gecko/dom/bindings/BindingUtils.h

2330 lines
68 KiB
C
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* vim: set ts=2 sw=2 et tw=79: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-02 21:35:38 -07:00
#ifndef mozilla_dom_BindingUtils_h__
#define mozilla_dom_BindingUtils_h__
#include <algorithm>
#include "jsfriendapi.h"
#include "jswrapper.h"
#include "mozilla/dom/BindingDeclarations.h"
#include "mozilla/dom/CallbackObject.h"
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-02 21:35:38 -07:00
#include "mozilla/dom/DOMJSClass.h"
#include "mozilla/dom/DOMJSProxyHandler.h"
#include "mozilla/dom/NonRefcountedDOMObject.h"
#include "mozilla/dom/Nullable.h"
#include "mozilla/dom/workers/Workers.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/Likely.h"
#include "nsCycleCollector.h"
#include "nsIXPConnect.h"
#include "nsTraceRefcnt.h"
#include "qsObjectHelper.h"
#include "xpcpublic.h"
#include "nsWrapperCacheInlines.h"
class nsPIDOMWindow;
extern nsresult
xpc_qsUnwrapArgImpl(JSContext* cx, jsval v, const nsIID& iid, void** ppArg,
nsISupports** ppArgRef, jsval* vp);
namespace mozilla {
namespace dom {
struct SelfRef
{
SelfRef() : ptr(nullptr) {}
explicit SelfRef(nsISupports *p) : ptr(p) {}
~SelfRef() { NS_IF_RELEASE(ptr); }
nsISupports* ptr;
};
/** Convert a jsval to an XPCOM pointer. */
template <class Interface, class StrongRefType>
inline nsresult
UnwrapArg(JSContext* cx, jsval v, Interface** ppArg,
StrongRefType** ppArgRef, jsval* vp)
{
nsISupports* argRef = *ppArgRef;
nsresult rv = xpc_qsUnwrapArgImpl(cx, v, NS_GET_TEMPLATE_IID(Interface),
reinterpret_cast<void**>(ppArg), &argRef,
vp);
*ppArgRef = static_cast<StrongRefType*>(argRef);
return rv;
}
bool
ThrowErrorMessage(JSContext* aCx, const ErrNum aErrorNumber, ...);
bool
ThrowInvalidThis(JSContext* aCx, const JS::CallArgs& aArgs,
const ErrNum aErrorNumber,
const char* aInterfaceName);
template<bool mainThread>
inline bool
Throw(JSContext* cx, nsresult rv)
{
using mozilla::dom::workers::exceptions::ThrowDOMExceptionForNSResult;
// XXX Introduce exception machinery.
if (mainThread) {
xpc::Throw(cx, rv);
} else {
if (!JS_IsExceptionPending(cx)) {
ThrowDOMExceptionForNSResult(cx, rv);
}
}
return false;
}
template<bool mainThread>
inline bool
ThrowMethodFailedWithDetails(JSContext* cx, ErrorResult& rv,
const char* ifaceName,
const char* memberName)
{
if (rv.IsTypeError()) {
rv.ReportTypeError(cx);
return false;
}
if (rv.IsJSException()) {
rv.ReportJSException(cx);
return false;
}
if (rv.IsNotEnoughArgsError()) {
rv.ReportNotEnoughArgsError(cx, ifaceName, memberName);
}
return Throw<mainThread>(cx, rv.ErrorCode());
}
// Returns true if the JSClass is used for DOM objects.
inline bool
IsDOMClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMJSCLASS;
}
inline bool
IsDOMClass(const js::Class* clasp)
{
return IsDOMClass(Jsvalify(clasp));
}
// Returns true if the JSClass is used for DOM interface and interface
// prototype objects.
inline bool
IsDOMIfaceAndProtoClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMIFACEANDPROTOJSCLASS;
}
inline bool
IsDOMIfaceAndProtoClass(const js::Class* clasp)
{
return IsDOMIfaceAndProtoClass(Jsvalify(clasp));
}
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
static_assert(DOM_OBJECT_SLOT == js::PROXY_PRIVATE_SLOT,
"js::PROXY_PRIVATE_SLOT doesn't match DOM_OBJECT_SLOT. "
"Expect bad things");
template <class T>
inline T*
UnwrapDOMObject(JSObject* obj)
{
MOZ_ASSERT(IsDOMClass(js::GetObjectClass(obj)) || IsDOMProxy(obj),
"Don't pass non-DOM objects to this function");
JS::Value val = js::GetReservedSlot(obj, DOM_OBJECT_SLOT);
return static_cast<T*>(val.toPrivate());
}
inline const DOMClass*
GetDOMClass(JSObject* obj)
{
js::Class* clasp = js::GetObjectClass(obj);
if (IsDOMClass(clasp)) {
return &DOMJSClass::FromJSClass(clasp)->mClass;
}
if (js::IsProxyClass(clasp)) {
js::BaseProxyHandler* handler = js::GetProxyHandler(obj);
if (handler->family() == ProxyFamily()) {
return &static_cast<DOMProxyHandler*>(handler)->mClass;
}
}
return nullptr;
}
inline nsISupports*
UnwrapDOMObjectToISupports(JSObject* aObject)
{
const DOMClass* clasp = GetDOMClass(aObject);
if (!clasp || !clasp->mDOMObjectIsISupports) {
return nullptr;
}
return UnwrapDOMObject<nsISupports>(aObject);
}
inline bool
IsDOMObject(JSObject* obj)
{
js::Class* clasp = js::GetObjectClass(obj);
return IsDOMClass(clasp) || IsDOMProxy(obj, clasp);
}
// Some callers don't want to set an exception when unwrapping fails
// (for example, overload resolution uses unwrapping to tell what sort
// of thing it's looking at).
// U must be something that a T* can be assigned to (e.g. T* or an nsRefPtr<T>).
template <prototypes::ID PrototypeID, class T, typename U>
MOZ_ALWAYS_INLINE nsresult
UnwrapObject(JSContext* cx, JSObject* obj, U& value)
{
/* First check to see whether we have a DOM object */
const DOMClass* domClass = GetDOMClass(obj);
if (!domClass) {
/* Maybe we have a security wrapper or outer window? */
if (!js::IsWrapper(obj)) {
/* Not a DOM object, not a wrapper, just bail */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
obj = js::CheckedUnwrap(obj, /* stopAtOuter = */ false);
if (!obj) {
return NS_ERROR_XPC_SECURITY_MANAGER_VETO;
}
MOZ_ASSERT(!js::IsWrapper(obj));
domClass = GetDOMClass(obj);
if (!domClass) {
/* We don't have a DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
}
/* This object is a DOM object. Double-check that it is safely
castable to T by checking whether it claims to inherit from the
class identified by protoID. */
if (domClass->mInterfaceChain[PrototypeTraits<PrototypeID>::Depth] ==
PrototypeID) {
value = UnwrapDOMObject<T>(obj);
return NS_OK;
}
/* It's the wrong sort of DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
inline bool
IsNotDateOrRegExp(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_ASSERT(obj);
return !JS_ObjectIsDate(cx, obj) && !JS_ObjectIsRegExp(cx, obj);
}
MOZ_ALWAYS_INLINE bool
IsArrayLike(JSContext* cx, JS::Handle<JSObject*> obj)
{
return IsNotDateOrRegExp(cx, obj);
}
MOZ_ALWAYS_INLINE bool
IsObjectValueConvertibleToDictionary(JSContext* cx,
JS::Handle<JS::Value> objVal)
{
JS::Rooted<JSObject*> obj(cx, &objVal.toObject());
return IsNotDateOrRegExp(cx, obj);
}
MOZ_ALWAYS_INLINE bool
IsConvertibleToDictionary(JSContext* cx, JS::Handle<JS::Value> val)
{
return val.isNullOrUndefined() ||
(val.isObject() && IsObjectValueConvertibleToDictionary(cx, val));
}
MOZ_ALWAYS_INLINE bool
IsConvertibleToCallbackInterface(JSContext* cx, JS::Handle<JSObject*> obj)
{
return IsNotDateOrRegExp(cx, obj);
}
// U must be something that a T* can be assigned to (e.g. T* or an nsRefPtr<T>).
template <class T, typename U>
inline nsresult
UnwrapObject(JSContext* cx, JSObject* obj, U& value)
{
return UnwrapObject<static_cast<prototypes::ID>(
PrototypeIDMap<T>::PrototypeID), T>(cx, obj, value);
}
// The items in the protoAndIfaceArray are indexed by the prototypes::id::ID and
// constructors::id::ID enums, in that order. The end of the prototype objects
// should be the start of the interface objects.
