gecko/js/src/jspropertytree.cpp

894 lines
28 KiB
C++
Raw Normal View History

/* -*- Mode: c++; c-basic-offset: 4; tab-width: 40; indent-tabs-mode: nil -*- */
/* vim: set ts=40 sw=4 et tw=99: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Mozilla SpiderMonkey property tree implementation
*
* The Initial Developer of the Original Code is
* Mozilla Foundation
* Portions created by the Initial Developer are Copyright (C) 2002-2010
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Brendan Eich <brendan@mozilla.org>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include <new>
#include "jstypes.h"
#include "jsarena.h"
#include "jsprf.h"
#include "jsapi.h"
#include "jscntxt.h"
#include "jsgc.h"
#include "jspropertytree.h"
#include "jsscope.h"
#include "jsobjinlines.h"
#include "jsscopeinlines.h"
using namespace js;
inline HashNumber
ShapeHasher::hash(const Lookup l)
{
return l->hash();
}
inline bool
ShapeHasher::match(const Key k, const Lookup l)
{
return l->matches(k);
}
bool
PropertyTree::init()
{
2010-07-11 00:09:34 -07:00
JS_InitArenaPool(&arenaPool, "properties",
256 * sizeof(Shape), sizeof(void *), NULL);
return true;
}
void
PropertyTree::finish()
{
2010-07-11 00:09:34 -07:00
JS_FinishArenaPool(&arenaPool);
}
/*
* NB: Called with cx->runtime->gcLock held if gcLocked is true.
* On failure, return null after unlocking the GC and reporting out of memory.
*/
Shape *
PropertyTree::newShape(JSContext *cx, bool gcLocked)
{
Shape *shape;
if (!gcLocked)
JS_LOCK_GC(cx->runtime);
shape = freeList;
if (shape) {
shape->removeFree();
} else {
JS_ARENA_ALLOCATE_CAST(shape, Shape *, &arenaPool, sizeof(Shape));
if (!shape) {
JS_UNLOCK_GC(cx->runtime);
JS_ReportOutOfMemory(cx);
return NULL;
}
}
if (!gcLocked)
JS_UNLOCK_GC(cx->runtime);
JS_RUNTIME_METER(cx->runtime, livePropTreeNodes);
JS_RUNTIME_METER(cx->runtime, totalPropTreeNodes);
return shape;
}
/*
* NB: Called with cx->runtime->gcLock held, always.
* On failure, return null after unlocking the GC and reporting out of memory.
*/
KidsChunk *
KidsChunk::create(JSContext *cx)
{
KidsChunk *chunk;
chunk = (KidsChunk *) js_calloc(sizeof *chunk);
if (!chunk) {
JS_UNLOCK_GC(cx->runtime);
JS_ReportOutOfMemory(cx);
return NULL;
}
JS_RUNTIME_METER(cx->runtime, propTreeKidsChunks);
return chunk;
}
KidsChunk *
KidsChunk::destroy(JSContext *cx, KidsChunk *chunk)
{
JS_RUNTIME_UNMETER(cx->runtime, propTreeKidsChunks);
KidsChunk *nextChunk = chunk->next;
js_free(chunk);
return nextChunk;
}
/*
* NB: Called with cx->runtime->gcLock held, always.
* On failure, return null after unlocking the GC and reporting out of memory.
*/
bool
PropertyTree::insertChild(JSContext *cx, Shape *parent, Shape *child)
{
JS_ASSERT(!parent->inDictionary());
JS_ASSERT(!child->parent);
JS_ASSERT(!child->inDictionary());
2010-07-14 23:19:36 -07:00
JS_ASSERT(!JSID_IS_VOID(parent->id));
JS_ASSERT(!JSID_IS_VOID(child->id));
child->setParent(parent);
KidsPointer *kidp = &parent->kids;
if (kidp->isNull()) {
kidp->setShape(child);
return true;
}
Shape *shape;
if (kidp->isShape()) {
shape = kidp->toShape();
JS_ASSERT(shape != child);
if (shape->matches(child)) {
/*
* Duplicate child created while racing to getChild on the same
* node label. See PropertyTree::getChild, further below.
