gecko/image/src/imgFrame.cpp

785 lines
23 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 04:12:37 -07:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "DiscardTracker.h"
#include "prenv.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "gfxAlphaRecovery.h"
static bool gDisableOptimize = false;
#include "cairo.h"
#include "GeckoProfiler.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "nsMargin.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/Tools.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
static UserDataKey kVolatileBuffer;
static void
VolatileBufferRelease(void *vbuf)
{
delete static_cast<VolatileBufferPtr<unsigned char>*>(vbuf);
}
static TemporaryRef<DataSourceSurface>
CreateLockedSurface(VolatileBuffer *vbuf,
const IntSize& size,
SurfaceFormat format)
{
VolatileBufferPtr<unsigned char> *vbufptr =
new VolatileBufferPtr<unsigned char>(vbuf);
MOZ_ASSERT(!vbufptr->WasBufferPurged(), "Expected image data!");
int32_t stride = size.width * BytesPerPixel(format);
RefPtr<DataSourceSurface> surf =
Factory::CreateWrappingDataSourceSurface(*vbufptr, stride, size, format);
if (!surf) {
delete vbufptr;
return nullptr;
}
surf->AddUserData(&kVolatileBuffer, vbufptr, VolatileBufferRelease);
return surf;
}
static TemporaryRef<VolatileBuffer>
AllocateBufferForImage(const IntSize& size, SurfaceFormat format)
{
int32_t stride = size.width * BytesPerPixel(format);
RefPtr<VolatileBuffer> buf = new VolatileBuffer();
if (buf->Init(stride * size.height,
1 << gfxAlphaRecovery::GoodAlignmentLog2()))
return buf;
return nullptr;
}
// Returns true if an image of aWidth x aHeight is allowed and legal.
static bool AllowedImageSize(int32_t aWidth, int32_t aHeight)
{
// reject over-wide or over-tall images
const int32_t k64KLimit = 0x0000FFFF;
if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) {
NS_WARNING("image too big");
return false;
}
// protect against invalid sizes
if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) {
return false;
}
// check to make sure we don't overflow a 32-bit
CheckedInt32 requiredBytes = CheckedInt32(aWidth) * CheckedInt32(aHeight) * 4;
if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
NS_WARNING("width or height too large");
return false;
}
#if defined(XP_MACOSX)
// CoreGraphics is limited to images < 32K in *height*, so clamp all surfaces on the Mac to that height
if (MOZ_UNLIKELY(aHeight > SHRT_MAX)) {
NS_WARNING("image too big");
return false;
}
#endif
return true;
}
imgFrame::imgFrame() :
mDecoded(0, 0, 0, 0),
mDecodedMutex("imgFrame::mDecoded"),
mPalettedImageData(nullptr),
mTimeout(100),
mDisposalMethod(0), /* imgIContainer::kDisposeNotSpecified */
mLockCount(0),
mBlendMethod(1), /* imgIContainer::kBlendOver */
mSinglePixel(false),
mCompositingFailed(false),
mNonPremult(false),
mDiscardable(false),
mInformedDiscardTracker(false)
{
static bool hasCheckedOptimize = false;
if (!hasCheckedOptimize) {
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
gDisableOptimize = true;
}
hasCheckedOptimize = true;
}
}
imgFrame::~imgFrame()
{
moz_free(mPalettedImageData);
mPalettedImageData = nullptr;
if (mInformedDiscardTracker) {
DiscardTracker::InformDeallocation(4 * mSize.height * mSize.width);
}
}
nsresult imgFrame::Init(int32_t aX, int32_t aY, int32_t aWidth, int32_t aHeight,
SurfaceFormat aFormat, uint8_t aPaletteDepth /* = 0 */)
{
// assert for properties that should be verified by decoders, warn for properties related to bad content
if (!AllowedImageSize(aWidth, aHeight)) {
NS_WARNING("Should have legal image size");
return NS_ERROR_FAILURE;
}
mOffset.MoveTo(aX, aY);
mSize.SizeTo(aWidth, aHeight);
mFormat = aFormat;
mPaletteDepth = aPaletteDepth;
if (aPaletteDepth != 0) {
// We're creating for a paletted image.
if (aPaletteDepth > 8) {
NS_WARNING("Should have legal palette depth");
NS_ERROR("This Depth is not supported");
return NS_ERROR_FAILURE;
}
// Use the fallible allocator here
mPalettedImageData = (uint8_t*)moz_malloc(PaletteDataLength() + GetImageDataLength());
if (!mPalettedImageData)
NS_WARNING("moz_malloc for paletted image data should succeed");
NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
} else {
// Inform the discard tracker that we are going to allocate some memory.
