gecko/xpcom/base/nsAutoPtr.h

1445 lines
31 KiB
C
Raw Normal View History

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
2012-05-21 04:12:37 -07:00
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsAutoPtr_h___
#define nsAutoPtr_h___
#include "nsCOMPtr.h"
#include "nsCycleCollectionNoteChild.h"
#include "mozilla/MemoryReporting.h"
/*****************************************************************************/
// template <class T> class nsAutoPtrGetterTransfers;
template <class T>
class nsAutoPtr
{
private:
void**
begin_assignment()
{
assign(0);
return reinterpret_cast<void**>(&mRawPtr);
}
void
assign(T* aNewPtr)
{
T* oldPtr = mRawPtr;
if (aNewPtr && aNewPtr == oldPtr) {
NS_RUNTIMEABORT("Logic flaw in the caller");
}
mRawPtr = aNewPtr;
delete oldPtr;
}
// |class Ptr| helps us prevent implicit "copy construction"
// through |operator T*() const| from a |const nsAutoPtr<T>|
// because two implicit conversions in a row aren't allowed.
// It still allows assignment from T* through implicit conversion
// from |T*| to |nsAutoPtr<T>::Ptr|
class Ptr
{
public:
Ptr(T* aPtr)
: mPtr(aPtr)
{
}
operator T*() const
{
return mPtr;
}
private:
T* mPtr;
};
private:
T* mRawPtr;
public:
typedef T element_type;
~nsAutoPtr()
{
delete mRawPtr;
}
// Constructors
nsAutoPtr()
: mRawPtr(0)
// default constructor
{
}
nsAutoPtr(Ptr aRawPtr)
: mRawPtr(aRawPtr)
// construct from a raw pointer (of the right type)
{
}
// This constructor shouldn't exist; we should just use the &&
// constructor.
nsAutoPtr(nsAutoPtr<T>& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
nsAutoPtr(nsAutoPtr<T>&& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
// Assignment operators
nsAutoPtr<T>&
operator=(T* aRhs)
// assign from a raw pointer (of the right type)
{
assign(aRhs);
return *this;
}
nsAutoPtr<T>& operator=(nsAutoPtr<T>& aRhs)
// assign by transferring ownership from another smart pointer.
{
assign(aRhs.forget());
return *this;
}
nsAutoPtr<T>& operator=(nsAutoPtr<T>&& aRhs)
{
assign(aRhs.forget());
return *this;
}
// Other pointer operators
T*
get() const
/*
Prefer the implicit conversion provided automatically by
|operator T*() const|. Use |get()| _only_ to resolve
ambiguity.
*/
{
return mRawPtr;
}
operator T*() const
/*
...makes an |nsAutoPtr| act like its underlying raw pointer
type whenever it is used in a context where a raw pointer
is expected. It is this operator that makes an |nsAutoPtr|
substitutable for a raw pointer.
Prefer the implicit use of this operator to calling |get()|,
except where necessary to resolve ambiguity.
*/
{
return get();
}
T*
forget()
{
T* temp = mRawPtr;
mRawPtr = 0;
return temp;
}
T*
operator->() const
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsAutoPtr with operator->().");
return get();
}
// This operator is needed for gcc <= 4.0.* and for Sun Studio; it
// causes internal compiler errors for some MSVC versions. (It's not
// clear to me whether it should be needed.)
#ifndef _MSC_VER
template <class U, class V>
U&
operator->*(U V::* aMember)
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsAutoPtr with operator->*().");
return get()->*aMember;
}
#endif
nsAutoPtr<T>*
get_address()
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
const nsAutoPtr<T>*
get_address() const
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
public:
T&
operator*() const
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsAutoPtr with operator*().");
return *get();
}
T**
StartAssignment()
{
#ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT
return reinterpret_cast<T**>(begin_assignment());
#else
assign(0);
return reinterpret_cast<T**>(&mRawPtr);
#endif
}
};
template <class T>
inline nsAutoPtr<T>*
address_of(nsAutoPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
inline const nsAutoPtr<T>*
address_of(const nsAutoPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
class nsAutoPtrGetterTransfers
/*
...