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
static_assert((size_t)constructors::id::_ID_Start ==
(size_t)prototypes::id::_ID_Count,
"Overlapping or discontiguous indexes.");
const size_t kProtoAndIfaceCacheCount = constructors::id::_ID_Count;
inline void
AllocateProtoAndIfaceCache(JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
MOZ_ASSERT(js::GetReservedSlot(obj, DOM_PROTOTYPE_SLOT).isUndefined());
JS::Heap<JSObject*>* protoAndIfaceArray = new JS::Heap<JSObject*>[kProtoAndIfaceCacheCount];
js::SetReservedSlot(obj, DOM_PROTOTYPE_SLOT,
JS::PrivateValue(protoAndIfaceArray));
}
inline void
TraceProtoAndIfaceCache(JSTracer* trc, JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
if (!HasProtoAndIfaceArray(obj))
return;
JS::Heap<JSObject*>* protoAndIfaceArray = GetProtoAndIfaceArray(obj);
for (size_t i = 0; i < kProtoAndIfaceCacheCount; ++i) {
if (protoAndIfaceArray[i]) {
JS_CallHeapObjectTracer(trc, &protoAndIfaceArray[i], "protoAndIfaceArray[i]");
}
}
}
inline void
DestroyProtoAndIfaceCache(JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
JS::Heap<JSObject*>* protoAndIfaceArray = GetProtoAndIfaceArray(obj);
delete [] protoAndIfaceArray;
}
/**
* Add constants to an object.
*/
bool
DefineConstants(JSContext* cx, JS::Handle<JSObject*> obj,
const ConstantSpec* cs);
struct JSNativeHolder
{
JSNative mNative;
const NativePropertyHooks* mPropertyHooks;
};
struct NamedConstructor
{
const char* mName;
const JSNativeHolder mHolder;
unsigned mNargs;
};
/*
* Create a DOM interface object (if constructorClass is non-null) and/or a
* DOM interface prototype object (if protoClass is non-null).
*
* global is used as the parent of the interface object and the interface
* prototype object
* protoProto is the prototype to use for the interface prototype object.
* interfaceProto is the prototype to use for the interface object.
* protoClass is the JSClass to use for the interface prototype object.
* This is null if we should not create an interface prototype
* object.
* protoCache a pointer to a JSObject pointer where we should cache the
* interface prototype object. This must be null if protoClass is and
* vice versa.
* constructorClass is the JSClass to use for the interface object.
* This is null if we should not create an interface object or
* if it should be a function object.
* constructor holds the JSNative to back the interface object which should be a
* Function, unless constructorClass is non-null in which case it is
* ignored. If this is null and constructorClass is also null then
* we should not create an interface object at all.
* ctorNargs is the length of the constructor function; 0 if no constructor
* constructorCache a pointer to a JSObject pointer where we should cache the
* interface object. This must be null if both constructorClass
* and constructor are null, and non-null otherwise.
* domClass is the DOMClass of instance objects for this class. This can be
* null if this is not a concrete proto.
* properties contains the methods, attributes and constants to be defined on
* objects in any compartment.
* chromeProperties contains the methods, attributes and constants to be defined
* on objects in chrome compartments. This must be null if the
* interface doesn't have any ChromeOnly properties or if the
* object is being created in non-chrome compartment.
* defineOnGlobal controls whether properties should be defined on the given
* global for the interface object (if any) and named
* constructors (if any) for this interface. This can be
* false in situations where we want the properties to only
* appear on privileged Xrays but not on the unprivileged
* underlying global.
*
* At least one of protoClass, constructorClass or constructor should be
* non-null. If constructorClass or constructor are non-null, the resulting
* interface object will be defined on the given global with property name
* |name|, which must also be non-null.
*/
void
CreateInterfaceObjects(JSContext* cx, JS::Handle<JSObject*> global,
JS::Handle<JSObject*> protoProto,
JSClass* protoClass, JS::Heap<JSObject*>* protoCache,
JS::Handle<JSObject*> interfaceProto,
JSClass* constructorClass, const JSNativeHolder* constructor,
unsigned ctorNargs, const NamedConstructor* namedConstructors,
JS::Heap<JSObject*>* constructorCache, const DOMClass* domClass,
const NativeProperties* regularProperties,
const NativeProperties* chromeOnlyProperties,
const char* name, bool defineOnGlobal);
/*
* Define the unforgeable attributes on an object.
*/
bool
DefineUnforgeableAttributes(JSContext* cx, JS::Handle<JSObject*> obj,
const Prefable<const JSPropertySpec>* props);
bool
DefineWebIDLBindingPropertiesOnXPCProto(JSContext* cx,
JS::Handle<JSObject*> proto,
const NativeProperties* properties);
#ifdef _MSC_VER
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check(char (*)[(&V::_name == 0) + 1])
#else
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check(char (*)[sizeof(&V::_name) + 1])
#endif
#define HAS_MEMBER(_name) \
template<typename T> \
class Has##_name##Member { \
typedef char yes[1]; \
typedef char no[2]; \
HAS_MEMBER_CHECK(_name); \
template<typename V> static no& Check(...); \
\
public: \
static bool const Value = sizeof(Check<T>(nullptr)) == sizeof(yes); \
};
HAS_MEMBER(WrapObject)
// HasWrapObject<T>::Value will be true if T has a WrapObject member but it's
// not nsWrapperCache::WrapObject.
template<typename T>
struct HasWrapObject
{
private:
typedef char yes[1];
typedef char no[2];
typedef JSObject* (nsWrapperCache::*WrapObject)(JSContext*,
JS::Handle<JSObject*>);
template<typename U, U> struct SFINAE;
template <typename V> static no& Check(SFINAE<WrapObject, &V::WrapObject>*);
template <typename V> static yes& Check(...);
public:
static bool const Value = HasWrapObjectMember<T>::Value &&
sizeof(Check<T>(nullptr)) == sizeof(yes);
};
#ifdef DEBUG
template <class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct
CheckWrapperCacheCast
{
static bool Check()
{
return reinterpret_cast<uintptr_t>(
static_cast<nsWrapperCache*>(
reinterpret_cast<T*>(1))) == 1;
}
};
template <class T>
struct
CheckWrapperCacheCast<T, true>
{
static bool Check()
{
return true;
}
};
#endif
MOZ_ALWAYS_INLINE bool
CouldBeDOMBinding(void*)
{
return true;
}
MOZ_ALWAYS_INLINE bool
CouldBeDOMBinding(nsWrapperCache* aCache)
{
return aCache->IsDOMBinding();
}
// The DOM_OBJECT_SLOT_SOW slot contains a JS::ObjectValue which points to the
// cached system object wrapper (SOW) or JS::UndefinedValue if this class
// doesn't need SOWs.
inline const JS::Value&
GetSystemOnlyWrapperSlot(JSObject* obj)
{
MOZ_ASSERT(IsDOMClass(js::GetObjectJSClass(obj)) &&
!(js::GetObjectJSClass(obj)->flags & JSCLASS_DOM_GLOBAL));
return js::GetReservedSlot(obj, DOM_OBJECT_SLOT_SOW);
}
inline void
SetSystemOnlyWrapperSlot(JSObject* obj, const JS::Value& v)
{
MOZ_ASSERT(IsDOMClass(js::GetObjectJSClass(obj)) &&
!(js::GetObjectJSClass(obj)->flags & JSCLASS_DOM_GLOBAL));
js::SetReservedSlot(obj, DOM_OBJECT_SLOT_SOW, v);
}
inline bool
GetSameCompartmentWrapperForDOMBinding(JSObject*& obj)
{
js::Class* clasp = js::GetObjectClass(obj);
if (dom::IsDOMClass(clasp)) {
if (!(clasp->flags & JSCLASS_DOM_GLOBAL)) {
JS::Value v = GetSystemOnlyWrapperSlot(obj);
if (v.isObject()) {
obj = &v.toObject();
}
}
return true;
}
return IsDOMProxy(obj, clasp);
}
inline void
SetSystemOnlyWrapper(JSObject* obj, nsWrapperCache* cache, JSObject& wrapper)
{
SetSystemOnlyWrapperSlot(obj, JS::ObjectValue(wrapper));
cache->SetHasSystemOnlyWrapper();
}
// Make sure to wrap the given string value into the right compartment, as
// needed.