*/
JS_RUNTIME_METER(cx->runtime, duplicatePropTreeNodes);
}
KidsChunk *chunk = KidsChunk::create(cx);
if (!chunk)
return false;
parent->kids.setChunk(chunk);
chunk->kids[0] = shape;
chunk->kids[1] = child;
return true;
}
if (kidp->isChunk()) {
KidsChunk **chunkp;
KidsChunk *chunk = kidp->toChunk();
do {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
shape = chunk->kids[i];
if (!shape) {
chunk->kids[i] = child;
return true;
}
JS_ASSERT(shape != child);
if (shape->matches(child)) {
/*
* Duplicate child, see comment above. In this case, we
* must let the duplicate be inserted at this level in the
* tree, so we keep iterating, looking for an empty slot in
* which to insert.
*/
JS_ASSERT(shape != child);
JS_RUNTIME_METER(cx->runtime, duplicatePropTreeNodes);
}
}
chunkp = &chunk->next;
} while ((chunk = *chunkp) != NULL);
chunk = KidsChunk::create(cx);
if (!chunk)
return false;
*chunkp = chunk;
chunk->kids[0] = child;
return true;
}
KidsHash *hash = kidp->toHash();
KidsHash::AddPtr addPtr = hash->lookupForAdd(child);
if (!addPtr) {
if (!hash->add(addPtr, child))
return false;
} else {
// FIXME ignore duplicate child case here, going thread-local soon!
}
return true;
}
/* NB: Called with cx->runtime->gcLock held. */
void
PropertyTree::removeChild(JSContext *cx, Shape *child)
{
JS_ASSERT(!child->inDictionary());
Shape *parent = child->parent;
JS_ASSERT(parent);
2010-07-14 23:19:36 -07:00
JS_ASSERT(!JSID_IS_VOID(parent->id));
KidsPointer *kidp = &parent->kids;
if (kidp->isShape()) {
Shape *kid = kidp->toShape();
if (kid == child)
parent->kids.setNull();
return;
}
if (kidp->isChunk()) {
KidsChunk *list = kidp->toChunk();
KidsChunk *chunk = list;
KidsChunk **chunkp = &list;
do {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
if (chunk->kids[i] == child) {
KidsChunk *lastChunk = chunk;
uintN j;
if (!lastChunk->next) {
j = i + 1;
} else {
j = 0;
do {
chunkp = &lastChunk->next;
lastChunk = *chunkp;
} while (lastChunk->next);
}
for (; j < MAX_KIDS_PER_CHUNK; j++) {
if (!lastChunk->kids[j])
break;
}
--j;
if (chunk != lastChunk || j > i)
chunk->kids[i] = lastChunk->kids[j];
lastChunk->kids[j] = NULL;
if (j == 0) {
*chunkp = NULL;
if (!list)
parent->kids.setNull();
KidsChunk::destroy(cx, lastChunk);
}
return;
}
}
chunkp = &chunk->next;
} while ((chunk = *chunkp) != NULL);
return;
}
kidp->toHash()->remove(child);
}
static KidsHash *
HashChunks(KidsChunk *chunk, uintN n)
{
void *mem = js_malloc(sizeof(KidsHash));
if (!mem)
return NULL;
KidsHash *hash = new (mem) KidsHash();
if (!hash->init(n)) {
js_free(hash);
return NULL;
}
do {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
Shape *shape = chunk->kids[i];
if (!shape)
break;
KidsHash::AddPtr addPtr = hash->lookupForAdd(shape);
if (!addPtr) {
/*
* Infallible, we right-sized via hash->init(n) just above.
* Assert just in case jshashtable.h ever regresses.
*/
JS_ALWAYS_TRUE(hash->add(addPtr, shape));
} else {
/*
* Duplicate child case, we don't handle this race,
* multi-threaded shapes are going away...
*/
}
}
} while ((chunk = chunk->next) != NULL);
return hash;
}
/*
* Called without cx->runtime->gcLock held. This function acquires that lock
* only when inserting a new child. Thus there may be races to find or add a
* node that result in duplicates. We expect such races to be rare!
*
* We use cx->runtime->gcLock, not ...->rtLock, to avoid nesting the former
* inside the latter in js_GenerateShape below.
*/
Shape *
PropertyTree::getChild(JSContext *cx, Shape *parent, const Shape &child)
{
Shape *shape;
JS_ASSERT(parent);
JS_ASSERT(!JSID_IS_VOID(parent->id));
/*
* Because chunks are appended at the end and never deleted except by
* the GC, we can search without taking the runtime's GC lock. We may
* miss a matching shape added by another thread, and make a duplicate
* one, but that is an unlikely, therefore small, cost. The property
* tree has extremely low fan-out below its root in popular embeddings
* with real-world workloads.