This class is designed to be used for anonymous temporary objects in the
argument list of calls that return COM interface pointers, e.g.,
nsAutoPtr<IFoo> fooP;
...->GetTransferedPointer(getter_Transfers(fooP))
DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_Transfers()| instead.
When initialized with a |nsAutoPtr|, as in the example above, it returns
a |void**|, a |T**|, or an |nsISupports**| as needed, that the
outer call (|GetTransferedPointer| in this case) can fill in.
This type should be a nested class inside |nsAutoPtr<T>|.
*/
{
public:
explicit
nsAutoPtrGetterTransfers(nsAutoPtr<T>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr)
{
// nothing else to do
}
operator void**()
{
return reinterpret_cast<void**>(mTargetSmartPtr.StartAssignment());
}
operator T**()
{
return mTargetSmartPtr.StartAssignment();
}
T*&
operator*()
{
return *(mTargetSmartPtr.StartAssignment());
}
private:
nsAutoPtr<T>& mTargetSmartPtr;
};
template <class T>
inline nsAutoPtrGetterTransfers<T>
getter_Transfers(nsAutoPtr<T>& aSmartPtr)
/*
Used around a |nsAutoPtr| when
...makes the class |nsAutoPtrGetterTransfers<T>| invisible.
*/
{
return nsAutoPtrGetterTransfers<T>(aSmartPtr);
}
// Comparing two |nsAutoPtr|s
template <class T, class U>
inline bool
operator==(const nsAutoPtr<T>& aLhs, const nsAutoPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, const nsAutoPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs.get());
}
// Comparing an |nsAutoPtr| to a raw pointer
template <class T, class U>
inline bool
operator==(const nsAutoPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(const U* aLhs, const nsAutoPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(const U* aLhs, const nsAutoPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
// To avoid ambiguities caused by the presence of builtin |operator==|s
// creating a situation where one of the |operator==| defined above
// has a better conversion for one argument and the builtin has a
// better conversion for the other argument, define additional
// |operator==| without the |const| on the raw pointer.
// See bug 65664 for details.
#ifndef NSCAP_DONT_PROVIDE_NONCONST_OPEQ
template <class T, class U>
inline bool
operator==(const nsAutoPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(U* aLhs, const nsAutoPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(U* aLhs, const nsAutoPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
#endif
// Comparing an |nsAutoPtr| to |0|
template <class T>
inline bool
operator==(const nsAutoPtr<T>& aLhs, NSCAP_Zero* aRhs)
// specifically to allow |smartPtr == 0|
{
return static_cast<const void*>(aLhs.get()) == reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator==(NSCAP_Zero* aLhs, const nsAutoPtr<T>& aRhs)
// specifically to allow |0 == smartPtr|
{
return reinterpret_cast<const void*>(aLhs) == static_cast<const void*>(aRhs.get());
}
template <class T>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, NSCAP_Zero* aRhs)
// specifically to allow |smartPtr != 0|
{
return static_cast<const void*>(aLhs.get()) != reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator!=(NSCAP_Zero* aLhs, const nsAutoPtr<T>& aRhs)
// specifically to allow |0 != smartPtr|
{
return reinterpret_cast<const void*>(aLhs) != static_cast<const void*>(aRhs.get());
}
#ifdef HAVE_CPP_TROUBLE_COMPARING_TO_ZERO
// We need to explicitly define comparison operators for `int'
// because the compiler is lame.
