gecko/media/libvpx/vp8/decoder/decodframe.c

909 lines
28 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "onyxd_int.h"
#include "header.h"
#include "reconintra.h"
#include "reconintra4x4.h"
#include "recon.h"
#include "reconinter.h"
#include "dequantize.h"
#include "detokenize.h"
#include "invtrans.h"
#include "alloccommon.h"
#include "entropymode.h"
#include "quant_common.h"
#include "segmentation_common.h"
#include "setupintrarecon.h"
#include "demode.h"
#include "decodemv.h"
#include "extend.h"
#include "vpx_mem/vpx_mem.h"
#include "idct.h"
#include "dequantize.h"
#include "predictdc.h"
#include "threading.h"
#include "decoderthreading.h"
#include "dboolhuff.h"
#include <assert.h>
#include <stdio.h>
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
{
int r, c;
int i;
int Q;
VP8_COMMON *const pc = & pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
pc->Y1dequant[Q][0][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
// all the ac values = ;
for (i = 1; i < 16; i++)
{
int rc = vp8_default_zig_zag1d[i];
r = (rc >> 2);
c = (rc & 3);
pc->Y1dequant[Q][r][c] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][r][c] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][r][c] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
}
}
}
static void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int i;
int QIndex;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
VP8_COMMON *const pc = & pbi->common;
// Decide whether to use the default or alternate baseline Q value.
if (xd->segmentation_enabled)
{
// Abs Value
if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA)
QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id];
// Delta Value
else
{
QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id];
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range
}
}
else
QIndex = pc->base_qindex;
// Set up the block level dequant pointers
for (i = 0; i < 16; i++)
{
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
for (i = 16; i < 24; i++)
{
xd->block[i].dequant = pc->UVdequant[QIndex];
}
xd->block[24].dequant = pc->Y2dequant[QIndex];
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
//skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
// to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
if (xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME)
{
vp8_build_intra_predictors_mbuv_s(xd);
vp8_build_intra_predictors_mby_s_ptr(xd);
}
else
{
vp8_build_inter_predictors_mb_s(xd);
}
}
static void reconstruct_mb(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
if (xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME)
{
vp8_build_intra_predictors_mbuv(xd);
if (xd->mbmi.mode != B_PRED)
{
vp8_build_intra_predictors_mby_ptr(xd);
vp8_recon16x16mb(RTCD_VTABLE(recon), xd);
}
else
{
vp8_recon_intra4x4mb(RTCD_VTABLE(recon), xd);
}
}
else
{
vp8_build_inter_predictors_mb(xd);
vp8_recon16x16mb(RTCD_VTABLE(recon), xd);
}
}
static void de_quantand_idct(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int i;
BLOCKD *b = &xd->block[24];
if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV)
{
DEQUANT_INVOKE(&pbi->dequant, block)(b);
// do 2nd order transform on the dc block
if (b->eob > 1)
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
for (i = 0; i < 16; i++)
{
b = &xd->block[i];
if (b->eob > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_dc)(b->qcoeff, &b->dequant[0][0], b->diff, 32, xd->block[24].diff[i]);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar)(xd->block[24].diff[i], b->diff, 32);
}
}
for (i = 16; i < 24; i++)
{
b = &xd->block[i];
if (b->eob > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct)(b->qcoeff, &b->dequant[0][0], b->diff, 16);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar)(b->qcoeff[0] * b->dequant[0][0], b->diff, 16);
((int *)b->qcoeff)[0] = 0;
}
}
}
else
{
for (i = 0; i < 24; i++)
{
b = &xd->block[i];
if (b->eob > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct)(b->qcoeff, &b->dequant[0][0], b->diff, (32 - (i & 16)));
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar)(b->qcoeff[0] * b->dequant[0][0], b->diff, (32 - (i & 16)));
((int *)b->qcoeff)[0] = 0;
}
}
}
}
void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int eobtotal = 0;
if (xd->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
}
else
{
