(ch));
convertedString.Append(L_SURROGATE(ch));
++i;
deletedCharsArray.AppendElement(true); // not exactly deleted, but the
// trailing surrogate is skipped
++extraChars;
}
while (extraChars-- > 0) {
mergeNeeded = true;
charsToMergeArray.AppendElement(true);
styleArray.AppendElement(styleContext);
canBreakBeforeArray.AppendElement(false);
}
}
}
uint32_t flags;
gfxTextRunFactory::Parameters innerParams =
GetParametersForInner(aTextRun, &flags, aRefContext);
gfxFontGroup* fontGroup = aTextRun->GetFontGroup();
nsAutoPtr<nsTransformedTextRun> transformedChild;
nsAutoPtr<gfxTextRun> cachedChild;
gfxTextRun* child;
if (mInnerTransformingTextRunFactory) {
transformedChild = mInnerTransformingTextRunFactory->MakeTextRun(
convertedString.BeginReading(), convertedString.Length(),
&innerParams, fontGroup, flags, styleArray.Elements(), false);
child = transformedChild.get();
} else {
cachedChild = fontGroup->MakeTextRun(
convertedString.BeginReading(), convertedString.Length(),
&innerParams, flags);
child = cachedChild.get();
}
if (!child)
return;
// Copy potential linebreaks into child so they're preserved
// (and also child will be shaped appropriately)
NS_ASSERTION(convertedString.Length() == canBreakBeforeArray.Length(),
"Dropped characters or break-before values somewhere!");
child->SetPotentialLineBreaks(0, canBreakBeforeArray.Length(),
canBreakBeforeArray.Elements(), aRefContext);
if (transformedChild) {
transformedChild->FinishSettingProperties(aRefContext);
}
if (mergeNeeded) {
// Now merge multiple characters into one multi-glyph character as required
// and deal with skipping deleted accent chars
NS_ASSERTION(charsToMergeArray.Length() == child->GetLength(),
"source length mismatch");
NS_ASSERTION(deletedCharsArray.Length() == aTextRun->GetLength(),
"destination length mismatch");
MergeCharactersInTextRun(aTextRun, child, charsToMergeArray.Elements(),
deletedCharsArray.Elements());
} else {
// No merging to do, so just copy; this produces a more optimized textrun.
// We can't steal the data because the child may be cached and stealing
// the data would break the cache.
aTextRun->ResetGlyphRuns();
aTextRun->CopyGlyphDataFrom(child, 0, child->GetLength(), 0);
}
}