template <class T>
inline bool
operator==(const nsAutoPtr<T>& aLhs, int aRhs)
// specifically to allow |smartPtr == 0|
{
return static_cast<const void*>(aLhs.get()) == reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator==(int aLhs, const nsAutoPtr<T>& aRhs)
// specifically to allow |0 == smartPtr|
{
return reinterpret_cast<const void*>(aLhs) == static_cast<const void*>(aRhs.get());
}
#endif // !defined(HAVE_CPP_TROUBLE_COMPARING_TO_ZERO)
/*****************************************************************************/
// template <class T> class nsAutoArrayPtrGetterTransfers;
template <class T>
class nsAutoArrayPtr
{
private:
void**
begin_assignment()
{
assign(0);
return reinterpret_cast<void**>(&mRawPtr);
}
void
assign(T* aNewPtr)
{
T* oldPtr = mRawPtr;
mRawPtr = aNewPtr;
delete [] oldPtr;
}
private:
T* mRawPtr;
public:
typedef T element_type;
~nsAutoArrayPtr()
{
delete [] mRawPtr;
}
// Constructors
nsAutoArrayPtr()
: mRawPtr(0)
// default constructor
{
}
nsAutoArrayPtr(T* aRawPtr)
: mRawPtr(aRawPtr)
// construct from a raw pointer (of the right type)
{
}
nsAutoArrayPtr(nsAutoArrayPtr<T>& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
// Assignment operators
nsAutoArrayPtr<T>&
operator=(T* aRhs)
// assign from a raw pointer (of the right type)
{
assign(aRhs);
return *this;
}
nsAutoArrayPtr<T>& operator=(nsAutoArrayPtr<T>& aRhs)
// assign by transferring ownership from another smart pointer.
{
assign(aRhs.forget());
return *this;
}
// Other pointer operators
T*
get() const
/*
Prefer the implicit conversion provided automatically by
|operator T*() const|. Use |get()| _only_ to resolve
ambiguity.
*/
{
return mRawPtr;
}
operator T*() const
/*
...makes an |nsAutoArrayPtr| act like its underlying raw pointer
type whenever it is used in a context where a raw pointer
is expected. It is this operator that makes an |nsAutoArrayPtr|
substitutable for a raw pointer.
Prefer the implicit use of this operator to calling |get()|,
except where necessary to resolve ambiguity.
*/
{
return get();
}
T*
forget()
{
T* temp = mRawPtr;
mRawPtr = 0;
return temp;
}
T*
operator->() const
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsAutoArrayPtr with operator->().");
return get();
}
nsAutoArrayPtr<T>*
get_address()
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
const nsAutoArrayPtr<T>*
get_address() const
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
public:
T&
operator*() const
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsAutoArrayPtr with operator*().");
return *get();
}
T**
StartAssignment()
{
#ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT
return reinterpret_cast<T**>(begin_assignment());
#else
assign(0);
return reinterpret_cast<T**>(&mRawPtr);
#endif
}
size_t
SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(mRawPtr);
}
size_t
SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
};
template <class T>
inline nsAutoArrayPtr<T>*
address_of(nsAutoArrayPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
inline const nsAutoArrayPtr<T>*
address_of(const nsAutoArrayPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
class nsAutoArrayPtrGetterTransfers
/*
...
This class is designed to be used for anonymous temporary objects in the
argument list of calls that return COM interface pointers, e.g.,
nsAutoArrayPtr<IFoo> fooP;
...->GetTransferedPointer(getter_Transfers(fooP))
DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_Transfers()| instead.
When initialized with a |nsAutoArrayPtr|, as in the example above, it returns
a |void**|, a |T**|, or an |nsISupports**| as needed, that the
outer call (|GetTransferedPointer| in this case) can fill in.
This type should be a nested class inside |nsAutoArrayPtr<T>|.
*/
{
public:
explicit
nsAutoArrayPtrGetterTransfers(nsAutoArrayPtr<T>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr)
{
// nothing else to do
}
operator void**()
{
return reinterpret_cast<void**>(mTargetSmartPtr.StartAssignment());
}
operator T**()
{
return mTargetSmartPtr.StartAssignment();
}
T*&
operator*()
{
return *(mTargetSmartPtr.StartAssignment());
}
private:
nsAutoArrayPtr<T>& mTargetSmartPtr;
};
template <class T>
inline nsAutoArrayPtrGetterTransfers<T>
getter_Transfers(nsAutoArrayPtr<T>& aSmartPtr)
/*
Used around a |nsAutoArrayPtr| when
...makes the class |nsAutoArrayPtrGetterTransfers<T>| invisible.