if (!DiscardTracker::TryAllocation(4 * mSize.width * mSize.height)) {
NS_WARNING("Exceed the hard limit of decode image size");
return NS_ERROR_OUT_OF_MEMORY;
}
if (!mImageSurface) {
mVBuf = AllocateBufferForImage(mSize, mFormat);
if (!mVBuf) {
return NS_ERROR_OUT_OF_MEMORY;
}
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
}
if (!mImageSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
// Image surface allocation is failed, need to return
// the booked buffer size.
DiscardTracker::InformDeallocation(4 * mSize.width * mSize.height);
return NS_ERROR_OUT_OF_MEMORY;
}
mInformedDiscardTracker = true;
}
return NS_OK;
}
nsresult imgFrame::Optimize()
{
MOZ_ASSERT(NS_IsMainThread());
if (gDisableOptimize)
return NS_OK;
if (mPalettedImageData || mOptSurface || mSinglePixel)
return NS_OK;
// Don't do single-color opts on non-premult data.
// Cairo doesn't support non-premult single-colors.
if (mNonPremult)
return NS_OK;
/* Figure out if the entire image is a constant color */
// this should always be true
if (mImageSurface->Stride() == mSize.width * 4) {
uint32_t *imgData = (uint32_t*) ((uint8_t *)mVBufPtr);
uint32_t firstPixel = * (uint32_t*) imgData;
uint32_t pixelCount = mSize.width * mSize.height + 1;
while (--pixelCount && *imgData++ == firstPixel)
;
if (pixelCount == 0) {
// all pixels were the same
if (mFormat == SurfaceFormat::B8G8R8A8 ||
mFormat == SurfaceFormat::B8G8R8X8) {
mSinglePixel = true;
mSinglePixelColor.a = ((firstPixel >> 24) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.r = ((firstPixel >> 16) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.g = ((firstPixel >> 8) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.b = ((firstPixel >> 0) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.r /= mSinglePixelColor.a;
mSinglePixelColor.g /= mSinglePixelColor.a;
mSinglePixelColor.b /= mSinglePixelColor.a;
// blow away the older surfaces (if they exist), to release their memory
mVBuf = nullptr;
mVBufPtr = nullptr;
mImageSurface = nullptr;
mOptSurface = nullptr;
// We just dumped most of our allocated memory, so tell the discard
// tracker that we're not using any at all.
if (mInformedDiscardTracker) {
DiscardTracker::InformDeallocation(4 * mSize.width * mSize.height);
mInformedDiscardTracker = false;
}
return NS_OK;
}
}
// if it's not RGB24/ARGB32, don't optimize, but we never hit this at the moment
}
#ifdef ANDROID
SurfaceFormat optFormat =
gfxPlatform::GetPlatform()->Optimal2DFormatForContent(gfxContentType::COLOR);
if (!GetHasAlpha() && optFormat == SurfaceFormat::R5G6B5) {
RefPtr<VolatileBuffer> buf =
AllocateBufferForImage(mSize, optFormat);
if (!buf)
return NS_OK;
RefPtr<DataSourceSurface> surf =
CreateLockedSurface(buf, mSize, optFormat);
if (!surf)
return NS_ERROR_OUT_OF_MEMORY;
DataSourceSurface::MappedSurface mapping;
DebugOnly<bool> success =
surf->Map(DataSourceSurface::MapType::WRITE, &mapping);
NS_ASSERTION(success, "Failed to map surface");
RefPtr<DrawTarget> target =
Factory::CreateDrawTargetForData(BackendType::CAIRO,
mapping.mData,
mSize,
mapping.mStride,
optFormat);
Rect rect(0, 0, mSize.width, mSize.height);
target->DrawSurface(mImageSurface, rect, rect);
target->Flush();
surf->Unmap();
mImageSurface = surf;
mVBuf = buf;
mFormat = optFormat;
}
#else
mOptSurface = gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget()->OptimizeSourceSurface(mImageSurface);
if (mOptSurface == mImageSurface)
mOptSurface = nullptr;
#endif
if (mOptSurface) {
mVBuf = nullptr;
mVBufPtr = nullptr;
mImageSurface = nullptr;
}
return NS_OK;
}
imgFrame::SurfaceWithFormat
imgFrame::SurfaceForDrawing(bool aDoPadding,
bool aDoPartialDecode,
bool aDoTile,
const nsIntMargin& aPadding,
gfxMatrix& aUserSpaceToImageSpace,
gfxRect& aFill,
gfxRect& aSubimage,
gfxRect& aSourceRect,
gfxRect& aImageRect,
SourceSurface* aSurface)
{
IntSize size(int32_t(aImageRect.Width()), int32_t(aImageRect.Height()));
if (!aDoPadding && !aDoPartialDecode) {