MOZ_ALWAYS_INLINE
bool
MaybeWrapStringValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isString());
JSString* str = rval.toString();
if (JS::GetGCThingZone(str) != js::GetContextZone(cx)) {
return JS_WrapValue(cx, rval.address());
}
return true;
}
// Make sure to wrap the given object value into the right compartment as
// needed. This will work correctly, but possibly slowly, on all objects.
MOZ_ALWAYS_INLINE
bool
MaybeWrapObjectValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObject());
JSObject* obj = &rval.toObject();
if (js::GetObjectCompartment(obj) != js::GetContextCompartment(cx)) {
return JS_WrapValue(cx, rval.address());
}
// We're same-compartment, but even then we might need to wrap
// objects specially. Check for that.
if (GetSameCompartmentWrapperForDOMBinding(obj)) {
// We're a new-binding object, and "obj" now points to the right thing
rval.set(JS::ObjectValue(*obj));
return true;
}
// It's not a WebIDL object. But it might be an XPConnect one, in which case
// we may need to outerize here, so make sure to call JS_WrapValue.
return JS_WrapValue(cx, rval.address());
}
// Like MaybeWrapObjectValue, but also allows null
MOZ_ALWAYS_INLINE
bool
MaybeWrapObjectOrNullValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObjectOrNull());
if (rval.isNull()) {
return true;
}
return MaybeWrapObjectValue(cx, rval);
}
// Wrapping for objects that are known to not be DOM or XPConnect objects
MOZ_ALWAYS_INLINE
bool
MaybeWrapNonDOMObjectValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObject());
MOZ_ASSERT(!GetDOMClass(&rval.toObject()));
MOZ_ASSERT(!(js::GetObjectClass(&rval.toObject())->flags &
JSCLASS_PRIVATE_IS_NSISUPPORTS));
JSObject* obj = &rval.toObject();
if (js::GetObjectCompartment(obj) == js::GetContextCompartment(cx)) {
return true;
}
return JS_WrapValue(cx, rval.address());
}
// Like MaybeWrapNonDOMObjectValue but allows null
MOZ_ALWAYS_INLINE
bool
MaybeWrapNonDOMObjectOrNullValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObjectOrNull());
if (rval.isNull()) {
return true;
}
return MaybeWrapNonDOMObjectValue(cx, rval);
}
// If rval is a gcthing and is not in the compartment of cx, wrap rval
// into the compartment of cx (typically by replacing it with an Xray or
// cross-compartment wrapper around the original object).
MOZ_ALWAYS_INLINE bool
MaybeWrapValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
if (rval.isString()) {
return MaybeWrapStringValue(cx, rval);
}
if (!rval.isObject()) {
return true;
}
return MaybeWrapObjectValue(cx, rval);
}
static inline void
WrapNewBindingForSameCompartment(JSContext* cx, JSObject* obj, void* value,
JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectValue(*obj));
}
static inline void
WrapNewBindingForSameCompartment(JSContext* cx, JSObject* obj,
nsWrapperCache* value,
JS::MutableHandle<JS::Value> rval)
{
if (value->HasSystemOnlyWrapper()) {
rval.set(GetSystemOnlyWrapperSlot(obj));
MOZ_ASSERT(rval.isObject());
} else {
rval.set(JS::ObjectValue(*obj));
}
}
// Create a JSObject wrapping "value", if there isn't one already, and store it
// in rval. "value" must be a concrete class that implements a
// GetWrapperPreserveColor() which can return its existing wrapper, if any, and
// a WrapObject() which will try to create a wrapper. Typically, this is done by
// having "value" inherit from nsWrapperCache.
template <class T>
MOZ_ALWAYS_INLINE bool
WrapNewBindingObject(JSContext* cx, JS::Handle<JSObject*> scope, T* value,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(value);
JSObject* obj = value->GetWrapperPreserveColor();
bool couldBeDOMBinding = CouldBeDOMBinding(value);
if (obj) {
xpc_UnmarkNonNullGrayObject(obj);
} else {
// Inline this here while we have non-dom objects in wrapper caches.
if (!couldBeDOMBinding) {
return false;
}
obj = value->WrapObject(cx, scope);
if (!obj) {
// At this point, obj is null, so just return false.
// Callers seem to be testing JS_IsExceptionPending(cx) to
// figure out whether WrapObject() threw.
return false;
}
}
#ifdef DEBUG
const DOMClass* clasp = GetDOMClass(obj);
// clasp can be null if the cache contained a non-DOM object from a
// different compartment than scope.
if (clasp) {
// Some sanity asserts about our object. Specifically:
// 1) If our class claims we're nsISupports, we better be nsISupports
// XXXbz ideally, we could assert that reinterpret_cast to nsISupports
// does the right thing, but I don't see a way to do it. :(
// 2) If our class doesn't claim we're nsISupports we better be
// reinterpret_castable to nsWrapperCache.
MOZ_ASSERT(clasp, "What happened here?");
MOZ_ASSERT_IF(clasp->mDOMObjectIsISupports, (IsBaseOf<nsISupports, T>::value));
MOZ_ASSERT(CheckWrapperCacheCast<T>::Check());
}
// When called via XrayWrapper, we end up here while running in the
// chrome compartment. But the obj we have would be created in
// whatever the content compartment is. So at this point we need to
// make sure it's correctly wrapped for the compartment of |scope|.
// cx should already be in the compartment of |scope| here.
MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx));
#endif
bool sameCompartment =
js::GetObjectCompartment(obj) == js::GetContextCompartment(cx);
if (sameCompartment && couldBeDOMBinding) {
WrapNewBindingForSameCompartment(cx, obj, value, rval);
return true;
}
rval.set(JS::ObjectValue(*obj));
return JS_WrapValue(cx, rval.address());
}
// Create a JSObject wrapping "value", for cases when "value" is a
// non-wrapper-cached object using WebIDL bindings. "value" must implement a
// WrapObject() method taking a JSContext and a scope.
template <class T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx,
JS::Handle<JSObject*> scopeArg,
T* value,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(value);
// We try to wrap in the compartment of the underlying object of "scope"
JS::Rooted<JSObject*> obj(cx);
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
// Maybe<Handle> doesn't so much work, and in any case, adding
// more Maybe (one for a Rooted and one for a Handle) adds more
// code (and branches!) than just adding a single rooted.
JS::Rooted<JSObject*> scope(cx, scopeArg);
if (js::IsWrapper(scope)) {
scope = js::CheckedUnwrap(scope, /* stopAtOuter = */ false);
if (!scope)
return false;
ac.construct(cx, scope);
}
obj = value->WrapObject(cx, scope);
}
if (!obj) {
return false;
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
rval.set(JS::ObjectValue(*obj));
return JS_WrapValue(cx, rval.address());
}
// Create a JSObject wrapping "value", for cases when "value" is a
// non-wrapper-cached owned object using WebIDL bindings. "value" must implement a
// WrapObject() method taking a JSContext, a scope, and a boolean outparam that
// is true if the JSObject took ownership
template <class T>
inline bool
WrapNewBindingNonWrapperCachedOwnedObject(JSContext* cx,
JS::Handle<JSObject*> scopeArg,
nsAutoPtr<T>& value,
JS::MutableHandle<JS::Value> rval)
{
// We do a runtime check on value, because otherwise we might in
// fact end up wrapping a null and invoking methods on it later.
if (!value) {
NS_RUNTIMEABORT("Don't try to wrap null objects");
}
// We try to wrap in the compartment of the underlying object of "scope"
JS::Rooted<JSObject*> obj(cx);
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
// Maybe<Handle> doesn't so much work, and in any case, adding
// more Maybe (one for a Rooted and one for a Handle) adds more
// code (and branches!) than just adding a single rooted.
