gecko/intl/unicharutil/nsUnicodeNormalizer.cpp

700 lines
17 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This file is modified from JPNIC's mDNKit, it is under both MPL and
* JPNIC's license.
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 04:12:37 -07:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Copyright (c) 2000,2002 Japan Network Information Center.
* All rights reserved.
*
* By using this file, you agree to the terms and conditions set forth bellow.
*
* LICENSE TERMS AND CONDITIONS
*
* The following License Terms and Conditions apply, unless a different
* license is obtained from Japan Network Information Center ("JPNIC"),
* a Japanese association, Kokusai-Kougyou-Kanda Bldg 6F, 2-3-4 Uchi-Kanda,
* Chiyoda-ku, Tokyo 101-0047, Japan.
*
* 1. Use, Modification and Redistribution (including distribution of any
* modified or derived work) in source and/or binary forms is permitted
* under this License Terms and Conditions.
*
* 2. Redistribution of source code must retain the copyright notices as they
* appear in each source code file, this License Terms and Conditions.
*
* 3. Redistribution in binary form must reproduce the Copyright Notice,
* this License Terms and Conditions, in the documentation and/or other
* materials provided with the distribution. For the purposes of binary
* distribution the "Copyright Notice" refers to the following language:
* "Copyright (c) 2000-2002 Japan Network Information Center. All rights reserved."
*
* 4. The name of JPNIC may not be used to endorse or promote products
* derived from this Software without specific prior written approval of
* JPNIC.
*
* 5. Disclaimer/Limitation of Liability: THIS SOFTWARE IS PROVIDED BY JPNIC
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JPNIC BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <string.h>
#include "nsMemory.h"
#include "nsUnicodeNormalizer.h"
#include "nsString.h"
NS_IMPL_ISUPPORTS(nsUnicodeNormalizer, nsIUnicodeNormalizer)
nsUnicodeNormalizer::nsUnicodeNormalizer()
{
}
nsUnicodeNormalizer::~nsUnicodeNormalizer()
{
}
#define END_BIT 0x80000000
/*
* Some constants for Hangul decomposition/composition.
* These things were taken from unicode book.
*/
#define SBase 0xac00
#define LBase 0x1100
#define VBase 0x1161
#define TBase 0x11a7
#define LCount 19
#define VCount 21
#define TCount 28
#define SLast (SBase + LCount * VCount * TCount)
struct composition {
uint32_t c2; /* 2nd character */
uint32_t comp; /* composed character */
};
#include "normalization_data.h"
/*
* Macro for multi-level index table.
*/
#define LOOKUPTBL(vprefix, mprefix, v) \
DMAP(vprefix)[\
IMAP(vprefix)[\
IMAP(vprefix)[IDX0(mprefix, v)] + IDX1(mprefix, v)\
]\
].tbl[IDX2(mprefix, v)]
#define IDX0(mprefix, v) IDX_0(v, BITS1(mprefix), BITS2(mprefix))
#define IDX1(mprefix, v) IDX_1(v, BITS1(mprefix), BITS2(mprefix))
#define IDX2(mprefix, v) IDX_2(v, BITS1(mprefix), BITS2(mprefix))
#define IDX_0(v, bits1, bits2) ((v) >> ((bits1) + (bits2)))
#define IDX_1(v, bits1, bits2) (((v) >> (bits2)) & ((1 << (bits1)) - 1))
#define IDX_2(v, bits1, bits2) ((v) & ((1 << (bits2)) - 1))
#define BITS1(mprefix) mprefix ## _BITS_1
#define BITS2(mprefix) mprefix ## _BITS_2
#define IMAP(vprefix) vprefix ## _imap
#define DMAP(vprefix) vprefix ## _table
#define SEQ(vprefix) vprefix ## _seq
static int32_t
canonclass(uint32_t c) {
/* Look up canonicalclass table. */
return (LOOKUPTBL(canon_class, CANON_CLASS, c));
}
static int32_t
decompose_char(uint32_t c, const uint32_t **seqp)
{
/* Look up decomposition table. */
int32_t seqidx = LOOKUPTBL(decompose, DECOMP, c);
*seqp = SEQ(decompose) + (seqidx & ~DECOMP_COMPAT);
return (seqidx);
}
static int32_t
compose_char(uint32_t c,
const struct composition **compp)
{
/* Look up composition table. */
int32_t seqidx = LOOKUPTBL(compose, CANON_COMPOSE, c);
*compp = SEQ(compose) + (seqidx & 0xffff);
return (seqidx >> 16);
}
static nsresult
mdn__unicode_decompose(int32_t compat, uint32_t *v, size_t vlen,
uint32_t c, int32_t *decomp_lenp)
{
uint32_t *vorg = v;
int32_t seqidx;
const uint32_t *seq;
//assert(v != nullptr && vlen >= 0 && decomp_lenp != nullptr);
/*
* First, check for Hangul.