*/
{
return nsAutoArrayPtrGetterTransfers<T>(aSmartPtr);
}
// Comparing two |nsAutoArrayPtr|s
template <class T, class U>
inline bool
operator==(const nsAutoArrayPtr<T>& aLhs, const nsAutoArrayPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoArrayPtr<T>& aLhs, const nsAutoArrayPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs.get());
}
// Comparing an |nsAutoArrayPtr| to a raw pointer
template <class T, class U>
inline bool
operator==(const nsAutoArrayPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(const U* aLhs, const nsAutoArrayPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoArrayPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(const U* aLhs, const nsAutoArrayPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
// To avoid ambiguities caused by the presence of builtin |operator==|s
// creating a situation where one of the |operator==| defined above
// has a better conversion for one argument and the builtin has a
// better conversion for the other argument, define additional
// |operator==| without the |const| on the raw pointer.
// See bug 65664 for details.
#ifndef NSCAP_DONT_PROVIDE_NONCONST_OPEQ
template <class T, class U>
inline bool
operator==(const nsAutoArrayPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(U* aLhs, const nsAutoArrayPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoArrayPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(U* aLhs, const nsAutoArrayPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
#endif
// Comparing an |nsAutoArrayPtr| to |0|
template <class T>
inline bool
operator==(const nsAutoArrayPtr<T>& aLhs, NSCAP_Zero* aRhs)
// specifically to allow |smartPtr == 0|
{
return static_cast<const void*>(aLhs.get()) == reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator==(NSCAP_Zero* aLhs, const nsAutoArrayPtr<T>& aRhs)
// specifically to allow |0 == smartPtr|
{
return reinterpret_cast<const void*>(aLhs) == static_cast<const void*>(aRhs.get());
}
template <class T>
inline bool
operator!=(const nsAutoArrayPtr<T>& aLhs, NSCAP_Zero* aRhs)
// specifically to allow |smartPtr != 0|
{
return static_cast<const void*>(aLhs.get()) != reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator!=(NSCAP_Zero* aLhs, const nsAutoArrayPtr<T>& aRhs)
// specifically to allow |0 != smartPtr|
{
return reinterpret_cast<const void*>(aLhs) != static_cast<const void*>(aRhs.get());
}
#ifdef HAVE_CPP_TROUBLE_COMPARING_TO_ZERO
// We need to explicitly define comparison operators for `int'
// because the compiler is lame.
template <class T>
inline bool
operator==(const nsAutoArrayPtr<T>& aLhs, int aRhs)
// specifically to allow |smartPtr == 0|
{
return static_cast<const void*>(aLhs.get()) == reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator==(int aLhs, const nsAutoArrayPtr<T>& aRhs)
// specifically to allow |0 == smartPtr|
{
return reinterpret_cast<const void*>(aLhs) == static_cast<const void*>(aRhs.get());
}
#endif // !defined(HAVE_CPP_TROUBLE_COMPARING_TO_ZERO)
/*****************************************************************************/
// template <class T> class nsRefPtrGetterAddRefs;
template <class T>
class nsRefPtr
{
private:
void
assign_with_AddRef(T* aRawPtr)
{
if (aRawPtr) {
aRawPtr->AddRef();
}
assign_assuming_AddRef(aRawPtr);
}
void**
begin_assignment()
{
assign_assuming_AddRef(0);
return reinterpret_cast<void**>(&mRawPtr);
}
void
assign_assuming_AddRef(T* aNewPtr)
{