NS_ASSERTION(!mSinglePixel, "This should already have been handled");
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, ThebesIntSize(size)), mFormat);
}
gfxRect available = gfxRect(mDecoded.x, mDecoded.y, mDecoded.width, mDecoded.height);
if (aDoTile || mSinglePixel) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
RefPtr<DrawTarget> target =
gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(size, SurfaceFormat::B8G8R8A8);
if (!target)
return SurfaceWithFormat();
Rect fillRect(aFill.x, aFill.y, aFill.width, aFill.height);
// Fill 'available' with whatever we've got
if (mSinglePixel) {
target->FillRect(fillRect, ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
gfxMatrix imageSpaceToUserSpace = aUserSpaceToImageSpace;
imageSpaceToUserSpace.Invert();
SurfacePattern pattern(aSurface,
ExtendMode::REPEAT,
Matrix(imageSpaceToUserSpace.xx,
imageSpaceToUserSpace.xy,
imageSpaceToUserSpace.yx,
imageSpaceToUserSpace.yy,
imageSpaceToUserSpace.x0,
imageSpaceToUserSpace.y0));
target->FillRect(fillRect, pattern);
}
RefPtr<SourceSurface> newsurf = target->Snapshot();
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, ThebesIntSize(size)), target->GetFormat());
}
// Not tiling, and we have a surface, so we can account for
// padding and/or a partial decode just by twiddling parameters.
// First, update our user-space fill rect.
aSourceRect = aSourceRect.Intersect(available);
gfxMatrix imageSpaceToUserSpace = aUserSpaceToImageSpace;
imageSpaceToUserSpace.Invert();
aFill = imageSpaceToUserSpace.Transform(aSourceRect);
aSubimage = aSubimage.Intersect(available) - gfxPoint(aPadding.left, aPadding.top);
aUserSpaceToImageSpace.Multiply(gfxMatrix().Translate(-gfxPoint(aPadding.left, aPadding.top)));
aSourceRect = aSourceRect - gfxPoint(aPadding.left, aPadding.top);
aImageRect = gfxRect(0, 0, mSize.width, mSize.height);
gfxIntSize availableSize(mDecoded.width, mDecoded.height);
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
mFormat);
}
bool imgFrame::Draw(gfxContext *aContext, GraphicsFilter aFilter,
const gfxMatrix &aUserSpaceToImageSpace, const gfxRect& aFill,
const nsIntMargin &aPadding, const nsIntRect &aSubimage,
uint32_t aImageFlags)
{
PROFILER_LABEL("imgFrame", "Draw",
js::ProfileEntry::Category::GRAPHICS);
NS_ASSERTION(!aFill.IsEmpty(), "zero dest size --- fix caller");
NS_ASSERTION(!aSubimage.IsEmpty(), "zero source size --- fix caller");
NS_ASSERTION(!mPalettedImageData, "Directly drawing a paletted image!");
bool doPadding = aPadding != nsIntMargin(0,0,0,0);
bool doPartialDecode = !ImageComplete();
RefPtr<DrawTarget> dt = aContext->GetDrawTarget();
if (mSinglePixel && !doPadding && !doPartialDecode) {
if (mSinglePixelColor.a == 0.0) {
return true;
}
Rect target(aFill.x, aFill.y, aFill.width, aFill.height);
dt->FillRect(target, ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, CompositionOpForOp(aContext->CurrentOperator())));
return true;
}
gfxMatrix userSpaceToImageSpace = aUserSpaceToImageSpace;
gfxRect sourceRect = userSpaceToImageSpace.TransformBounds(aFill);
gfxRect imageRect(0, 0, mSize.width + aPadding.LeftRight(),
mSize.height + aPadding.TopBottom());
gfxRect subimage(aSubimage.x, aSubimage.y, aSubimage.width, aSubimage.height);
gfxRect fill = aFill;
NS_ASSERTION(!sourceRect.Intersect(subimage).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
RefPtr<SourceSurface> surf = GetSurface();
if (!surf) {
return false;
}
bool doTile = !imageRect.Contains(sourceRect) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
SurfaceWithFormat surfaceResult =
SurfaceForDrawing(doPadding, doPartialDecode, doTile, aPadding,
userSpaceToImageSpace, fill, subimage, sourceRect,
imageRect, surf);
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
userSpaceToImageSpace,
subimage, sourceRect, imageRect, fill,
surfaceResult.mFormat, aFilter, aImageFlags);
}
return true;
}
// This can be called from any thread, but not simultaneously.