eobtotal = vp8_decode_mb_tokens(pbi, xd);
}
xd->mode_info_context->mbmi.dc_diff = 1;
if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV && eobtotal == 0)
{
xd->mode_info_context->mbmi.dc_diff = 0;
skip_recon_mb(pbi, xd);
return;
}
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
de_quantand_idct(pbi, xd);
reconstruct_mb(pbi, xd);
}
static int get_delta_q(vp8_reader *bc, int prev, int *q_update)
{
int ret_val = 0;
if (vp8_read_bit(bc))
{
ret_val = vp8_read_literal(bc, 4);
if (vp8_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
void vp8_decode_mb_row(VP8D_COMP *pbi,
VP8_COMMON *pc,
int mb_row,
MACROBLOCKD *xd)
{
int i;
int recon_yoffset, recon_uvoffset;
int mb_col;
int recon_y_stride = pc->last_frame.y_stride;
int recon_uv_stride = pc->last_frame.uv_stride;
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
// reset above block coeffs
xd->above_context[Y1CONTEXT] = pc->above_context[Y1CONTEXT];
xd->above_context[UCONTEXT ] = pc->above_context[UCONTEXT];
xd->above_context[VCONTEXT ] = pc->above_context[VCONTEXT];
xd->above_context[Y2CONTEXT] = pc->above_context[Y2CONTEXT];
xd->up_available = (mb_row != 0);
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
// Take a copy of the mode and Mv information for this macroblock into the xd->mbmi
vpx_memcpy(&xd->mbmi, &xd->mode_info_context->mbmi, 32); //sizeof(MB_MODE_INFO) );
if (xd->mbmi.mode == SPLITMV || xd->mbmi.mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *d = &xd->block[i];
vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO));
}
}
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->dst.y_buffer = pc->new_frame.y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->new_frame.u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->new_frame.v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
// Select the appropriate reference frame for this MB
if (xd->mbmi.ref_frame == LAST_FRAME)
{
xd->pre.y_buffer = pc->last_frame.y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->last_frame.u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->last_frame.v_buffer + recon_uvoffset;
}
else if (xd->mbmi.ref_frame == GOLDEN_FRAME)
{
// Golden frame reconstruction buffer
xd->pre.y_buffer = pc->golden_frame.y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->golden_frame.u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->golden_frame.v_buffer + recon_uvoffset;
}
else
{
// Alternate reference frame reconstruction buffer
xd->pre.y_buffer = pc->alt_ref_frame.y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->alt_ref_frame.u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->alt_ref_frame.v_buffer + recon_uvoffset;
}
vp8_build_uvmvs(xd, pc->full_pixel);
/*
if(pbi->common.current_video_frame==0 &&mb_col==1 && mb_row==0)
pbi->debugoutput =1;
else
pbi->debugoutput =0;
*/
vp8dx_bool_decoder_fill(xd->current_bc);
vp8_decode_macroblock(pbi, xd);
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->gf_active_ptr++; // GF useage flag for next MB
xd->above_context[Y1CONTEXT] += 4;
xd->above_context[UCONTEXT ] += 2;
xd->above_context[VCONTEXT ] += 2;
xd->above_context[Y2CONTEXT] ++;
pbi->current_mb_col_main = mb_col;
}
// adjust to the next row of mbs
vp8_extend_mb_row(
&pc->new_frame,
xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8
);
++xd->mode_info_context; /* skip prediction column */
pbi->last_mb_row_decoded = mb_row;
}
static unsigned int read_partition_size(const unsigned char *cx_size)
{
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
}
static void setup_token_decoder(VP8D_COMP *pbi,
const unsigned char *cx_data)
{
int num_part;
int i;
VP8_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
vp8_reader *bool_decoder;
const unsigned char *partition;
/* Parse number of token partitions to use */
pc->multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2);
num_part = 1 << pc->multi_token_partition;
/* Set up pointers to the first partition */
partition = cx_data;
bool_decoder = &pbi->bc2;
if (num_part > 1)
{
CHECK_MEM_ERROR(pbi->mbc, vpx_malloc(num_part * sizeof(vp8_reader)));
bool_decoder = pbi->mbc;
partition += 3 * (num_part - 1);
}
for (i = 0; i < num_part; i++)
{
const unsigned char *partition_size_ptr = cx_data + i * 3;
unsigned int partition_size;
/* Calculate the length of this partition. The last partition
* size is implicit.