*/
if (SBase <= c && c < SLast) {
int32_t idx, t_offset, v_offset, l_offset;
idx = c - SBase;
t_offset = idx % TCount;
idx /= TCount;
v_offset = idx % VCount;
l_offset = idx / VCount;
if ((t_offset == 0 && vlen < 2) || (t_offset > 0 && vlen < 3))
return (NS_ERROR_UNORM_MOREOUTPUT);
*v++ = LBase + l_offset;
*v++ = VBase + v_offset;
if (t_offset > 0)
*v++ = TBase + t_offset;
*decomp_lenp = v - vorg;
return (NS_OK);
}
/*
* Look up decomposition table. If no decomposition is defined
* or if it is a compatibility decomosition when canonical
* decomposition requested, return 'NS_SUCCESS_UNORM_NOTFOUND'.
*/
seqidx = decompose_char(c, &seq);
if (seqidx == 0 || (compat == 0 && (seqidx & DECOMP_COMPAT) != 0))
return (NS_SUCCESS_UNORM_NOTFOUND);
/*
* Copy the decomposed sequence. The end of the sequence are
* marked with END_BIT.
*/
do {
uint32_t c;
int32_t dlen;
nsresult r;
c = *seq & ~END_BIT;
/* Decompose recursively. */
r = mdn__unicode_decompose(compat, v, vlen, c, &dlen);
if (r == NS_OK) {
v += dlen;
vlen -= dlen;
} else if (r == NS_SUCCESS_UNORM_NOTFOUND) {
if (vlen < 1)
return (NS_ERROR_UNORM_MOREOUTPUT);
*v++ = c;
vlen--;
} else {
return (r);
}
} while ((*seq++ & END_BIT) == 0);
*decomp_lenp = v - vorg;
return (NS_OK);
}
static int32_t
mdn__unicode_iscompositecandidate(uint32_t c)
{
const struct composition *dummy;
/* Check for Hangul */
if ((LBase <= c && c < LBase + LCount) || (SBase <= c && c < SLast))
return (1);
/*
* Look up composition table. If there are no composition
* that begins with the given character, it is not a
* composition candidate.
*/
if (compose_char(c, &dummy) == 0)
return (0);
else
return (1);
}
static nsresult
mdn__unicode_compose(uint32_t c1, uint32_t c2, uint32_t *compp)
{
int32_t n;
int32_t lo, hi;
const struct composition *cseq;
//assert(compp != nullptr);
/*
* Check for Hangul.
*/
if (LBase <= c1 && c1 < LBase + LCount &&
VBase <= c2 && c2 < VBase + VCount) {
/*
* Hangul L and V.
*/
*compp = SBase +
((c1 - LBase) * VCount + (c2 - VBase)) * TCount;
return (NS_OK);
} else if (SBase <= c1 && c1 < SLast &&
TBase <= c2 && c2 < TBase + TCount &&
(c1 - SBase) % TCount == 0) {
/*
* Hangul LV and T.
*/
*compp = c1 + (c2 - TBase);
return (NS_OK);
}
/*
* Look up composition table. If the result is 0, no composition
* is defined. Otherwise, upper 16bits of the result contains
* the number of composition that begins with 'c1', and the lower
* 16bits is the offset in 'compose_seq'.