nsresult imgFrame::ImageUpdated(const nsIntRect &aUpdateRect)
{
MutexAutoLock lock(mDecodedMutex);
mDecoded.UnionRect(mDecoded, aUpdateRect);
// clamp to bounds, in case someone sends a bogus updateRect (I'm looking at
// you, gif decoder)
nsIntRect boundsRect(mOffset, nsIntSize(mSize.width, mSize.height));
mDecoded.IntersectRect(mDecoded, boundsRect);
return NS_OK;
}
nsIntRect imgFrame::GetRect() const
{
return nsIntRect(mOffset, nsIntSize(mSize.width, mSize.height));
}
SurfaceFormat imgFrame::GetFormat() const
{
return mFormat;
}
bool imgFrame::GetNeedsBackground() const
{
// We need a background painted if we have alpha or we're incomplete.
return (mFormat == SurfaceFormat::B8G8R8A8 || !ImageComplete());
}
uint32_t imgFrame::GetImageBytesPerRow() const
{
if (mVBuf)
return mSize.width * BytesPerPixel(mFormat);
if (mPaletteDepth)
return mSize.width;
return 0;
}
uint32_t imgFrame::GetImageDataLength() const
{
return GetImageBytesPerRow() * mSize.height;
}
void imgFrame::GetImageData(uint8_t **aData, uint32_t *length) const
{
NS_ABORT_IF_FALSE(mLockCount != 0, "Can't GetImageData unless frame is locked");
if (mImageSurface)
*aData = mVBufPtr;
else if (mPalettedImageData)
*aData = mPalettedImageData + PaletteDataLength();
else
*aData = nullptr;
*length = GetImageDataLength();
}
uint8_t* imgFrame::GetImageData() const
{
uint8_t *data;
uint32_t length;
GetImageData(&data, &length);
return data;
}
bool imgFrame::GetIsPaletted() const
{
return mPalettedImageData != nullptr;
}
bool imgFrame::GetHasAlpha() const
{
return mFormat == SurfaceFormat::B8G8R8A8;
}
void imgFrame::GetPaletteData(uint32_t **aPalette, uint32_t *length) const
{
NS_ABORT_IF_FALSE(mLockCount != 0, "Can't GetPaletteData unless frame is locked");
if (!mPalettedImageData) {
*aPalette = nullptr;
*length = 0;
} else {
*aPalette = (uint32_t *) mPalettedImageData;
*length = PaletteDataLength();
}
}
uint32_t* imgFrame::GetPaletteData() const
{
uint32_t* data;
uint32_t length;
GetPaletteData(&data, &length);
return data;
}
nsresult imgFrame::LockImageData()
{
MOZ_ASSERT(NS_IsMainThread());
NS_ABORT_IF_FALSE(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0) {
return NS_ERROR_FAILURE;
}
mLockCount++;
// If we are not the first lock, there's nothing to do.
if (mLockCount != 1) {
return NS_OK;
}
// Paletted images don't have surfaces, so there's nothing to do.