T* oldPtr = mRawPtr;
mRawPtr = aNewPtr;
if (oldPtr) {
oldPtr->Release();
}
}
private:
T* mRawPtr;
public:
typedef T element_type;
~nsRefPtr()
{
if (mRawPtr) {
mRawPtr->Release();
}
}
// Constructors
nsRefPtr()
: mRawPtr(0)
// default constructor
{
}
nsRefPtr(const nsRefPtr<T>& aSmartPtr)
: mRawPtr(aSmartPtr.mRawPtr)
// copy-constructor
{
if (mRawPtr) {
mRawPtr->AddRef();
}
}
nsRefPtr(nsRefPtr<T>&& aRefPtr)
: mRawPtr(aRefPtr.mRawPtr)
{
aRefPtr.mRawPtr = nullptr;
}
// construct from a raw pointer (of the right type)
nsRefPtr(T* aRawPtr)
: mRawPtr(aRawPtr)
{
if (mRawPtr) {
mRawPtr->AddRef();
}
}
template <typename I>
nsRefPtr(already_AddRefed<I>& aSmartPtr)
: mRawPtr(aSmartPtr.take())
// construct from |already_AddRefed|
{
}
template <typename I>
nsRefPtr(already_AddRefed<I>&& aSmartPtr)
: mRawPtr(aSmartPtr.take())
// construct from |otherRefPtr.forget()|
{
}
nsRefPtr(const nsCOMPtr_helper& aHelper)
{
void* newRawPtr;
if (NS_FAILED(aHelper(NS_GET_TEMPLATE_IID(T), &newRawPtr))) {
newRawPtr = 0;
}
mRawPtr = static_cast<T*>(newRawPtr);
}
// Assignment operators
nsRefPtr<T>&
operator=(const nsRefPtr<T>& aRhs)
// copy assignment operator
{
assign_with_AddRef(aRhs.mRawPtr);
return *this;
}
nsRefPtr<T>&
operator=(T* aRhs)
// assign from a raw pointer (of the right type)
{
assign_with_AddRef(aRhs);
return *this;
}
template <typename I>
nsRefPtr<T>&
operator=(already_AddRefed<I>& aRhs)
// assign from |already_AddRefed|
{
assign_assuming_AddRef(aRhs.take());
return *this;
}
template <typename I>
nsRefPtr<T>&
operator=(already_AddRefed<I> && aRhs)
// assign from |otherRefPtr.forget()|
{
assign_assuming_AddRef(aRhs.take());
return *this;
}
nsRefPtr<T>&
operator=(const nsCOMPtr_helper& aHelper)
{
void* newRawPtr;
if (NS_FAILED(aHelper(NS_GET_TEMPLATE_IID(T), &newRawPtr))) {
newRawPtr = 0;
}
assign_assuming_AddRef(static_cast<T*>(newRawPtr));
return *this;
}
nsRefPtr<T>&
operator=(nsRefPtr<T> && aRefPtr)
{
assign_assuming_AddRef(aRefPtr.mRawPtr);
aRefPtr.mRawPtr = nullptr;
return *this;
}
// Other pointer operators
void
swap(nsRefPtr<T>& aRhs)
// ...exchange ownership with |aRhs|; can save a pair of refcount operations
{
T* temp = aRhs.mRawPtr;
aRhs.mRawPtr = mRawPtr;
mRawPtr = temp;
}
void
swap(T*& aRhs)
// ...exchange ownership with |aRhs|; can save a pair of refcount operations
{
T* temp = aRhs;
aRhs = mRawPtr;
mRawPtr = temp;
}
already_AddRefed<T>
forget()
// return the value of mRawPtr and null out mRawPtr. Useful for
// already_AddRefed return values.
{
T* temp = 0;
swap(temp);
return already_AddRefed<T>(temp);
}
template <typename I>
void
forget(I** aRhs)
// Set the target of aRhs to the value of mRawPtr and null out mRawPtr.
// Useful to avoid unnecessary AddRef/Release pairs with "out"
// parameters where aRhs bay be a T** or an I** where I is a base class
// of T.
{
NS_ASSERTION(aRhs, "Null pointer passed to forget!");
*aRhs = mRawPtr;
mRawPtr = 0;
}
T*
get() const
/*
Prefer the implicit conversion provided automatically by |operator T*() const|.
Use |get()| to resolve ambiguity or to get a castable pointer.
*/
{
return const_cast<T*>(mRawPtr);
}
operator T*() const
/*
...makes an |nsRefPtr| act like its underlying raw pointer type whenever it
is used in a context where a raw pointer is expected. It is this operator
that makes an |nsRefPtr| substitutable for a raw pointer.
Prefer the implicit use of this operator to calling |get()|, except where
necessary to resolve ambiguity.