*/
if ((n = compose_char(c1, &cseq)) == 0)
return (NS_SUCCESS_UNORM_NOTFOUND);
/*
* The composite sequences are sorted by the 2nd character 'c2'.
* So we can use binary search.
*/
lo = 0;
hi = n - 1;
while (lo <= hi) {
int32_t mid = (lo + hi) / 2;
if (cseq[mid].c2 < c2) {
lo = mid + 1;
} else if (cseq[mid].c2 > c2) {
hi = mid - 1;
} else {
*compp = cseq[mid].comp;
return (NS_OK);
}
}
return (NS_SUCCESS_UNORM_NOTFOUND);
}
#define WORKBUF_SIZE 128
#define WORKBUF_SIZE_MAX 10000
typedef struct {
int32_t cur; /* pointing now processing character */
int32_t last; /* pointing just after the last character */
int32_t size; /* size of UCS and CLASS array */
uint32_t *ucs; /* UCS-4 characters */
int32_t *cclass; /* and their canonical classes */
uint32_t ucs_buf[WORKBUF_SIZE]; /* local buffer */
int32_t class_buf[WORKBUF_SIZE]; /* ditto */
} workbuf_t;
static nsresult decompose(workbuf_t *wb, uint32_t c, int32_t compat);
static void get_class(workbuf_t *wb);
static void reorder(workbuf_t *wb);
static void compose(workbuf_t *wb);
static nsresult flush_before_cur(workbuf_t *wb, nsAString& aToStr);
static void workbuf_init(workbuf_t *wb);
static void workbuf_free(workbuf_t *wb);
static nsresult workbuf_extend(workbuf_t *wb);
static nsresult workbuf_append(workbuf_t *wb, uint32_t c);
static void workbuf_shift(workbuf_t *wb, int32_t shift);
static void workbuf_removevoid(workbuf_t *wb);
static nsresult
mdn_normalize(bool do_composition, bool compat,
const nsAString& aSrcStr, nsAString& aToStr)
{
workbuf_t wb;
nsresult r = NS_OK;
/*
* Initialize working buffer.
*/
workbuf_init(&wb);
nsAString::const_iterator start, end;
aSrcStr.BeginReading(start);
aSrcStr.EndReading(end);
while (start != end) {
uint32_t c;
char16_t curChar;
//assert(wb.cur == wb.last);
/*
* Get one character from 'from'.
*/
curChar= *start++;
if (NS_IS_HIGH_SURROGATE(curChar) && start != end && NS_IS_LOW_SURROGATE(*(start)) ) {
c = SURROGATE_TO_UCS4(curChar, *start);
++start;
} else {
c = curChar;
}
/*
* Decompose it.
*/
if ((r = decompose(&wb, c, compat)) != NS_OK)
break;
/*
* Get canonical class.
*/
get_class(&wb);
/*
* Reorder & compose.
*/
for (; wb.cur < wb.last; wb.cur++) {
if (wb.cur == 0) {
continue;
} else if (wb.cclass[wb.cur] > 0) {
/*
* This is not a starter. Try reordering.
* Note that characters up to it are
* already in canonical order.
*/
reorder(&wb);
continue;
}
/*
* This is a starter character, and there are
* some characters before it. Those characters
* have been reordered properly, and
* ready for composition.
*/
if (do_composition && wb.cclass[0] == 0)
compose(&wb);
/*
* If CUR points to a starter character,
* then process of characters before CUR are
* already finished, because any further
* reordering/composition for them are blocked
* by the starter CUR points.
*/
if (wb.cur > 0 && wb.cclass[wb.cur] == 0) {
/* Flush everything before CUR. */
r = flush_before_cur(&wb, aToStr);
if (r != NS_OK)
break;
}
}
}
if (r == NS_OK) {
if (do_composition && wb.cur > 0 && wb.cclass[0] == 0) {
/*
* There is some characters left in WB.
* They are ordered, but not composed yet.