JS::Rooted<JSObject*> scope(cx, scopeArg);
if (js::IsWrapper(scope)) {
scope = js::CheckedUnwrap(scope, /* stopAtOuter = */ false);
if (!scope)
return false;
ac.construct(cx, scope);
}
bool tookOwnership = false;
obj = value->WrapObject(cx, scope, &tookOwnership);
MOZ_ASSERT_IF(obj, tookOwnership);
if (tookOwnership) {
value.forget();
}
}
if (!obj) {
return false;
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
rval.set(JS::ObjectValue(*obj));
return JS_WrapValue(cx, rval.address());
}
// Helper for smart pointers (nsAutoPtr/nsRefPtr/nsCOMPtr).
template <template <typename> class SmartPtr, typename T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx, JS::Handle<JSObject*> scope,
const SmartPtr<T>& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingNonWrapperCachedObject(cx, scope, value.get(), rval);
}
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
NativeInterface2JSObjectAndThrowIfFailed(JSContext* aCx,
JS::Handle<JSObject*> aScope,
JS::Value* aRetval,
xpcObjectHelper& aHelper,
const nsIID* aIID,
bool aAllowNativeWrapper);
/**
* A method to handle new-binding wrap failure, by possibly falling back to
* wrapping as a non-new-binding object.
*/
template <class T>
MOZ_ALWAYS_INLINE bool
HandleNewBindingWrappingFailure(JSContext* cx, JS::Handle<JSObject*> scope,
T* value, JS::MutableHandle<JS::Value> rval)
{
if (JS_IsExceptionPending(cx)) {
return false;
}
qsObjectHelper helper(value, GetWrapperCache(value));
return NativeInterface2JSObjectAndThrowIfFailed(cx, scope, rval.address(),
helper, nullptr, true);
}
// Helper for calling HandleNewBindingWrappingFailure with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
HAS_MEMBER(get)
template <class T, bool isSmartPtr=HasgetMember<T>::Value>
struct HandleNewBindingWrappingFailureHelper
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
const T& value, JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailure(cx, scope, value.get(), rval);
}
};
template <class T>
struct HandleNewBindingWrappingFailureHelper<T, false>
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope, T& value,
JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailure(cx, scope, &value, rval);
}
};
template<class T>
inline bool
HandleNewBindingWrappingFailure(JSContext* cx, JS::Handle<JSObject*> scope,
T& value, JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailureHelper<T>::Wrap(cx, scope, value, rval);
}
template<bool Fatal>
inline bool
EnumValueNotFound(JSContext* cx, const jschar* chars, size_t length,
const char* type, const char* sourceDescription)
{
return false;
}
template<>
inline bool
EnumValueNotFound<false>(JSContext* cx, const jschar* chars, size_t length,
const char* type, const char* sourceDescription)
{
// TODO: Log a warning to the console.
return true;
}
template<>
inline bool
EnumValueNotFound<true>(JSContext* cx, const jschar* chars, size_t length,
const char* type, const char* sourceDescription)
{
NS_LossyConvertUTF16toASCII deflated(static_cast<const PRUnichar*>(chars),
length);
return ThrowErrorMessage(cx, MSG_INVALID_ENUM_VALUE, sourceDescription,
deflated.get(), type);
}
template<bool InvalidValueFatal>
inline int
FindEnumStringIndex(JSContext* cx, JS::Value v, const EnumEntry* values,
const char* type, const char* sourceDescription, bool* ok)
{
// JS_StringEqualsAscii is slow as molasses, so don't use it here.
JSString* str = JS_ValueToString(cx, v);
if (!str) {
*ok = false;
return 0;
}
JS::Anchor<JSString*> anchor(str);
size_t length;
const jschar* chars = JS_GetStringCharsAndLength(cx, str, &length);
if (!chars) {
*ok = false;
return 0;
}
int i = 0;
for (const EnumEntry* value = values; value->value; ++value, ++i) {
if (length != value->length) {
continue;
}
bool equal = true;
const char* val = value->value;
for (size_t j = 0; j != length; ++j) {
if (unsigned(val[j]) != unsigned(chars[j])) {
equal = false;
break;
}
}
if (equal) {
*ok = true;
return i;
}
}
*ok = EnumValueNotFound<InvalidValueFatal>(cx, chars, length, type,
sourceDescription);
return -1;
}
inline nsWrapperCache*
GetWrapperCache(const ParentObject& aParentObject)
{
return aParentObject.mWrapperCache;
}
template<class T>
inline T*
GetParentPointer(T* aObject)
{
return aObject;
}
inline nsISupports*
GetParentPointer(const ParentObject& aObject)
{
return aObject.mObject;
}
template<class T>
inline void
ClearWrapper(T* p, nsWrapperCache* cache)
{
cache->ClearWrapper();
}
template<class T>
inline void
ClearWrapper(T* p, void*)
{
nsWrapperCache* cache;
CallQueryInterface(p, &cache);
ClearWrapper(p, cache);
}
// Attempt to preserve the wrapper, if any, for a Paris DOM bindings object.
// Return true if we successfully preserved the wrapper, or there is no wrapper
// to preserve. In the latter case we don't need to preserve the wrapper, because
// the object can only be obtained by JS once, or they cannot be meaningfully
// owned from the native side.
//
// This operation will return false only for non-nsISupports cycle-collected
// objects, because we cannot determine if they are wrappercached or not.
bool
TryPreserveWrapper(JSObject* obj);
// Can only be called with the immediate prototype of the instance object. Can
// only be called on the prototype of an object known to be a DOM instance.
bool
InstanceClassHasProtoAtDepth(JS::Handle<JSObject*> protoObject, uint32_t protoID,
uint32_t depth);
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
XPCOMObjectToJsval(JSContext* cx, JS::Handle<JSObject*> scope,
xpcObjectHelper& helper, const nsIID* iid,
bool allowNativeWrapper, JS::Value* rval);
// Special-cased wrapping for variants
bool
VariantToJsval(JSContext* aCx, JS::Handle<JSObject*> aScope,
nsIVariant* aVariant, JS::Value* aRetval);
// Wrap an object "p" which is not using WebIDL bindings yet. This _will_
// actually work on WebIDL binding objects that are wrappercached, but will be
// much slower than WrapNewBindingObject. "cache" must either be null or be the
// nsWrapperCache for "p".
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, T* p,
nsWrapperCache* cache, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
if (xpc_FastGetCachedWrapper(cache, scope, rval.address()))
return true;
qsObjectHelper helper(p, cache);
return XPCOMObjectToJsval(cx, scope, helper, iid, true, rval.address());
}
// A specialization of the above for nsIVariant, because that needs to
// do something different.
template<>
inline bool
WrapObject<nsIVariant>(JSContext* cx, JS::Handle<JSObject*> scope, nsIVariant* p,
nsWrapperCache* cache, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(iid);
MOZ_ASSERT(iid->Equals(NS_GET_IID(nsIVariant)));
return VariantToJsval(cx, scope, p, rval.address());
}
// Wrap an object "p" which is not using WebIDL bindings yet. Just like the
// variant that takes an nsWrapperCache above, but will try to auto-derive the
// nsWrapperCache* from "p".
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, T* p, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, scope, p, GetWrapperCache(p), iid, rval);
}
// Just like the WrapObject above, but without requiring you to pick which
// interface you're wrapping as. This should only be used for objects that have
// classinfo, for which it doesn't matter what IID is used to wrap.