*
* Patterns such as defining closures that capture a constructor's
* environment as getters or setters on the new object that is passed
* in as |this| can significantly increase fan-out below the property
* tree root -- see bug 335700 for details.
*/
KidsPointer *kidp = &parent->kids;
if (!kidp->isNull()) {
if (kidp->isShape()) {
shape = kidp->toShape();
if (shape->matches(&child))
return shape;
} else if (kidp->isChunk()) {
KidsChunk *chunk = kidp->toChunk();
uintN n = 0;
do {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
shape = chunk->kids[i];
if (!shape) {
n += i;
if (n >= CHUNK_HASH_THRESHOLD) {
/*
* kidp->isChunk() was true, but if we're racing it
* may not be by this point. FIXME: thread "safety"
* is for the birds!
*/
if (!kidp->isHash()) {
chunk = kidp->toChunk();
KidsHash *hash = HashChunks(chunk, n);
if (!hash) {
JS_ReportOutOfMemory(cx);
return NULL;
}
JS_LOCK_GC(cx->runtime);
if (kidp->isHash()) {
hash->KidsHash::~KidsHash();
js_free(hash);
} else {
// FIXME unsafe race with kidp->is/toChunk() above.
// But this is all going single-threaded soon...
while (chunk)
chunk = KidsChunk::destroy(cx, chunk);
kidp->setHash(hash);
}
goto locked_not_found;
}
}
goto not_found;
}
if (shape->matches(&child))
return shape;
}
n += MAX_KIDS_PER_CHUNK;
} while ((chunk = chunk->next) != NULL);
} else {
JS_LOCK_GC(cx->runtime);
shape = *kidp->toHash()->lookup(&child);
if (shape)
goto out;
goto locked_not_found;
}
}
not_found:
JS_LOCK_GC(cx->runtime);
locked_not_found:
shape = newShape(cx, true);
if (!shape)
return NULL;
new (shape) Shape(child.id, child.rawGetter, child.rawSetter, child.slot, child.attrs,
child.flags, child.shortid, js_GenerateShape(cx, true));
if (!insertChild(cx, parent, shape))
return NULL;
out:
JS_UNLOCK_GC(cx->runtime);
return shape;
}
#ifdef DEBUG
void
KidsPointer::checkConsistency(const Shape *aKid) const
{
if (isShape()) {
JS_ASSERT(toShape() == aKid);
} else if (isChunk()) {
bool found = false;
for (KidsChunk *chunk = toChunk(); chunk; chunk = chunk->next) {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
if (!chunk->kids[i]) {
JS_ASSERT(!chunk->next);
for (uintN j = i + 1; j < MAX_KIDS_PER_CHUNK; j++)
JS_ASSERT(!chunk->kids[j]);
break;
}
if (chunk->kids[i] == aKid) {
JS_ASSERT(!found);
found = true;
}
}
}
JS_ASSERT(found);
} else {
JS_ASSERT(isHash());
KidsHash *hash = toHash();
KidsHash::Ptr ptr = hash->lookup(aKid);
JS_ASSERT(*ptr == aKid);
}
}
void
Shape::dump(JSContext *cx, FILE *fp) const
{
2010-07-14 23:19:36 -07:00
JS_ASSERT(!JSID_IS_VOID(id));
2010-07-14 23:19:36 -07:00
if (JSID_IS_INT(id)) {
fprintf(fp, "[%ld]", (long) JSID_TO_INT(id));
} else {
JSString *str;
2010-07-14 23:19:36 -07:00
if (JSID_IS_ATOM(id)) {
str = JSID_TO_STRING(id);
} else {
2010-07-14 23:19:36 -07:00
JS_ASSERT(JSID_IS_OBJECT(id));
str = js_ValueToString(cx, IdToValue(id));
fputs("object ", fp);
}
if (!str)
fputs("<error>", fp);
else
js_FileEscapedString(fp, str, '"');
}