* Now CUR points just after the last character in WB,
* and since compose() tries to compose characters
* between top and CUR inclusive, we must make CUR
* one character back during compose().
*/
wb.cur--;
compose(&wb);
wb.cur++;
}
/*
* Call this even when WB.CUR == 0, to make TO
* NUL-terminated.
*/
r = flush_before_cur(&wb, aToStr);
}
workbuf_free(&wb);
return (r);
}
static nsresult
decompose(workbuf_t *wb, uint32_t c, int32_t compat) {
nsresult r;
int32_t dec_len;
again:
r = mdn__unicode_decompose(compat, wb->ucs + wb->last,
wb->size - wb->last, c, &dec_len);
switch (r) {
case NS_OK:
wb->last += dec_len;
return (NS_OK);
case NS_SUCCESS_UNORM_NOTFOUND:
return (workbuf_append(wb, c));
case NS_ERROR_UNORM_MOREOUTPUT:
if ((r = workbuf_extend(wb)) != NS_OK)
return (r);
if (wb->size > WORKBUF_SIZE_MAX) {
// "mdn__unormalize_form*: " "working buffer too large\n"
return (NS_ERROR_FAILURE);
}
goto again;
default:
return (r);
}
/* NOTREACHED */
}
static void
get_class(workbuf_t *wb) {
int32_t i;
for (i = wb->cur; i < wb->last; i++)
wb->cclass[i] = canonclass(wb->ucs[i]);
}
static void
reorder(workbuf_t *wb) {
uint32_t c;
int32_t i;
int32_t cclass;
//assert(wb != nullptr);
i = wb->cur;
c = wb->ucs[i];
cclass = wb->cclass[i];
while (i > 0 && wb->cclass[i - 1] > cclass) {
wb->ucs[i] = wb->ucs[i - 1];
wb->cclass[i] =wb->cclass[i - 1];
i--;
wb->ucs[i] = c;
wb->cclass[i] = cclass;
}
}
static void
compose(workbuf_t *wb) {
int32_t cur;
uint32_t *ucs;
int32_t *cclass;
int32_t last_class;
int32_t nvoids;
int32_t i;
//assert(wb != nullptr && wb->cclass[0] == 0);
cur = wb->cur;
ucs = wb->ucs;
cclass = wb->cclass;
/*
* If there are no decomposition sequence that begins with
* the top character, composition is impossible.
*/
if (!mdn__unicode_iscompositecandidate(ucs[0]))
return;
last_class = 0;
nvoids = 0;
for (i = 1; i <= cur; i++) {
uint32_t c;
int32_t cl = cclass[i];
if ((last_class < cl || cl == 0) &&
mdn__unicode_compose(ucs[0], ucs[i],
&c) == NS_OK) {
/*
* Replace the top character with the composed one.
*/
ucs[0] = c;
cclass[0] = canonclass(c);
cclass[i] = -1; /* void this character */
nvoids++;
} else {
last_class = cl;
}
}
/* Purge void characters, if any. */
if (nvoids > 0)
workbuf_removevoid(wb);
}
static nsresult
flush_before_cur(workbuf_t *wb, nsAString& aToStr)
{
int32_t i;
for (i = 0; i < wb->cur; i++) {
if (!IS_IN_BMP(wb->ucs[i])) {
aToStr.Append((char16_t)H_SURROGATE(wb->ucs[i]));
aToStr.Append((char16_t)L_SURROGATE(wb->ucs[i]));
} else {
aToStr.Append((char16_t)(wb->ucs[i]));
}
}
workbuf_shift(wb, wb->cur);
return (NS_OK);
}
static void
workbuf_init(workbuf_t *wb) {
wb->cur = 0;
wb->last = 0;
wb->size = WORKBUF_SIZE;
wb->ucs = wb->ucs_buf;
wb->cclass = wb->class_buf;
}
static void
workbuf_free(workbuf_t *wb) {
if (wb->ucs != wb->ucs_buf) {
nsMemory::Free(wb->ucs);
nsMemory::Free(wb->cclass);
