2013-08-08 02:37:36 -07:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2010 Google Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
|
|
* its contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#if ENABLE(WEB_AUDIO)
|
|
|
|
|
|
|
|
#include "core/platform/audio/HRTFElevation.h"
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "core/platform/PlatformMemoryInstrumentation.h"
|
|
|
|
#include "core/platform/audio/AudioBus.h"
|
|
|
|
#include "core/platform/audio/HRTFPanner.h"
|
|
|
|
#include <wtf/MemoryInstrumentationVector.h>
|
|
|
|
#include <wtf/OwnPtr.h>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
namespace WebCore {
|
|
|
|
|
|
|
|
const unsigned HRTFElevation::AzimuthSpacing = 15;
|
|
|
|
const unsigned HRTFElevation::NumberOfRawAzimuths = 360 / AzimuthSpacing;
|
|
|
|
const unsigned HRTFElevation::InterpolationFactor = 8;
|
|
|
|
const unsigned HRTFElevation::NumberOfTotalAzimuths = NumberOfRawAzimuths * InterpolationFactor;
|
|
|
|
|
|
|
|
// Number of frames in an individual impulse response.
|
|
|
|
const size_t ResponseFrameSize = 256;
|
|
|
|
|
|
|
|
bool HRTFElevation::calculateKernelsForAzimuthElevation(int azimuth, int elevation, float sampleRate, const String& subjectName,
|
|
|
|
RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
|
|
|
|
{
|
|
|
|
// Valid values for azimuth are 0 -> 345 in 15 degree increments.
|
|
|
|
// Valid values for elevation are -45 -> +90 in 15 degree increments.
|
|
|
|
|
|
|
|
bool isAzimuthGood = azimuth >= 0 && azimuth <= 345 && (azimuth / 15) * 15 == azimuth;
|
|
|
|
ASSERT(isAzimuthGood);
|
|
|
|
if (!isAzimuthGood)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
|
|
|
|
ASSERT(isElevationGood);
|
|
|
|
if (!isElevationGood)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Construct the resource name from the subject name, azimuth, and elevation, for example:
|
|
|
|
// "IRC_Composite_C_R0195_T015_P000"
|
|
|
|
// Note: the passed in subjectName is not a string passed in via JavaScript or the web.
|
|
|
|
// It's passed in as an internal ASCII identifier and is an implementation detail.
|
|
|
|
int positiveElevation = elevation < 0 ? elevation + 360 : elevation;
|
|
|
|
|
|
|
|
String resourceName = String::format("IRC_%s_C_R0195_T%03d_P%03d", subjectName.utf8().data(), azimuth, positiveElevation);
|
|
|
|
|
|
|
|
RefPtr<AudioBus> impulseResponse(AudioBus::loadPlatformResource(resourceName.utf8().data(), sampleRate));
|
|
|
|
|
|
|
|
ASSERT(impulseResponse.get());
|
|
|
|
if (!impulseResponse.get())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
size_t responseLength = impulseResponse->length();
|
|
|
|
size_t expectedLength = static_cast<size_t>(256 * (sampleRate / 44100.0));
|
|
|
|
|
|
|
|
// Check number of channels and length. For now these are fixed and known.
|
|
|
|
bool isBusGood = responseLength == expectedLength && impulseResponse->numberOfChannels() == 2;
|
|
|
|
ASSERT(isBusGood);
|
|
|
|
if (!isBusGood)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
AudioChannel* leftEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelLeft);
|
|
|
|
AudioChannel* rightEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelRight);
|
|
|
|
|
|
|
|
// Note that depending on the fftSize returned by the panner, we may be truncating the impulse response we just loaded in.
|
|
|
|
const size_t fftSize = HRTFPanner::fftSizeForSampleRate(sampleRate);
|
2013-08-08 02:38:29 -07:00
|
|
|
MOZ_ASSERT(responseLength >= fftSize / 2);
|
|
|
|
if (responseLength < fftSize / 2)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
kernelL = HRTFKernel::create(leftEarImpulseResponse, fftSize / 2, sampleRate);
|
|
|
|
kernelR = HRTFKernel::create(rightEarImpulseResponse, fftSize / 2, sampleRate);
|
2013-08-08 02:37:36 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
|
|
|
|
//
|
|
|
|
// Here's how it goes:
|
|
|
|
static int maxElevations[] = {
|
|
|
|
// Azimuth
|
|
|
|
//
|
|
|
|
90, // 0
|
|
|
|
45, // 15
|
|
|
|
60, // 30
|
|
|
|
45, // 45
|
|
|
|
75, // 60
|
|
|
|
45, // 75
|
|
|
|
60, // 90
|
|
|
|
45, // 105
|
|
|
|
75, // 120
|
|
|
|
45, // 135
|
|
|
|
60, // 150
|
|
|
|
45, // 165
|
|
|
|
75, // 180
|
|
|
|
45, // 195
|
|
|
|
60, // 210
|
|
|
|
45, // 225
|
|
|
|
75, // 240
|
|
|
|
45, // 255
|
|
|
|
60, // 270
|
|
|
|
45, // 285
|
|
|
|
75, // 300
|
|
|
|
45, // 315
|
|
|
|
60, // 330
|
|
|
|
45 // 345
|
|
|
|
};
|
|
|
|
|
|
|
|
PassOwnPtr<HRTFElevation> HRTFElevation::createForSubject(const String& subjectName, int elevation, float sampleRate)
|
|
|
|
{
|
|
|
|
bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
|
|
|
|
ASSERT(isElevationGood);
|
|
|
|
if (!isElevationGood)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
|
|
|
|
OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
|
|
|
|
|
|
|
|
// Load convolution kernels from HRTF files.