fprintf(fp, " g/s %p/%p slot %u attrs %x ",
JS_FUNC_TO_DATA_PTR(void *, rawGetter),
JS_FUNC_TO_DATA_PTR(void *, rawSetter),
slot, attrs);
if (attrs) {
int first = 1;
fputs("(", fp);
#define DUMP_ATTR(name, display) if (attrs & JSPROP_##name) fputs(" " #display + first, fp), first = 0
DUMP_ATTR(ENUMERATE, enumerate);
DUMP_ATTR(READONLY, readonly);
DUMP_ATTR(PERMANENT, permanent);
DUMP_ATTR(GETTER, getter);
DUMP_ATTR(SETTER, setter);
DUMP_ATTR(SHARED, shared);
#undef DUMP_ATTR
fputs(") ", fp);
}
fprintf(fp, "flags %x ", flags);
if (flags) {
int first = 1;
fputs("(", fp);
#define DUMP_FLAG(name, display) if (flags & name) fputs(" " #display + first, fp), first = 0
DUMP_FLAG(ALIAS, alias);
DUMP_FLAG(HAS_SHORTID, has_shortid);
DUMP_FLAG(METHOD, method);
DUMP_FLAG(MARK, mark);
DUMP_FLAG(SHAPE_REGEN, shape_regen);
DUMP_FLAG(IN_DICTIONARY, in_dictionary);
#undef DUMP_FLAG
fputs(") ", fp);
}
fprintf(fp, "shortid %d\n", shortid);
}
static void
MeterKidCount(JSBasicStats *bs, uintN nkids)
{
JS_BASIC_STATS_ACCUM(bs, nkids);
}
void
js::PropertyTree::meter(JSBasicStats *bs, Shape *node)
{
uintN nkids = 0;
const KidsPointer &kids = node->kids;
if (!kids.isNull()) {
if (kids.isShape()) {
meter(bs, kids.toShape());
nkids = 1;
} else if (kids.isChunk()) {
for (KidsChunk *chunk = kids.toChunk(); chunk; chunk = chunk->next) {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
Shape *kid = chunk->kids[i];
if (!kid)
break;
meter(bs, kid);
nkids++;
}
}
} else {
const KidsHash &hash = *kids.toHash();
for (KidsHash::Range range = hash.all(); !range.empty(); range.popFront()) {
Shape *kid = range.front();
meter(bs, kid);
nkids++;
}
}
}
MeterKidCount(bs, nkids);
}
void
Shape::dumpSubtree(JSContext *cx, int level, FILE *fp) const
{
if (!parent) {
JS_ASSERT(level == 0);
JS_ASSERT(JSID_IS_EMPTY(id));
fprintf(fp, "class %s emptyShape %u\n", clasp->name, shape);
} else {
fprintf(fp, "%*sid ", level, "");
dump(cx, fp);
}
if (!kids.isNull()) {
++level;
if (kids.isShape()) {
Shape *kid = kids.toShape();
JS_ASSERT(kid->parent == this);
kid->dumpSubtree(cx, level, fp);
} else if (kids.isChunk()) {
KidsChunk *chunk = kids.toChunk();
do {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
Shape *kid = chunk->kids[i];
if (!kid)
break;
JS_ASSERT(kid->parent == this);
kid->dumpSubtree(cx, level, fp);
}
} while ((chunk = chunk->next) != NULL);
} else {
const KidsHash &hash = *kids.toHash();
for (KidsHash::Range range = hash.all(); !range.empty(); range.popFront()) {
Shape *kid = range.front();
JS_ASSERT(kid->parent == this);
kid->dumpSubtree(cx, level, fp);
}
}
}
}
#endif /* DEBUG */
JS_ALWAYS_INLINE void
js::PropertyTree::orphanKids(JSContext *cx, Shape *shape)
{
KidsPointer *kidp = &shape->kids;
JS_ASSERT(!kidp->isNull());
/*
* Note that JS_PROPERTY_TREE(cx).removeChild(cx, shape) precedes the call
* to orphanKids in sweepShapes, below. Therefore the grandparent must have
* either no kids left, or else space in chunks or a hash for more than one
* kid.