*/
{
return get();
}
T*
operator->() const
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsRefPtr with operator->().");
return get();
}
// This operator is needed for gcc <= 4.0.* and for Sun Studio; it
// causes internal compiler errors for some MSVC versions. (It's not
// clear to me whether it should be needed.)
#ifndef _MSC_VER
template <class U, class V>
U&
operator->*(U V::* aMember)
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsRefPtr with operator->*().");
return get()->*aMember;
}
#endif
nsRefPtr<T>*
get_address()
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
const nsRefPtr<T>*
get_address() const
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
public:
T&
operator*() const
{
NS_PRECONDITION(mRawPtr != 0,
"You can't dereference a NULL nsRefPtr with operator*().");
return *get();
}
T**
StartAssignment()
{
#ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT
return reinterpret_cast<T**>(begin_assignment());
#else
assign_assuming_AddRef(0);
return reinterpret_cast<T**>(&mRawPtr);
#endif
}
};
template <typename T>
inline void
ImplCycleCollectionUnlink(nsRefPtr<T>& aField)
{
aField = nullptr;
}
template <typename T>
inline void
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
nsRefPtr<T>& aField,
const char* aName,
uint32_t aFlags = 0)
{
CycleCollectionNoteChild(aCallback, aField.get(), aName, aFlags);
}
template <class T>
inline nsRefPtr<T>*
address_of(nsRefPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
inline const nsRefPtr<T>*
address_of(const nsRefPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
class nsRefPtrGetterAddRefs
/*
...
This class is designed to be used for anonymous temporary objects in the
argument list of calls that return COM interface pointers, e.g.,
nsRefPtr<IFoo> fooP;
...->GetAddRefedPointer(getter_AddRefs(fooP))
DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_AddRefs()| instead.
When initialized with a |nsRefPtr|, as in the example above, it returns
a |void**|, a |T**|, or an |nsISupports**| as needed, that the
outer call (|GetAddRefedPointer| in this case) can fill in.
This type should be a nested class inside |nsRefPtr<T>|.
*/
{
public:
explicit
nsRefPtrGetterAddRefs(nsRefPtr<T>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr)
{
// nothing else to do
}
operator void**()
{
return reinterpret_cast<void**>(mTargetSmartPtr.StartAssignment());
}
operator T**()
{
return mTargetSmartPtr.StartAssignment();
}
T*&
operator*()
{
return *(mTargetSmartPtr.StartAssignment());
}
private:
nsRefPtr<T>& mTargetSmartPtr;
};
template <class T>
inline nsRefPtrGetterAddRefs<T>
getter_AddRefs(nsRefPtr<T>& aSmartPtr)
/*
Used around a |nsRefPtr| when
...makes the class |nsRefPtrGetterAddRefs<T>| invisible.
*/
{
return nsRefPtrGetterAddRefs<T>(aSmartPtr);
}
// Comparing two |nsRefPtr|s
template <class T, class U>
inline bool
operator==(const nsRefPtr<T>& aLhs, const nsRefPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsRefPtr<T>& aLhs, const nsRefPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs.get());
}
// Comparing an |nsRefPtr| to a raw pointer
template <class T, class U>
inline bool
operator==(const nsRefPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(const U* aLhs, const nsRefPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsRefPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(const U* aLhs, const nsRefPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
// To avoid ambiguities caused by the presence of builtin |operator==|s
// creating a situation where one of the |operator==| defined above
// has a better conversion for one argument and the builtin has a
// better conversion for the other argument, define additional
// |operator==| without the |const| on the raw pointer.
// See bug 65664 for details.