}
}
static nsresult
workbuf_extend(workbuf_t *wb) {
int32_t newsize = wb->size * 3;
if (wb->ucs == wb->ucs_buf) {
wb->ucs = (uint32_t*)nsMemory::Alloc(sizeof(wb->ucs[0]) * newsize);
if (!wb->ucs)
return NS_ERROR_OUT_OF_MEMORY;
wb->cclass = (int32_t*)nsMemory::Alloc(sizeof(wb->cclass[0]) * newsize);
if (!wb->cclass) {
nsMemory::Free(wb->ucs);
wb->ucs = nullptr;
return NS_ERROR_OUT_OF_MEMORY;
}
} else {
void* buf = nsMemory::Realloc(wb->ucs, sizeof(wb->ucs[0]) * newsize);
if (!buf)
return NS_ERROR_OUT_OF_MEMORY;
wb->ucs = (uint32_t*)buf;
buf = nsMemory::Realloc(wb->cclass, sizeof(wb->cclass[0]) * newsize);
if (!buf)
return NS_ERROR_OUT_OF_MEMORY;
wb->cclass = (int32_t*)buf;
}
return (NS_OK);
}
static nsresult
workbuf_append(workbuf_t *wb, uint32_t c) {
nsresult r;
if (wb->last >= wb->size && (r = workbuf_extend(wb)) != NS_OK)
return (r);
wb->ucs[wb->last++] = c;
return (NS_OK);
}
static void
workbuf_shift(workbuf_t *wb, int32_t shift) {
int32_t nmove;
//assert(wb != nullptr && wb->cur >= shift);
nmove = wb->last - shift;
memmove(&wb->ucs[0], &wb->ucs[shift],
nmove * sizeof(wb->ucs[0]));
memmove(&wb->cclass[0], &wb->cclass[shift],
nmove * sizeof(wb->cclass[0]));
wb->cur -= shift;
wb->last -= shift;
}
static void
workbuf_removevoid(workbuf_t *wb) {
int32_t i, j;
int32_t last = wb->last;
for (i = j = 0; i < last; i++) {
if (wb->cclass[i] >= 0) {
if (j < i) {
wb->ucs[j] = wb->ucs[i];
wb->cclass[j] = wb->cclass[i];
}
j++;
}
}
wb->cur -= last - j;
wb->last = j;
}
nsresult
nsUnicodeNormalizer::NormalizeUnicodeNFD( const nsAString& aSrc, nsAString& aDest)
{
return mdn_normalize(false, false, aSrc, aDest);
}
nsresult
nsUnicodeNormalizer::NormalizeUnicodeNFC( const nsAString& aSrc, nsAString& aDest)
{
return mdn_normalize(true, false, aSrc, aDest);
}
nsresult
nsUnicodeNormalizer::NormalizeUnicodeNFKD( const nsAString& aSrc, nsAString& aDest)
{
return mdn_normalize(false, true, aSrc, aDest);
}
nsresult
nsUnicodeNormalizer::NormalizeUnicodeNFKC( const nsAString& aSrc, nsAString& aDest)
{
return mdn_normalize(true, true, aSrc, aDest);
}
bool
nsUnicodeNormalizer::Compose(uint32_t a, uint32_t b, uint32_t *ab)
{
return mdn__unicode_compose(a, b, ab) == NS_OK;
}
bool
nsUnicodeNormalizer::DecomposeNonRecursively(uint32_t c, uint32_t *c1, uint32_t *c2)
{
// We can't use mdn__unicode_decompose here, because that does a recursive
// decomposition that may yield more than two characters, but the harfbuzz
// callback wants just a single-step decomp that is guaranteed to produce
// no more than two characters. So we do a low-level lookup in the table
// of decomp sequences.
const uint32_t *seq;
uint32_t seqidx = decompose_char(c, &seq);
if (seqidx == 0 || ((seqidx & DECOMP_COMPAT) != 0)) {
return false;
}
*c1 = *seq & ~END_BIT;
if (*seq & END_BIT) {
*c2 = 0;
} else {
*c2 = *++seq & ~END_BIT;
}
return true;
}