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, T* p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, scope, p, NULL, rval);
}
// Helper to make it possible to wrap directly out of an nsCOMPtr
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, const nsCOMPtr<T>& p,
const nsIID* iid, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, scope, p.get(), iid, rval);
}
// Helper to make it possible to wrap directly out of an nsCOMPtr
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, const nsCOMPtr<T>& p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, scope, p, NULL, rval);
}
// Helper to make it possible to wrap directly out of an nsRefPtr
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, const nsRefPtr<T>& p,
const nsIID* iid, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, scope, p.get(), iid, rval);
}
// Helper to make it possible to wrap directly out of an nsRefPtr
template<class T>
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, const nsRefPtr<T>& p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, scope, p, NULL, rval);
}
// Specialization to make it easy to use WrapObject in codegen.
template<>
inline bool
WrapObject<JSObject>(JSContext* cx, JS::Handle<JSObject*> scope, JSObject* p,
JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectOrNullValue(p));
return true;
}
inline bool
WrapObject(JSContext* cx, JS::Handle<JSObject*> scope, JSObject& p,
JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectValue(p));
return true;
}
// Given an object "p" that inherits from nsISupports, wrap it and return the
// result. Null is returned on wrapping failure. This is somewhat similar to
// WrapObject() above, but does NOT allow Xrays around the result, since we
// don't want those for our parent object.
template<typename T>
static inline JSObject*
WrapNativeISupportsParent(JSContext* cx, JS::Handle<JSObject*> scope, T* p,
nsWrapperCache* cache)
{
qsObjectHelper helper(ToSupports(p), cache);
JS::Rooted<JS::Value> v(cx);
return XPCOMObjectToJsval(cx, scope, helper, nullptr, false, v.address()) ?
JSVAL_TO_OBJECT(v) :
nullptr;
}
// Fallback for when our parent is not a WebIDL binding object.
template<typename T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct WrapNativeParentFallback
{
static inline JSObject* Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
T* parent, nsWrapperCache* cache)
{
return nullptr;
}
};
// Fallback for when our parent is not a WebIDL binding object but _is_ an
// nsISupports object.
template<typename T >
struct WrapNativeParentFallback<T, true >
{
static inline JSObject* Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
T* parent, nsWrapperCache* cache)
{
return WrapNativeISupportsParent(cx, scope, parent, cache);
}
};
// Wrapping of our native parent, for cases when it's a WebIDL object (though
// possibly preffed off).
template<typename T, bool hasWrapObject=HasWrapObject<T>::Value >
struct WrapNativeParentHelper
{
static inline JSObject* Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
T* parent, nsWrapperCache* cache)
{
MOZ_ASSERT(cache);
JSObject* obj;
if ((obj = cache->GetWrapper())) {
return obj;
}
// Inline this here while we have non-dom objects in wrapper caches.
if (!CouldBeDOMBinding(parent)) {
obj = WrapNativeParentFallback<T>::Wrap(cx, scope, parent, cache);
} else {
obj = parent->WrapObject(cx, scope);
}
return obj;
}
};
// Wrapping of our native parent, for cases when it's not a WebIDL object. In
// this case it must be nsISupports.
template<typename T>
struct WrapNativeParentHelper<T, false >
{
static inline JSObject* Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
T* parent, nsWrapperCache* cache)
{
JSObject* obj;
if (cache && (obj = cache->GetWrapper())) {
#ifdef DEBUG
NS_ASSERTION(WrapNativeISupportsParent(cx, scope, parent, cache) == obj,
"Unexpected object in nsWrapperCache");
#endif
return obj;
}
return WrapNativeISupportsParent(cx, scope, parent, cache);
}
};
// Wrapping of our native parent.
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, JS::Handle<JSObject*> scope, T* p,
nsWrapperCache* cache)
{
if (!p) {
return scope;
}
return WrapNativeParentHelper<T>::Wrap(cx, scope, p, cache);
}
// Wrapping of our native parent, when we don't want to explicitly pass in
// things like the nsWrapperCache for it.
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, JS::Handle<JSObject*> scope, const T& p)
{
return WrapNativeParent(cx, scope, GetParentPointer(p), GetWrapperCache(p));
}
// A way to differentiate between nodes, which use the parent object
// returned by native->GetParentObject(), and all other objects, which
// just use the parent's global.
static inline JSObject*
GetRealParentObject(void* aParent, JSObject* aParentObject)
{
return aParentObject ?
js::GetGlobalForObjectCrossCompartment(aParentObject) : nullptr;
}
static inline JSObject*
GetRealParentObject(Element* aParent, JSObject* aParentObject)
{
return aParentObject;
}
HAS_MEMBER(GetParentObject)
template<typename T, bool WrapperCached=HasGetParentObjectMember<T>::Value>
struct GetParentObject
{
static JSObject* Get(JSContext* cx, JS::Handle<JSObject*> obj)
{
T* native = UnwrapDOMObject<T>(obj);
return
GetRealParentObject(native,
WrapNativeParent(cx, obj, native->GetParentObject()));
}
};
template<typename T>
struct GetParentObject<T, false>
{
static JSObject* Get(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_CRASH();
return nullptr;
}
};
MOZ_ALWAYS_INLINE
JSObject* GetJSObjectFromCallback(CallbackObject* callback)
{
return callback->Callback();
}
MOZ_ALWAYS_INLINE
JSObject* GetJSObjectFromCallback(void* noncallback)
{
return nullptr;
}
template<typename T>
static inline JSObject*
WrapCallThisObject(JSContext* cx, JS::Handle<JSObject*> scope, const T& p)
{
// Callbacks are nsISupports, so WrapNativeParent will just happily wrap them
// up as an nsISupports XPCWrappedNative... which is not at all what we want.
// So we need to special-case them.
JS::Rooted<JSObject*> obj(cx, GetJSObjectFromCallback(p));
if (!obj) {
// WrapNativeParent is a bit of a Swiss army knife that will
// wrap anything for us.
obj = WrapNativeParent(cx, scope, p);
if (!obj) {
return nullptr;
}
}
// But all that won't necessarily put things in the compartment of cx.
if (!JS_WrapObject(cx, obj.address())) {
return nullptr;
}
return obj;
}
// Helper for calling WrapNewBindingObject with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
template <class T, bool isSmartPtr=HasgetMember<T>::Value>
struct WrapNewBindingObjectHelper
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
const T& value, JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObject(cx, scope, value.get(), rval);
}
};
template <class T>
struct WrapNewBindingObjectHelper<T, false>
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope, T& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObject(cx, scope, &value, rval);
}
};
template<class T>
inline bool
WrapNewBindingObject(JSContext* cx, JS::Handle<JSObject*> scope, T& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObjectHelper<T>::Wrap(cx, scope, value, rval);
}
template <class T>
inline JSObject*
GetCallbackFromCallbackObject(T* aObj)
{
return aObj->Callback();
}
// Helper for getting the callback JSObject* of a smart ptr around a
// CallbackObject or a reference to a CallbackObject or something like
// that.
template <class T, bool isSmartPtr=HasgetMember<T>::Value>
struct GetCallbackFromCallbackObjectHelper
{
static inline JSObject* Get(const T& aObj)
{
return GetCallbackFromCallbackObject(aObj.get());
}
};
template <class T>
struct GetCallbackFromCallbackObjectHelper<T, false>
{
static inline JSObject* Get(T& aObj)
{
return GetCallbackFromCallbackObject(&aObj);
}
};
template<class T>
inline JSObject*
GetCallbackFromCallbackObject(T& aObj)
{
return GetCallbackFromCallbackObjectHelper<T>::Get(aObj);
}
static inline bool
InternJSString(JSContext* cx, jsid& id, const char* chars)
{
if (JSString *str = ::JS_InternString(cx, chars)) {
id = INTERNED_STRING_TO_JSID(cx, str);
return true;
}
return false;
}
// Spec needs a name property
template <typename Spec>
static bool
InitIds(JSContext* cx, const Prefable<Spec>* prefableSpecs, jsid* ids)
{
MOZ_ASSERT(prefableSpecs);
MOZ_ASSERT(prefableSpecs->specs);
do {
// We ignore whether the set of ids is enabled and just intern all the IDs,
// because this is only done once per application runtime.
Spec* spec = prefableSpecs->specs;
do {
if (!InternJSString(cx, *ids, spec->name)) {
return false;
}
} while (++ids, (++spec)->name);
// We ran out of ids for that pref. Put a JSID_VOID in on the id
// corresponding to the list terminator for the pref.