#ifndef NSCAP_DONT_PROVIDE_NONCONST_OPEQ
template <class T, class U>
inline bool
operator==(const nsRefPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(U* aLhs, const nsRefPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsRefPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(U* aLhs, const nsRefPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
#endif
// Comparing an |nsRefPtr| to |0|
template <class T>
inline bool
operator==(const nsRefPtr<T>& aLhs, NSCAP_Zero* aRhs)
// specifically to allow |smartPtr == 0|
{
return static_cast<const void*>(aLhs.get()) == reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator==(NSCAP_Zero* aLhs, const nsRefPtr<T>& aRhs)
// specifically to allow |0 == smartPtr|
{
return reinterpret_cast<const void*>(aLhs) == static_cast<const void*>(aRhs.get());
}
template <class T>
inline bool
operator!=(const nsRefPtr<T>& aLhs, NSCAP_Zero* aRhs)
// specifically to allow |smartPtr != 0|
{
return static_cast<const void*>(aLhs.get()) != reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator!=(NSCAP_Zero* aLhs, const nsRefPtr<T>& aRhs)
// specifically to allow |0 != smartPtr|
{
return reinterpret_cast<const void*>(aLhs) != static_cast<const void*>(aRhs.get());
}
#ifdef HAVE_CPP_TROUBLE_COMPARING_TO_ZERO
// We need to explicitly define comparison operators for `int'
// because the compiler is lame.
template <class T>
inline bool
operator==(const nsRefPtr<T>& aLhs, int aRhs)
// specifically to allow |smartPtr == 0|
{
return static_cast<const void*>(aLhs.get()) == reinterpret_cast<const void*>(aRhs);
}
template <class T>
inline bool
operator==(int aLhs, const nsRefPtr<T>& aRhs)
// specifically to allow |0 == smartPtr|
{
return reinterpret_cast<const void*>(aLhs) == static_cast<const void*>(aRhs.get());
}
#endif // !defined(HAVE_CPP_TROUBLE_COMPARING_TO_ZERO)
template <class SourceType, class DestinationType>
inline nsresult
CallQueryInterface(nsRefPtr<SourceType>& aSourcePtr, DestinationType** aDestPtr)
{
return CallQueryInterface(aSourcePtr.get(), aDestPtr);
}
/*****************************************************************************/
template<class T>
class nsQueryObject : public nsCOMPtr_helper
{
public:
nsQueryObject(T* aRawPtr)
: mRawPtr(aRawPtr)
{
}
virtual nsresult NS_FASTCALL operator()(const nsIID& aIID,
void** aResult) const
{
nsresult status = mRawPtr ? mRawPtr->QueryInterface(aIID, aResult)
: NS_ERROR_NULL_POINTER;
return status;
}
private:
T* mRawPtr;
};
template<class T>
class nsQueryObjectWithError : public nsCOMPtr_helper
{
public:
nsQueryObjectWithError(T* aRawPtr, nsresult* aErrorPtr)
: mRawPtr(aRawPtr), mErrorPtr(aErrorPtr)
{
}
virtual nsresult NS_FASTCALL operator()(const nsIID& aIID,
void** aResult) const
{
nsresult status = mRawPtr ? mRawPtr->QueryInterface(aIID, aResult)
: NS_ERROR_NULL_POINTER;
if (mErrorPtr) {
*mErrorPtr = status;
}
return status;
}
private:
T* mRawPtr;
nsresult* mErrorPtr;
};
template<class T>
inline nsQueryObject<T>
do_QueryObject(T* aRawPtr)
{
return nsQueryObject<T>(aRawPtr);
}
template<class T>
inline nsQueryObject<T>
do_QueryObject(nsCOMPtr<T>& aRawPtr)
{
return nsQueryObject<T>(aRawPtr);
}
template<class T>
inline nsQueryObject<T>
do_QueryObject(nsRefPtr<T>& aRawPtr)
{
return nsQueryObject<T>(aRawPtr);
}
template<class T>
inline nsQueryObjectWithError<T>
do_QueryObject(T* aRawPtr, nsresult* aErrorPtr)
{
return nsQueryObjectWithError<T>(aRawPtr, aErrorPtr);
}
template<class T>
inline nsQueryObjectWithError<T>
do_QueryObject(nsCOMPtr<T>& aRawPtr, nsresult* aErrorPtr)
{
return nsQueryObjectWithError<T>(aRawPtr, aErrorPtr);
}
template<class T>
inline nsQueryObjectWithError<T>
do_QueryObject(nsRefPtr<T>& aRawPtr, nsresult* aErrorPtr)
{
return nsQueryObjectWithError<T>(aRawPtr, aErrorPtr);
}
/*****************************************************************************/
#endif // !defined(nsAutoPtr_h___)