if (mPalettedImageData)
return NS_OK;
if (!mImageSurface) {
if (mVBuf) {
VolatileBufferPtr<uint8_t> ref(mVBuf);
if (ref.WasBufferPurged())
return NS_ERROR_FAILURE;
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
if (!mImageSurface)
return NS_ERROR_OUT_OF_MEMORY;
}
if (mOptSurface || mSinglePixel || mFormat == SurfaceFormat::R5G6B5) {
SurfaceFormat format = mFormat;
if (mFormat == SurfaceFormat::R5G6B5)
format = SurfaceFormat::B8G8R8A8;
// Recover the pixels
RefPtr<VolatileBuffer> buf =
AllocateBufferForImage(mSize, format);
if (!buf) {
return NS_ERROR_OUT_OF_MEMORY;
}
RefPtr<DataSourceSurface> surf =
CreateLockedSurface(buf, mSize, format);
if (!surf)
return NS_ERROR_OUT_OF_MEMORY;
DataSourceSurface::MappedSurface mapping;
DebugOnly<bool> success =
surf->Map(DataSourceSurface::MapType::WRITE, &mapping);
NS_ASSERTION(success, "Failed to map surface");
RefPtr<DrawTarget> target =
Factory::CreateDrawTargetForData(BackendType::CAIRO,
mapping.mData,
mSize,
mapping.mStride,
format);
Rect rect(0, 0, mSize.width, mSize.height);
if (mSinglePixel)
target->FillRect(rect, ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
else if (mFormat == SurfaceFormat::R5G6B5)
target->DrawSurface(mImageSurface, rect, rect);
else
target->DrawSurface(mOptSurface, rect, rect,
DrawSurfaceOptions(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
target->Flush();
surf->Unmap();
mFormat = format;
mVBuf = buf;
mImageSurface = surf;
mOptSurface = nullptr;
}
}
mVBufPtr = mVBuf;
return NS_OK;
}
nsresult imgFrame::UnlockImageData()
{
MOZ_ASSERT(NS_IsMainThread());
NS_ABORT_IF_FALSE(mLockCount != 0, "Unlocking an unlocked image!");
if (mLockCount == 0) {
return NS_ERROR_FAILURE;
}
mLockCount--;
NS_ABORT_IF_FALSE(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0) {
return NS_ERROR_FAILURE;
}
// If we are not the last lock, there's nothing to do.
if (mLockCount != 0) {
return NS_OK;
}
// Paletted images don't have surfaces, so there's nothing to do.
if (mPalettedImageData)
return NS_OK;
mVBufPtr = nullptr;
if (mVBuf && mDiscardable) {
mImageSurface = nullptr;
}
return NS_OK;
}
void imgFrame::SetDiscardable()
{
MOZ_ASSERT(mLockCount, "Expected to be locked when SetDiscardable is called");
// Disabled elsewhere due to the cost of calling GetSourceSurfaceForSurface.
#ifdef MOZ_WIDGET_ANDROID
mDiscardable = true;
#endif
}
TemporaryRef<SourceSurface>
imgFrame::GetSurface()
{
if (mOptSurface) {
if (mOptSurface->IsValid())
return mOptSurface;
else
mOptSurface = nullptr;
}
if (mImageSurface)
return mImageSurface;
if (!mVBuf)
return nullptr;
VolatileBufferPtr<char> buf(mVBuf);
if (buf.WasBufferPurged())
return nullptr;
return CreateLockedSurface(mVBuf, mSize, mFormat);
}
int32_t imgFrame::GetRawTimeout() const
{
return mTimeout;
}
void imgFrame::SetRawTimeout(int32_t aTimeout)
{
mTimeout = aTimeout;
}
int32_t imgFrame::GetFrameDisposalMethod() const
{
return mDisposalMethod;
}
void imgFrame::SetFrameDisposalMethod(int32_t aFrameDisposalMethod)
{
mDisposalMethod = aFrameDisposalMethod;
}
int32_t imgFrame::GetBlendMethod() const
{
return mBlendMethod;
}
void imgFrame::SetBlendMethod(int32_t aBlendMethod)
{
mBlendMethod = (int8_t)aBlendMethod;
}
// This can be called from any thread.
bool imgFrame::ImageComplete() const
{
MutexAutoLock lock(mDecodedMutex);
return mDecoded.IsEqualInterior(nsIntRect(mOffset.x, mOffset.y,
mSize.width, mSize.height));
}
// A hint from the image decoders that this image has no alpha, even
// though we created is ARGB32. This changes our format to RGB24,
// which in turn will cause us to Optimize() to RGB24. Has no effect
// after Optimize() is called, though in all cases it will be just a
// performance win -- the pixels are still correct and have the A byte
// set to 0xff.
void imgFrame::SetHasNoAlpha()
{
if (mFormat == SurfaceFormat::B8G8R8A8) {
mFormat = SurfaceFormat::B8G8R8X8;
}
}
void imgFrame::SetAsNonPremult(bool aIsNonPremult)
{
mNonPremult = aIsNonPremult;
}
bool imgFrame::GetCompositingFailed() const
{
return mCompositingFailed;
}
void imgFrame::SetCompositingFailed(bool val)
{
mCompositingFailed = val;
}
// If |aLocation| indicates this is heap memory, we try to measure things with
// |aMallocSizeOf|. If that fails (because the platform doesn't support it) or
// it's non-heap memory, we fall back to computing the size analytically.