*ids = JSID_VOID;
++ids;
} while ((++prefableSpecs)->specs);
return true;
}
bool
QueryInterface(JSContext* cx, unsigned argc, JS::Value* vp);
template <class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct
WantsQueryInterface
{
static bool Enabled(JSContext* aCx, JSObject* aGlobal)
{
return false;
}
};
template <class T>
struct
WantsQueryInterface<T, true>
{
static bool Enabled(JSContext* aCx, JSObject* aGlobal)
{
return IsChromeOrXBL(aCx, aGlobal);
}
};
bool
ThrowingConstructor(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GetPropertyOnPrototype(JSContext* cx, JS::Handle<JSObject*> proxy,
JS::Handle<jsid> id, bool* found,
JS::Value* vp);
bool
HasPropertyOnPrototype(JSContext* cx, JS::Handle<JSObject*> proxy,
DOMProxyHandler* handler,
JS::Handle<jsid> id);
template<class T>
class OwningNonNull
{
public:
OwningNonNull()
#ifdef DEBUG
: inited(false)
#endif
{}
operator T&() {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "OwningNonNull<T> was set to null");
return *ptr;
}
void operator=(T* t) {
init(t);
}
void operator=(const already_AddRefed<T>& t) {
init(t);
}
already_AddRefed<T> forget() {
#ifdef DEBUG
inited = false;
#endif
return ptr.forget();
}
// Make us work with smart-ptr helpers that expect a get()
T* get() const {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr);
return ptr;
}
protected:
template<typename U>
void init(U t) {
ptr = t;
MOZ_ASSERT(ptr);
#ifdef DEBUG
inited = true;
#endif
}
nsRefPtr<T> ptr;
#ifdef DEBUG
bool inited;
#endif
};
// A struct that has the same layout as an nsDependentString but much
// faster constructor and destructor behavior
struct FakeDependentString {
FakeDependentString() :
mFlags(nsDependentString::F_TERMINATED)
{
}
void SetData(const nsDependentString::char_type* aData,
nsDependentString::size_type aLength) {
MOZ_ASSERT(mFlags == nsDependentString::F_TERMINATED);
mData = aData;
mLength = aLength;
}
void Truncate() {
mData = nsDependentString::char_traits::sEmptyBuffer;
mLength = 0;
}
void SetNull() {
Truncate();
mFlags |= nsDependentString::F_VOIDED;
}
// If this ever changes, change the corresponding code in the
// Optional<nsAString> specialization as well.
const nsAString* ToAStringPtr() const {
return reinterpret_cast<const nsDependentString*>(this);
}
nsAString* ToAStringPtr() {
return reinterpret_cast<nsDependentString*>(this);
}
operator const nsAString& () const {
return *reinterpret_cast<const nsDependentString*>(this);
}
private:
const nsDependentString::char_type* mData;
nsDependentString::size_type mLength;
uint32_t mFlags;
// A class to use for our static asserts to ensure our object layout
// matches that of nsDependentString.
class DependentStringAsserter;
friend class DependentStringAsserter;
class DepedentStringAsserter : public nsDependentString {
public:
static void StaticAsserts() {
Bug 895322 - Part 1: Replace the usages of MOZ_STATIC_ASSERT with C++11 static_assert; r=Waldo This patch was mostly generated by running the following scripts on the codebase, with some manual changes made afterwards: # static_assert.sh #!/bin/bash # Command to convert an NSPR integer type to the equivalent standard integer type function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.cc" \ -o -iname "*.mm" \) | \ xargs -n 1 `dirname $0`/assert_replacer.py #sed -i -e "s/\b$1\b/$2/g" } convert MOZ_STATIC_ASSERT static_assert hg rev --no-backup mfbt/Assertions.h \ media/webrtc/signaling/src/sipcc/core/includes/ccapi.h \ modules/libmar/src/mar_private.h \ modules/libmar/src/mar.h # assert_replacer.py #!/usr/bin/python import sys import re pattern = re.compile(r"\bMOZ_STATIC_ASSERT\b") def replaceInPlace(fname): print fname f = open(fname, "rw+") lines = f.readlines() for i in range(0, len(lines)): while True: index = re.search(pattern, lines[i]) if index != None: index = index.start() lines[i] = lines[i][0:index] + "static_assert" + lines[i][index+len("MOZ_STATIC_ASSERT"):] for j in range(i + 1, len(lines)): if lines[j].find(" ", index) == index: lines[j] = lines[j][0:index] + lines[j][index+4:] else: break else: break f.seek(0, 0) f.truncate() f.write("".join(lines)) f.close() argc = len(sys.argv) for i in range(1, argc): replaceInPlace(sys.argv[i]) --HG-- extra : rebase_source : 4b4a4047d82f2c205b9fad8d56dfc3f1afc0b045
2013-07-18 10:59:53 -07:00
static_assert(sizeof(FakeDependentString) == sizeof(nsDependentString),
"Must have right object size");
static_assert(offsetof(FakeDependentString, mData) ==
offsetof(DepedentStringAsserter, mData),
"Offset of mData should match");
static_assert(offsetof(FakeDependentString, mLength) ==
offsetof(DepedentStringAsserter, mLength),
"Offset of mLength should match");
static_assert(offsetof(FakeDependentString, mFlags) ==
offsetof(DepedentStringAsserter, mFlags),
"Offset of mFlags should match");
}
};
};
enum StringificationBehavior {
eStringify,
eEmpty,
eNull
};
// pval must not be null and must point to a rooted JS::Value
static inline bool
ConvertJSValueToString(JSContext* cx, JS::Handle<JS::Value> v,
JS::MutableHandle<JS::Value> pval,
StringificationBehavior nullBehavior,
StringificationBehavior undefinedBehavior,
FakeDependentString& result)
{
JSString *s;
if (v.isString()) {
s = v.toString();
} else {
StringificationBehavior behavior;
if (v.isNull()) {
behavior = nullBehavior;
} else if (v.isUndefined()) {
behavior = undefinedBehavior;
} else {
behavior = eStringify;
}
if (behavior != eStringify) {
if (behavior == eEmpty) {
result.Truncate();
} else {
result.SetNull();
}
return true;
}
s = JS_ValueToString(cx, v);
if (!s) {
return false;
}
pval.set(JS::StringValue(s)); // Root the new string.
}
size_t len;
const jschar *chars = JS_GetStringCharsZAndLength(cx, s, &len);
if (!chars) {
return false;
}
result.SetData(chars, len);
return true;
}
bool
ConvertJSValueToByteString(JSContext* cx, JS::Handle<JS::Value> v,
JS::MutableHandle<JS::Value> pval, bool nullable,
nsACString& result);
// Class for holding the type of members of a union. The union type has an enum
// to keep track of which of its UnionMembers has been constructed.
template<class T>
class UnionMember {
AlignedStorage2<T> storage;
public:
T& SetValue() {
new (storage.addr()) T();
return *storage.addr();
}
template <typename T1, typename T2>
T& SetValue(const T1 &t1, const T2 &t2)
{
new (storage.addr()) T(t1, t2);
return *storage.addr();
}
const T& Value() const {
return *storage.addr();
}
void Destroy() {
storage.addr()->~T();
}
};
template<typename T>
void DoTraceSequence(JSTracer* trc, FallibleTArray<T>& seq);
template<typename T>
void DoTraceSequence(JSTracer* trc, InfallibleTArray<T>& seq);
// Class for simple sequence arguments, only used internally by codegen.
template<typename T>
class AutoSequence : public AutoFallibleTArray<T, 16>
{
public:
AutoSequence() : AutoFallibleTArray<T, 16>()
{}
// Allow converting to const sequences as needed
operator const Sequence<T>&() const {
return *reinterpret_cast<const Sequence<T>*>(this);
}
};
// Class used to trace sequences, with specializations for various
// sequence types.