*/
JS_ASSERT_IF(shape->parent, !shape->parent->kids.isShape());
if (kidp->isShape()) {
Shape *kid = kidp->toShape();
if (!JSID_IS_VOID(kid->id)) {
JS_ASSERT(kid->parent == shape);
kid->parent = NULL;
}
} else if (kidp->isChunk()) {
KidsChunk *chunk = kidp->toChunk();
do {
for (uintN i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
Shape *kid = chunk->kids[i];
if (!kid)
break;
2010-07-14 23:19:36 -07:00
if (!JSID_IS_VOID(kid->id)) {
JS_ASSERT(kid->parent == shape);
kid->parent = NULL;
}
}
} while ((chunk = KidsChunk::destroy(cx, chunk)) != NULL);
} else {
KidsHash *hash = kidp->toHash();
for (KidsHash::Range range = hash->all(); !range.empty(); range.popFront()) {
Shape *kid = range.front();
if (!JSID_IS_VOID(kid->id)) {
JS_ASSERT(kid->parent == shape);
kid->parent = NULL;
}
}
hash->KidsHash::~KidsHash();
js_free(hash);
}
kidp->setNull();
}
void
js::PropertyTree::sweepShapes(JSContext *cx)
{
#ifdef DEBUG
JSBasicStats bs;
uint32 livePropCapacity = 0, totalLiveCount = 0;
static FILE *logfp;
if (!logfp) {
if (const char *filename = cx->runtime->propTreeStatFilename)
logfp = fopen(filename, "w");
}
if (logfp) {
JS_BASIC_STATS_INIT(&bs);
uint32 empties;
{
typedef JSRuntime::EmptyShapeSet HS;
HS &h = cx->runtime->emptyShapes;
empties = h.count();
MeterKidCount(&bs, empties);
for (HS::Range r = h.all(); !r.empty(); r.popFront())
meter(&bs, r.front());
}
double props = cx->runtime->liveObjectPropsPreSweep;
double nodes = cx->runtime->livePropTreeNodes;
double dicts = cx->runtime->liveDictModeNodes;
/* Empty scope nodes are never hashed, so subtract them from nodes. */
JS_ASSERT(nodes - dicts == bs.sum);
nodes -= empties;
double sigma;
double mean = JS_MeanAndStdDevBS(&bs, &sigma);
fprintf(logfp,
"props %g nodes %g (dicts %g) beta %g meankids %g sigma %g max %u\n",
props, nodes, dicts, nodes / props, mean, sigma, bs.max);
JS_DumpHistogram(&bs, logfp);
}
#endif
/*
* Sweep the heap clean of all unmarked nodes. Here we will find nodes
* already GC'ed from the root ply, but we will avoid re-orphaning their
* kids, because the kids member will already be null.
*/
2010-07-11 00:09:34 -07:00
JSArena **ap = &JS_PROPERTY_TREE(cx).arenaPool.first.next;
while (JSArena *a = *ap) {
Shape *limit = (Shape *) a->avail;
uintN liveCount = 0;
for (Shape *shape = (Shape *) a->base; shape < limit; shape++) {
/* If the id is null, shape is already on the freelist. */
if (JSID_IS_VOID(shape->id))
continue;
/*
* If the mark bit is set, shape is alive, so clear the mark bit
* and continue the while loop.
*
* Regenerate shape->shape if it hasn't already been refreshed
* during the mark phase, when live scopes' lastProp members are
* followed to update both scope->shape and lastProp->shape.
*/
if (shape->marked()) {
shape->clearMark();
if (cx->runtime->gcRegenShapes) {
if (shape->hasRegenFlag())
shape->clearRegenFlag();
else
shape->shape = js_RegenerateShapeForGC(cx);
}
liveCount++;
continue;
}
#ifdef DEBUG
if ((shape->flags & Shape::SHARED_EMPTY) &&
cx->runtime->meterEmptyShapes()) {
cx->runtime->emptyShapes.remove((EmptyShape *) shape);
}
#endif
if (shape->inDictionary()) {
JS_RUNTIME_UNMETER(cx->runtime, liveDictModeNodes);
} else {
/*
* Here, shape is garbage to collect, but its parent might not
* be, so we may have to remove it from its parent's kids hash,
* chunk list, or kid singleton pointer set.
*
* Without a separate mark-clearing pass, we can't tell whether
* shape->parent is live at this point, so we must remove shape
* if its parent member is non-null. A saving grace: if shape's
* parent is dead and swept by this point, shape->parent will
* be null -- in the next paragraph, we null all of a property
* tree node's kids' parent links when sweeping that node.
*/
if (shape->parent)
JS_PROPERTY_TREE(cx).removeChild(cx, shape);
if (!shape->kids.isNull())
orphanKids(cx, shape);
}
/*
* Note that Shape::insertFree nulls shape->id so we know that
* shape is on the freelist.