*/
if (i < num_part - 1)
{
partition_size = read_partition_size(partition_size_ptr);
}
else
{
partition_size = user_data_end - partition;
}
if (partition + partition_size > user_data_end)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", i + 1);
if (vp8dx_start_decode(bool_decoder, IF_RTCD(&pbi->dboolhuff),
partition, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", i + 1);
/* Advance to the next partition */
partition += partition_size;
bool_decoder++;
}
/* Clamp number of decoder threads */
if (pbi->decoding_thread_count > num_part - 1)
pbi->decoding_thread_count = num_part - 1;
}
static void stop_token_decoder(VP8D_COMP *pbi)
{
int i;
VP8_COMMON *pc = &pbi->common;
if (pc->multi_token_partition != ONE_PARTITION)
{
int num_part = (1 << pc->multi_token_partition);
for (i = 0; i < num_part; i++)
{
vp8dx_stop_decode(&pbi->mbc[i]);
}
vpx_free(pbi->mbc);
}
else
vp8dx_stop_decode(& pbi->bc2);
}
static void init_frame(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
if (pc->frame_type == KEY_FRAME)
{
// Various keyframe initializations
vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vp8_init_mbmode_probs(pc);
vp8_default_coef_probs(pc);
vp8_kf_default_bmode_probs(pc->kf_bmode_prob);
// reset the segment feature data to 0 with delta coding (Default state).
vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data));
xd->mb_segement_abs_delta = SEGMENT_DELTADATA;
// reset the mode ref deltasa for loop filter
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
// All buffers are implicitly updated on key frames.
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
// Note that Golden and Altref modes cannot be used on a key frame so
// ref_frame_sign_bias[] is undefined and meaningless
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
}
else
{
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = SIXTAP;
else
pc->mcomp_filter_type = BILINEAR;
// To enable choice of different interploation filters
if (pc->mcomp_filter_type == SIXTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16);
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16);
}
}
xd->left_context = pc->left_context;
xd->mode_info_context = pc->mi;
xd->frame_type = pc->frame_type;
xd->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
}
int vp8_decode_frame(VP8D_COMP *pbi)
{
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
const unsigned char *const data_end = data + pbi->source_sz;
int first_partition_length_in_bytes;
int mb_row;
int i, j, k, l;
const int *const mb_feature_data_bits = vp8_mb_feature_data_bits;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
data += 3;
if (data + first_partition_length_in_bytes > data_end)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME)
{
const int Width = pc->Width;
const int Height = pc->Height;
// vet via sync code
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
data += 7;
if (Width != pc->Width || Height != pc->Height)
{
if (pc->Width <= 0)
{
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->Height <= 0)
{
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (vp8_alloc_frame_buffers(&pbi->common, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
}
if (pc->Width == 0 || pc->Height == 0)
{
return -1;
}
init_frame(pbi);
if (vp8dx_start_decode(bc, IF_RTCD(&pbi->dboolhuff),
data, data_end - data))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
pc->clr_type = (YUV_TYPE)vp8_read_bit(bc);
pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc);
}
// Is segmentation enabled
xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->segmentation_enabled)
{
// Signal whether or not the segmentation map is being explicitly updated this frame.
xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc);
xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc);
if (xd->update_mb_segmentation_data)
{
xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc);
vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data));
// For each segmentation feature (Quant and loop filter level)
for (i = 0; i < MB_LVL_MAX; i++)
{
for (j = 0; j < MAX_MB_SEGMENTS; j++)
{
// Frame level data
if (vp8_read_bit(bc))
{
xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]);
if (vp8_read_bit(bc))
xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j];
}
else
xd->segment_feature_data[i][j] = 0;
}
}
}
if (xd->update_mb_segmentation_map)
{
// Which macro block level features are enabled
vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
// Read the probs used to decode the segment id for each macro block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
{
// If not explicitly set value is defaulted to 255 by memset above
if (vp8_read_bit(bc))
xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
// Read the loop filter level and type
pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc);
pc->filter_level = vp8_read_literal(bc, 6);
pc->sharpness_level = vp8_read_literal(bc, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_enabled)
{
// Do the deltas need to be updated
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_update)
{
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
//sign = vp8_read_bit( bc );
xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) // Apply sign
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
//sign = vp8_read_bit( bc );
xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) // Apply sign
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
setup_token_decoder(pbi, data + first_partition_length_in_bytes);
xd->current_bc = &pbi->bc2;
// Read the default quantizers.