|
|
|
|
int interpolatedIndex = 0;
|
|
|
|
for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
|
|
|
|
// Don't let elevation exceed maximum for this azimuth.
|
|
|
|
int maxElevation = maxElevations[rawIndex];
|
|
|
|
int actualElevation = min(elevation, maxElevation);
|
|
|
|
|
|
|
|
bool success = calculateKernelsForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, sampleRate, subjectName, kernelListL->at(interpolatedIndex), kernelListR->at(interpolatedIndex));
|
|
|
|
if (!success)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
interpolatedIndex += InterpolationFactor;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now go back and interpolate intermediate azimuth values.
|
|
|
|
for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
|
|
|
|
int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
|
|
|
|
|
|
|
|
// Create the interpolated convolution kernels and delays.
|
|
|
|
for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
|
|
|
|
float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
|
|
|
|
|
|
|
|
(*kernelListL)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL->at(i).get(), kernelListL->at(j).get(), x);
|
|
|
|
(*kernelListR)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListR->at(i).get(), kernelListR->at(j).get(), x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), elevation, sampleRate));
|
|
|
|
return hrtfElevation.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
PassOwnPtr<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate)
|
|
|
|
{
|
|
|
|
ASSERT(hrtfElevation1 && hrtfElevation2);
|
|
|
|
if (!hrtfElevation1 || !hrtfElevation2)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
ASSERT(x >= 0.0 && x < 1.0);
|
|
|
|
|
|
|
|
OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
|
|
|
|
OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
|
|
|
|
|
|
|
|
HRTFKernelList* kernelListL1 = hrtfElevation1->kernelListL();
|
|
|
|
HRTFKernelList* kernelListR1 = hrtfElevation1->kernelListR();
|
|
|
|
HRTFKernelList* kernelListL2 = hrtfElevation2->kernelListL();
|
|
|
|
HRTFKernelList* kernelListR2 = hrtfElevation2->kernelListR();
|
|
|
|
|
|
|
|
// Interpolate kernels of corresponding azimuths of the two elevations.
|
|
|
|
for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
|
|
|
|
(*kernelListL)[i] = HRTFKernel::createInterpolatedKernel(kernelListL1->at(i).get(), kernelListL2->at(i).get(), x);
|
|
|
|
(*kernelListR)[i] = HRTFKernel::createInterpolatedKernel(kernelListR1->at(i).get(), kernelListR2->at(i).get(), x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Interpolate elevation angle.
|
|
|
|
double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
|
|
|
|
|
|
|
|
OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), static_cast<int>(angle), sampleRate));
|
|
|
|
return hrtfElevation.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
|
|
|
|
{
|
|
|
|
bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
|
|
|
|
ASSERT(checkAzimuthBlend);
|
|
|
|
if (!checkAzimuthBlend)
|
|
|
|
azimuthBlend = 0.0;
|
|
|
|
|
|
|
|
unsigned numKernels = m_kernelListL->size();
|
|
|
|
|
|
|
|
bool isIndexGood = azimuthIndex < numKernels;
|
|
|
|
ASSERT(isIndexGood);
|
|
|
|
if (!isIndexGood) {
|
|
|
|
kernelL = 0;
|
|
|
|
kernelR = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the left and right kernels.
|
|
|
|
kernelL = m_kernelListL->at(azimuthIndex).get();
|
|
|
|
kernelR = m_kernelListR->at(azimuthIndex).get();
|
|
|
|
|
|
|
|
frameDelayL = m_kernelListL->at(azimuthIndex)->frameDelay();
|
|
|
|
frameDelayR = m_kernelListR->at(azimuthIndex)->frameDelay();
|
|
|
|
|
|
|
|
int azimuthIndex2 = (azimuthIndex + 1) % numKernels;
|
|
|
|
double frameDelay2L = m_kernelListL->at(azimuthIndex2)->frameDelay();
|
|
|
|
double frameDelay2R = m_kernelListR->at(azimuthIndex2)->frameDelay();
|
|
|
|
|
|
|
|
// Linearly interpolate delays.
|
|
|
|
frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
|
|
|
|
frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
|
|
|
|
}
|
|
|
|
|
|
|
|
void HRTFElevation::reportMemoryUsage(MemoryObjectInfo* memoryObjectInfo) const
|
|
|
|
{
|
|
|
|
MemoryClassInfo info(memoryObjectInfo, this, PlatformMemoryTypes::AudioSharedData);
|
|
|
|
info.addMember(m_kernelListL, "kernelListL");
|
|
|
|
info.addMember(m_kernelListR, "kernelListR");
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace WebCore
|
|
|
|
|
|
|
|
#endif // ENABLE(WEB_AUDIO)
|