size_t
Bug 913872 - Take nested enums out of gfxASurface - 1/3 : automatic changes - r=jrmuizel Generated by these regexes: find . -name '*.h' -o -name '*.cpp' -o -name '*.mm' | grep -v '\.hg' | grep -v '^\.\/obj' | xargs sed -i 's/gfx[A-Za-z0-9_]*Surface\:\:[a-z]*\(\(ImageFormat\|SurfaceType\|ContentType\|MemoryLocation\)[0-9A-Za-z_]*\)/gfx\1/g' find . -name '*.h' -o -name '*.cpp' -o -name '*.mm' | grep -v '\.hg' | grep -v '^\.\/obj' | xargs sed -i 's/gfx[A-Za-z0-9_]*Surface\:\:[a-z]*\(\(CONTENT_\|MEMORY_\)[0-9A-Za-z_]*\)/GFX_\1/g' find . -name '*.h' -o -name '*.cpp' -o -name '*.mm' | grep -v '\.hg' | grep -v '^\.\/obj' | xargs sed -i 's/\(^\|[^A-Za-z0-9_]\)\(CONTENT_COLOR\|CONTENT_ALPHA\|CONTENT_COLOR_ALPHA\|CONTENT_SENTINEL\|MEMORY_IN_PROCESS_HEAP\|MEMORY_IN_PROCESS_NONHEAP\|MEMORY_OUT_OF_PROCESS\)\($\|[^A-Za-z0-9_]\)/\1GFX_\2\3/g' find . -name '*.h' -o -name '*.cpp' -o -name '*.mm' | grep -v '\.hg' | grep -v '^\.\/obj' | xargs sed -i 's/\(^\|[^A-Za-z0-9_]\)\(ImageFormatARGB32\|ImageFormatRGB24\|ImageFormatA8\|ImageFormatA1\|ImageFormatRGB16_565\|ImageFormatUnknown\|SurfaceTypeImage\|SurfaceTypePDF\|SurfaceTypePS\|SurfaceTypeXlib\|SurfaceTypeXcb\|SurfaceTypeGlitz\|SurfaceTypeQuartz\|SurfaceTypeWin32\|SurfaceTypeBeOS\|SurfaceTypeDirectFB\|SurfaceTypeSVG\|SurfaceTypeOS2\|SurfaceTypeWin32Printing\|SurfaceTypeQuartzImage\|SurfaceTypeScript\|SurfaceTypeQPainter\|SurfaceTypeRecording\|SurfaceTypeVG\|SurfaceTypeGL\|SurfaceTypeDRM\|SurfaceTypeTee\|SurfaceTypeXML\|SurfaceTypeSkia\|SurfaceTypeSubsurface\|SurfaceTypeD2D\|SurfaceTypeMax\)\($\|[^A-Za-z0-9_]\)/\1gfx\2\3/g'
2013-09-24 13:45:13 -07:00
imgFrame::SizeOfExcludingThisWithComputedFallbackIfHeap(gfxMemoryLocation aLocation, mozilla::MallocSizeOf aMallocSizeOf) const
{
// aMallocSizeOf is only used if aLocation==gfxMemoryLocation::IN_PROCESS_HEAP. It
// should be nullptr otherwise.
NS_ABORT_IF_FALSE(
(aLocation == gfxMemoryLocation::IN_PROCESS_HEAP && aMallocSizeOf) ||
(aLocation != gfxMemoryLocation::IN_PROCESS_HEAP && !aMallocSizeOf),
"mismatch between aLocation and aMallocSizeOf");
size_t n = 0;
if (mPalettedImageData && aLocation == gfxMemoryLocation::IN_PROCESS_HEAP) {
size_t n2 = aMallocSizeOf(mPalettedImageData);
if (n2 == 0) {
n2 = GetImageDataLength() + PaletteDataLength();
}
n += n2;
}
if (mImageSurface && aLocation == gfxMemoryLocation::IN_PROCESS_HEAP) {
n += aMallocSizeOf(mImageSurface);
}
if (mOptSurface && aLocation == gfxMemoryLocation::IN_PROCESS_HEAP) {
n += aMallocSizeOf(mOptSurface);
}
if (mVBuf && aLocation == gfxMemoryLocation::IN_PROCESS_HEAP) {
n += aMallocSizeOf(mVBuf);
n += mVBuf->HeapSizeOfExcludingThis(aMallocSizeOf);
}
if (mVBuf && aLocation == gfxMemoryLocation::IN_PROCESS_NONHEAP) {
n += mVBuf->NonHeapSizeOfExcludingThis();
}
return n;
}