template<typename T,
bool isDictionary=IsBaseOf<DictionaryBase, T>::value,
bool isTypedArray=IsBaseOf<AllTypedArraysBase, T>::value>
class SequenceTracer
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
};
// sequence<object> or sequence<object?>
template<>
class SequenceTracer<JSObject*, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, JSObject** objp, JSObject** end) {
for (; objp != end; ++objp) {
JS_CallObjectTracer(trc, objp, "sequence<object>");
}
}
};
// sequence<any>
template<>
class SequenceTracer<JS::Value, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, JS::Value* valp, JS::Value* end) {
for (; valp != end; ++valp) {
JS_CallValueTracer(trc, valp, "sequence<any>");
}
}
};
// sequence<sequence<T>>
template<typename T>
class SequenceTracer<Sequence<T>, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, Sequence<T>* seqp, Sequence<T>* end) {
for (; seqp != end; ++seqp) {
DoTraceSequence(trc, *seqp);
}
}
};
// sequence<sequence<T>> as return value
template<typename T>
class SequenceTracer<nsTArray<T>, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, nsTArray<T>* seqp, nsTArray<T>* end) {
for (; seqp != end; ++seqp) {
DoTraceSequence(trc, *seqp);
}
}
};
// sequence<someDictionary>
template<typename T>
class SequenceTracer<T, true, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* dictp, T* end) {
for (; dictp != end; ++dictp) {
dictp->TraceDictionary(trc);
}
}
};
// sequence<SomeTypedArray>
template<typename T>
class SequenceTracer<T, false, true>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* arrayp, T* end) {
for (; arrayp != end; ++arrayp) {
arrayp->TraceSelf(trc);
}
}
};
// sequence<T?> with T? being a Nullable<T>
template<typename T>
class SequenceTracer<Nullable<T>, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, Nullable<T>* seqp,
Nullable<T>* end) {
for (; seqp != end; ++seqp) {
if (!seqp->IsNull()) {
// Pretend like we actually have a length-one sequence here so
// we can do template instantiation correctly for T.
T& val = seqp->Value();
T* ptr = &val;
SequenceTracer<T>::TraceSequence(trc, ptr, ptr+1);
}
}
}
};
template<typename T>
void DoTraceSequence(JSTracer* trc, FallibleTArray<T>& seq)
{
SequenceTracer<T>::TraceSequence(trc, seq.Elements(),
seq.Elements() + seq.Length());
}
template<typename T>
void DoTraceSequence(JSTracer* trc, InfallibleTArray<T>& seq)
{
SequenceTracer<T>::TraceSequence(trc, seq.Elements(),
seq.Elements() + seq.Length());
}
// Rooter class for sequences; this is what we mostly use in the codegen
template<typename T>
class MOZ_STACK_CLASS SequenceRooter : private JS::CustomAutoRooter
{
public:
SequenceRooter(JSContext *aCx, FallibleTArray<T>* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mFallibleArray(aSequence),
mSequenceType(eFallibleArray)
{
}
SequenceRooter(JSContext *aCx, InfallibleTArray<T>* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mInfallibleArray(aSequence),
mSequenceType(eInfallibleArray)
{
}
SequenceRooter(JSContext *aCx, Nullable<nsTArray<T> >* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mNullableArray(aSequence),
mSequenceType(eNullableArray)
{
}
private:
enum SequenceType {
eInfallibleArray,
eFallibleArray,
eNullableArray
};
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
if (mSequenceType == eFallibleArray) {
DoTraceSequence(trc, *mFallibleArray);
} else if (mSequenceType == eInfallibleArray) {
DoTraceSequence(trc, *mInfallibleArray);
} else {
MOZ_ASSERT(mSequenceType == eNullableArray);
if (!mNullableArray->IsNull()) {
DoTraceSequence(trc, mNullableArray->Value());
}
}
}
union {
InfallibleTArray<T>* mInfallibleArray;
FallibleTArray<T>* mFallibleArray;
Nullable<nsTArray<T> >* mNullableArray;
};
SequenceType mSequenceType;
};
template<typename T>
class MOZ_STACK_CLASS RootedDictionary : public T,
private JS::CustomAutoRooter
{
public:
RootedDictionary(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) :
T(),
JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT)
{
}
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
this->TraceDictionary(trc);
}
};
template<typename T>
class MOZ_STACK_CLASS NullableRootedDictionary : public Nullable<T>,
private JS::CustomAutoRooter
{
public:
NullableRootedDictionary(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) :
Nullable<T>(),
JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT)
{
}
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
if (!this->IsNull()) {
this->Value().TraceDictionary(trc);
}
}
};
inline bool
IdEquals(jsid id, const char* string)
{
return JSID_IS_STRING(id) &&
JS_FlatStringEqualsAscii(JSID_TO_FLAT_STRING(id), string);
}
inline bool
AddStringToIDVector(JSContext* cx, JS::AutoIdVector& vector, const char* name)
{
return vector.growBy(1) &&
InternJSString(cx, vector[vector.length() - 1], name);
}
// Implementation of the bits that XrayWrapper needs
/**
* This resolves indexed or named properties of obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveOwnProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
JS::Handle<jsid> id,
JS::MutableHandle<JSPropertyDescriptor> desc, unsigned flags);
/**
* This resolves operations, attributes and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveNativeProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
JS::Handle<jsid> id, JSPropertyDescriptor* desc);
/**
* Define a property on obj through an Xray wrapper.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* defined will be set to true if a property was set as a result of this call.
*/
bool
XrayDefineProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj, JS::Handle<jsid> id,
JS::MutableHandle<JSPropertyDescriptor> desc, bool* defined);
/**
* This enumerates indexed or named properties of obj and operations, attributes
* and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* flags are JSITER_* flags.
*/
bool
XrayEnumerateProperties(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
unsigned flags, JS::AutoIdVector& props);
extern NativePropertyHooks sWorkerNativePropertyHooks;
// We use one constructor JSNative to represent all DOM interface objects (so
// we can easily detect when we need to wrap them in an Xray wrapper). We store
// the real JSNative in the mNative member of a JSNativeHolder in the
// CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT slot of the JSFunction object for a
// specific interface object. We also store the NativeProperties in the
// JSNativeHolder. The CONSTRUCTOR_XRAY_EXPANDO_SLOT is used to store the
// expando chain of the Xray for the interface object.
// Note that some interface objects are not yet a JSFunction but a normal
// JSObject with a DOMJSClass, those do not use these slots.
enum {
CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT = 0,
CONSTRUCTOR_XRAY_EXPANDO_SLOT
};
bool
Constructor(JSContext* cx, unsigned argc, JS::Value* vp);
inline bool
UseDOMXray(JSObject* obj)
{
const js::Class* clasp = js::GetObjectClass(obj);
return IsDOMClass(clasp) ||
IsDOMProxy(obj, clasp) ||
JS_IsNativeFunction(obj, Constructor) ||
IsDOMIfaceAndProtoClass(clasp);
}
#ifdef DEBUG
inline bool
HasConstructor(JSObject* obj)
{
return JS_IsNativeFunction(obj, Constructor) ||
js::GetObjectClass(obj)->construct;
}
#endif
// Transfer reference in ptr to smartPtr.
template<class T>
inline void
Take(nsRefPtr<T>& smartPtr, T* ptr)
{
smartPtr = dont_AddRef(ptr);
}
// Transfer ownership of ptr to smartPtr.
template<class T>
inline void
Take(nsAutoPtr<T>& smartPtr, T* ptr)
{
smartPtr = ptr;
}
inline void
MustInheritFromNonRefcountedDOMObject(NonRefcountedDOMObject*)
{
}
// Set the chain of expando objects for various consumers of the given object.
// For Paris Bindings only. See the relevant infrastructure in XrayWrapper.cpp.
JSObject* GetXrayExpandoChain(JSObject *obj);
void SetXrayExpandoChain(JSObject *obj, JSObject *chain);
/**
* This creates a JSString containing the value that the toString function for
* obj should create according to the WebIDL specification, ignoring any
* modifications by script. The value is prefixed with pre and postfixed with
* post, unless this is called for an object that has a stringifier. It is
* specifically for use by Xray code.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* pre is a string that should be prefixed to the value.
* post is a string that should be prefixed to the value.
* v contains the JSString for the value if the function returns true.