*/
shape->freeTable(cx);
shape->insertFree(&JS_PROPERTY_TREE(cx).freeList);
JS_RUNTIME_UNMETER(cx->runtime, livePropTreeNodes);
}
/* If a contains no live properties, return it to the malloc heap. */
if (liveCount == 0) {
for (Shape *shape = (Shape *) a->base; shape < limit; shape++)
shape->removeFree();
2010-07-11 00:09:34 -07:00
JS_ARENA_DESTROY(&JS_PROPERTY_TREE(cx).arenaPool, a, ap);
} else {
#ifdef DEBUG
livePropCapacity += limit - (Shape *) a->base;
totalLiveCount += liveCount;
#endif
2010-07-11 00:09:34 -07:00
ap = &a->next;
}
}
#ifdef DEBUG
if (logfp) {
fprintf(logfp,
"\nProperty tree stats for gcNumber %lu\n",
(unsigned long) cx->runtime->gcNumber);
fprintf(logfp, "arenautil %g%%\n",
(totalLiveCount && livePropCapacity)
? (totalLiveCount * 100.0) / livePropCapacity
: 0.0);
#define RATE(f1, f2) (((double)js_scope_stats.f1 / js_scope_stats.f2) * 100.0)
fprintf(logfp,
"Scope search stats:\n"
" searches: %6u\n"
" hits: %6u %5.2f%% of searches\n"
" misses: %6u %5.2f%%\n"
" hashes: %6u %5.2f%%\n"
" hashHits: %6u %5.2f%% (%5.2f%% of hashes)\n"
" hashMisses: %6u %5.2f%% (%5.2f%%)\n"
" steps: %6u %5.2f%% (%5.2f%%)\n"
" stepHits: %6u %5.2f%% (%5.2f%%)\n"
" stepMisses: %6u %5.2f%% (%5.2f%%)\n"
" initSearches: %6u\n"
" changeSearches: %6u\n"
" tableAllocFails: %6u\n"
" toDictFails: %6u\n"
" wrapWatchFails: %6u\n"
" adds: %6u\n"
" addFails: %6u\n"
" puts: %6u\n"
" redundantPuts: %6u\n"
" putFails: %6u\n"
" changes: %6u\n"
" changeFails: %6u\n"
" compresses: %6u\n"
" grows: %6u\n"
" removes: %6u\n"
" removeFrees: %6u\n"
" uselessRemoves: %6u\n"
" shrinks: %6u\n",
js_scope_stats.searches,
js_scope_stats.hits, RATE(hits, searches),
js_scope_stats.misses, RATE(misses, searches),
js_scope_stats.hashes, RATE(hashes, searches),
js_scope_stats.hashHits, RATE(hashHits, searches), RATE(hashHits, hashes),
js_scope_stats.hashMisses, RATE(hashMisses, searches), RATE(hashMisses, hashes),
js_scope_stats.steps, RATE(steps, searches), RATE(steps, hashes),
js_scope_stats.stepHits, RATE(stepHits, searches), RATE(stepHits, hashes),
js_scope_stats.stepMisses, RATE(stepMisses, searches), RATE(stepMisses, hashes),
js_scope_stats.initSearches,
js_scope_stats.changeSearches,
js_scope_stats.tableAllocFails,
js_scope_stats.toDictFails,
js_scope_stats.wrapWatchFails,
js_scope_stats.adds,
js_scope_stats.addFails,
js_scope_stats.puts,
js_scope_stats.redundantPuts,
js_scope_stats.putFails,
js_scope_stats.changes,
js_scope_stats.changeFails,
js_scope_stats.compresses,
js_scope_stats.grows,
js_scope_stats.removes,
js_scope_stats.removeFrees,
js_scope_stats.uselessRemoves,
js_scope_stats.shrinks);
#undef RATE
fflush(logfp);
}
if (const char *filename = cx->runtime->propTreeDumpFilename) {
char pathname[1024];
JS_snprintf(pathname, sizeof pathname, "%s.%lu",
filename, (unsigned long)cx->runtime->gcNumber);
FILE *dumpfp = fopen(pathname, "w");
if (dumpfp) {
typedef JSRuntime::EmptyShapeSet HS;
HS &h = cx->runtime->emptyShapes;
for (HS::Range r = h.all(); !r.empty(); r.popFront()) {
Shape *empty = r.front();
empty->dumpSubtree(cx, 0, dumpfp);
putc('\n', dumpfp);
}
fclose(dumpfp);
}
}
#endif /* DEBUG */
}