{
int Q, q_update;
Q = vp8_read_literal(bc, 7); // AC 1st order Q = default
pc->base_qindex = Q;
q_update = 0;
pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp8cx_init_de_quantizer(pbi);
// MB level dequantizer setup
mb_init_dequantizer(pbi, &pbi->mb);
}
// Determine if the golden frame or ARF buffer should be updated and how.
// For all non key frames the GF and ARF refresh flags and sign bias
// flags must be set explicitly.
if (pc->frame_type != KEY_FRAME)
{
// Should the GF or ARF be updated from the current frame
pc->refresh_golden_frame = vp8_read_bit(bc);
pc->refresh_alt_ref_frame = vp8_read_bit(bc);
// Buffer to buffer copy flags.
pc->copy_buffer_to_gf = 0;
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp8_read_literal(bc, 2);
pc->copy_buffer_to_arf = 0;
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp8_read_literal(bc, 2);
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc);
}
pc->refresh_entropy_probs = vp8_read_bit(bc);
if (pc->refresh_entropy_probs == 0)
{
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc);
if (0)
{
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
vp8dx_bool_decoder_fill(bc);
{
// read coef probability tree
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++)
{
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
vpx_memcpy(&xd->pre, &pc->last_frame, sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->new_frame, sizeof(YV12_BUFFER_CONFIG));
// set up frame new frame for intra coded blocks
vp8_setup_intra_recon(&pc->new_frame);
vp8_setup_block_dptrs(xd);
vp8_build_block_doffsets(xd);
// clear out the coeff buffer
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
// Read the mb_no_coeff_skip flag
pc->mb_no_coeff_skip = (int)vp8_read_bit(bc);
if (pc->frame_type == KEY_FRAME)
vp8_kfread_modes(pbi);
else
vp8_decode_mode_mvs(pbi);
// reset since these guys are used as iterators
vpx_memset(pc->above_context[Y1CONTEXT], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 4);
vpx_memset(pc->above_context[UCONTEXT ], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 2);
vpx_memset(pc->above_context[VCONTEXT ], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 2);
vpx_memset(pc->above_context[Y2CONTEXT], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols);
xd->gf_active_ptr = (signed char *)pc->gf_active_flags; // Point to base of GF active flags data structure
vpx_memcpy(&xd->block[0].bmi, &xd->mode_info_context->bmi[0], sizeof(B_MODE_INFO));
if (pbi->b_multithreaded_lf && pbi->common.filter_level != 0)
vp8_start_lfthread(pbi);
if (pbi->b_multithreaded_rd && pbi->common.multi_token_partition != ONE_PARTITION)
{
vp8_mtdecode_mb_rows(pbi, xd);
}
else
{
int ibc = 0;
int num_part = 1 << pbi->common.multi_token_partition;
// Decode the individual macro block
for (mb_row = 0; mb_row < pc->mb_rows; mb_row++)
{
if (num_part > 1)
{
xd->current_bc = & pbi->mbc[ibc];
ibc++;
if (ibc == num_part)
ibc = 0;
}
vp8_decode_mb_row(pbi, pc, mb_row, xd);
}
pbi->last_mb_row_decoded = mb_row;
}
stop_token_decoder(pbi);
vp8dx_stop_decode(bc);
// vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos);
// If this was a kf or Gf note the Q used
if ((pc->frame_type == KEY_FRAME) || (pc->refresh_golden_frame) || pbi->common.refresh_alt_ref_frame)
pc->last_kf_gf_q = pc->base_qindex;
if (pc->refresh_entropy_probs == 0)
{
vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
return 0;
}