*/
bool
NativeToString(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj, const char* pre,
const char* post, JS::Value* v);
HAS_MEMBER(JSBindingFinalized)
template<class T, bool hasCallback=HasJSBindingFinalizedMember<T>::Value>
struct JSBindingFinalized
{
static void Finalized(T* self)
{
}
};
template<class T>
struct JSBindingFinalized<T, true>
{
static void Finalized(T* self)
{
self->JSBindingFinalized();
}
};
// Helpers for creating a const version of a type.
template<typename T>
const T& Constify(T& arg)
{
return arg;
}
// Helper for turning (Owning)NonNull<T> into T&
template<typename T>
T& NonNullHelper(T& aArg)
{
return aArg;
}
template<typename T>
T& NonNullHelper(NonNull<T>& aArg)
{
return aArg;
}
template<typename T>
const T& NonNullHelper(const NonNull<T>& aArg)
{
return aArg;
}
template<typename T>
T& NonNullHelper(OwningNonNull<T>& aArg)
{
return aArg;
}
template<typename T>
const T& NonNullHelper(const OwningNonNull<T>& aArg)
{
return aArg;
}
// Reparent the wrapper of aObj to whatever its native now thinks its
// parent should be.
nsresult
ReparentWrapper(JSContext* aCx, JS::HandleObject aObj);
/**
* Used to implement the hasInstance hook of an interface object.
*
* instance should not be a security wrapper.
*/
bool
InterfaceHasInstance(JSContext* cx, JS::Handle<JSObject*> obj,
JS::Handle<JSObject*> instance,
bool* bp);
bool
InterfaceHasInstance(JSContext* cx, JS::Handle<JSObject*> obj, JS::MutableHandle<JS::Value> vp,
bool* bp);
bool
InterfaceHasInstance(JSContext* cx, int prototypeID, int depth,
JS::Handle<JSObject*> instance,
bool* bp);
// Helper for lenient getters/setters to report to console. If this
// returns false, we couldn't even get a global.
bool
ReportLenientThisUnwrappingFailure(JSContext* cx, JS::Handle<JSObject*> obj);
inline JSObject*
GetUnforgeableHolder(JSObject* aGlobal, prototypes::ID aId)
{
JS::Heap<JSObject*>* protoAndIfaceArray = GetProtoAndIfaceArray(aGlobal);
JSObject* interfaceProto = protoAndIfaceArray[aId];
return &js::GetReservedSlot(interfaceProto,
DOM_INTERFACE_PROTO_SLOTS_BASE).toObject();
}
// Given a JSObject* that represents the chrome side of a JS-implemented WebIDL
// interface, get the nsPIDOMWindow corresponding to the content side, if any.
// A false return means an exception was thrown.
bool
GetWindowForJSImplementedObject(JSContext* cx, JS::Handle<JSObject*> obj,
nsPIDOMWindow** window);
already_AddRefed<nsPIDOMWindow>
ConstructJSImplementation(JSContext* aCx, const char* aContractId,
const GlobalObject& aGlobal,
JS::MutableHandle<JSObject*> aObject,
ErrorResult& aRv);
/**
* Convert an nsCString to jsval, returning true on success.
* These functions are intended for ByteString implementations.
* As such, the string is not UTF-8 encoded. Any UTF8 strings passed to these
* methods will be mangled.
*/
bool NonVoidByteStringToJsval(JSContext *cx, const nsACString &str,
JS::MutableHandle<JS::Value> rval);
inline bool ByteStringToJsval(JSContext *cx, const nsACString &str,
JS::MutableHandle<JS::Value> rval)
{
if (str.IsVoid()) {
rval.setNull();
return true;
}
return NonVoidByteStringToJsval(cx, str, rval);
}
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct PreserveWrapperHelper
{
static void PreserveWrapper(T* aObject)
{
aObject->PreserveWrapper(aObject, NS_CYCLE_COLLECTION_PARTICIPANT(T));
}
};
template<class T>
struct PreserveWrapperHelper<T, true>
{
static void PreserveWrapper(T* aObject)
{
aObject->PreserveWrapper(reinterpret_cast<nsISupports*>(aObject));
}
};
template<class T>
void PreserveWrapper(T* aObject)
{
PreserveWrapperHelper<T>::PreserveWrapper(aObject);
}
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct CastingAssertions
{
static bool ToSupportsIsCorrect(T*)
{
return true;
}
static bool ToSupportsIsOnPrimaryInheritanceChain(T*, nsWrapperCache*)
{
return true;
}
};
template<class T>
struct CastingAssertions<T, true>
{
static bool ToSupportsIsCorrect(T* aObject)
{
return ToSupports(aObject) == reinterpret_cast<nsISupports*>(aObject);
}
static bool ToSupportsIsOnPrimaryInheritanceChain(T* aObject,
nsWrapperCache* aCache)
{
return reinterpret_cast<void*>(aObject) != aCache;
}
};
template<class T>
bool
ToSupportsIsCorrect(T* aObject)
{
return CastingAssertions<T>::ToSupportsIsCorrect(aObject);
}
template<class T>
bool
ToSupportsIsOnPrimaryInheritanceChain(T* aObject, nsWrapperCache* aCache)
{
return CastingAssertions<T>::ToSupportsIsOnPrimaryInheritanceChain(aObject,
aCache);
}
template<class T, template <typename> class SmartPtr,
bool isISupports=IsBaseOf<nsISupports, T>::value>
class DeferredFinalizer
{
typedef nsTArray<SmartPtr<T> > SmartPtrArray;
static void*
AppendDeferredFinalizePointer(void* aData, void* aObject)
{
SmartPtrArray* pointers = static_cast<SmartPtrArray*>(aData);
if (!pointers) {
pointers = new SmartPtrArray();
}
T* self = static_cast<T*>(aObject);
SmartPtr<T>* defer = pointers->AppendElement();
Take(*defer, self);
return pointers;
}
static bool
DeferredFinalize(uint32_t aSlice, void* aData)
{
MOZ_ASSERT(aSlice > 0, "nonsensical/useless call with aSlice == 0");
SmartPtrArray* pointers = static_cast<SmartPtrArray*>(aData);
uint32_t oldLen = pointers->Length();
aSlice = std::min(oldLen, aSlice);
uint32_t newLen = oldLen - aSlice;
pointers->RemoveElementsAt(newLen, aSlice);
if (newLen == 0) {
delete pointers;
return true;
}
return false;
}
public:
static void
AddForDeferredFinalization(T* aObject)
{
cyclecollector::DeferredFinalize(AppendDeferredFinalizePointer,
DeferredFinalize, aObject);
}
};
template<class T, template <typename> class SmartPtr>
class DeferredFinalizer<T, SmartPtr, true>
{
public:
static void
AddForDeferredFinalization(T* aObject)
{
cyclecollector::DeferredFinalize(reinterpret_cast<nsISupports*>(aObject));
}
};
template<class T, template <typename> class SmartPtr>
static void
AddForDeferredFinalization(T* aObject)
{
DeferredFinalizer<T, SmartPtr>::AddForDeferredFinalization(aObject);
}
// This returns T's CC participant if it participates in CC or null if it
// doesn't. This also returns null for classes that don't inherit from
// nsISupports (QI should be used to get the participant for those).
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
class GetCCParticipant
{
// Helper for GetCCParticipant for classes that participate in CC.
template<class U>
static nsCycleCollectionParticipant*
GetHelper(int, typename U::NS_CYCLE_COLLECTION_INNERCLASS* dummy=nullptr)
{
return T::NS_CYCLE_COLLECTION_INNERCLASS::GetParticipant();
}
// Helper for GetCCParticipant for classes that don't participate in CC.
template<class U>
static nsCycleCollectionParticipant*
GetHelper(double)
{
return nullptr;
}
public:
static nsCycleCollectionParticipant*
Get()
{
// Passing int() here will try to call the GetHelper that takes an int as
// its firt argument. If T doesn't participate in CC then substitution for
// the second argument (with a default value) will fail and because of
// SFINAE the next best match (the variant taking a double) will be called.
return GetHelper<T>(int());
}
};
template<class T>
class GetCCParticipant<T, true>
{
public:
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
Get()
{
return nullptr;
}
};
} // namespace dom
} // namespace mozilla
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-02 21:35:38 -07:00
#endif /* mozilla_dom_BindingUtils_h__ */