You've already forked Microtransactions64
mirror of
https://github.com/Print-and-Panic/Microtransactions64.git
synced 2026-01-21 10:17:19 -08:00
1122 lines
37 KiB
C
1122 lines
37 KiB
C
#include <PR/ultratypes.h>
|
|
|
|
#include "sm64.h"
|
|
#include "game/debug.h"
|
|
#include "game/level_update.h"
|
|
#include "game/mario.h"
|
|
#include "game/object_list_processor.h"
|
|
// #include "game/rendering_graph_node.h"
|
|
#include "math_util.h"
|
|
#include "surface_collision.h"
|
|
#include "surface_load.h"
|
|
#include "game/puppyprint.h"
|
|
|
|
/**************************************************
|
|
* WALLS *
|
|
**************************************************/
|
|
|
|
#define CALC_OFFSET(vert, next_step) { \
|
|
if ((vert)[1] != 0.0f) { \
|
|
v = (v2[1] / (vert)[1]); \
|
|
if ((v < 0.0f) || (v > 1.0f)) next_step;\
|
|
d00 = (((vert)[0] * v) - v2[0]); \
|
|
d01 = (((vert)[2] * v) - v2[2]); \
|
|
invDenom = sqrtf(sqr(d00) + sqr(d01)); \
|
|
offset = (invDenom - margin_radius); \
|
|
if (offset > 0.0f) next_step; \
|
|
goto check_collision; \
|
|
} \
|
|
next_step; \
|
|
}
|
|
|
|
/**
|
|
* Iterate through the list of walls until all walls are checked and
|
|
* have given their wall push.
|
|
*/
|
|
static s32 find_wall_collisions_from_list(struct SurfaceNode *surfaceNode, struct WallCollisionData *data) {
|
|
const f32 corner_threshold = -0.9f;
|
|
register struct Surface *surf;
|
|
register f32 offset;
|
|
register f32 radius = data->radius;
|
|
register Vec3f pos = { data->x, data->y + data->offsetY, data->z };
|
|
register Vec3f v0, v1, v2;
|
|
register f32 d00, d01, d11, d20, d21;
|
|
register f32 invDenom;
|
|
register f32 v, w;
|
|
register f32 margin_radius = (radius - 1.0f);
|
|
register TerrainData type = SURFACE_DEFAULT;
|
|
s32 numCols = 0;
|
|
// #if EXTENDED_BOUNDS_MODE
|
|
// const float down_scale = (1.0f / gWorldScale);
|
|
// radius *= down_scale;
|
|
// x *= down_scale;
|
|
// y *= down_scale;
|
|
// z *= down_scale;
|
|
// margin_radius *= down_scale;
|
|
// #endif
|
|
// Max collision radius = 200
|
|
if (radius > 200.0f) {
|
|
radius = 200.0f;
|
|
}
|
|
// Stay in this loop until out of walls.
|
|
while (surfaceNode != NULL) {
|
|
surf = surfaceNode->surface;
|
|
surfaceNode = surfaceNode->next;
|
|
type = surf->type;
|
|
// Exclude a large number of walls immediately to optimize.
|
|
if ((type == SURFACE_NEW_WATER) || (type == SURFACE_NEW_WATER_BOTTOM)) continue;
|
|
// Determine if checking for the camera or not.
|
|
if (gCheckingSurfaceCollisionsForCamera) {
|
|
if (surf->flags & SURFACE_FLAG_NO_CAM_COLLISION) {
|
|
continue;
|
|
}
|
|
} else {
|
|
// Ignore camera only surfaces.
|
|
if (type == SURFACE_CAMERA_BOUNDARY) {
|
|
continue;
|
|
}
|
|
// If an object can pass through a vanish cap wall, pass through.
|
|
if (type == SURFACE_VANISH_CAP_WALLS && gCurrentObject != NULL) {
|
|
// If an object can pass through a vanish cap wall, pass through.
|
|
if (gCurrentObject->activeFlags & ACTIVE_FLAG_MOVE_THROUGH_GRATE) {
|
|
continue;
|
|
}
|
|
// If Mario has a vanish cap, pass through the vanish cap wall.
|
|
if (gCurrentObject == gMarioObject && (gMarioState->flags & MARIO_VANISH_CAP)) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if (pos[1] < surf->lowerY || pos[1] > surf->upperY) {
|
|
continue;
|
|
}
|
|
// Dot of normal and pos, + origin offset
|
|
offset = (surf->normal.x * pos[0]) + (surf->normal.y * pos[1]) + (surf->normal.z * pos[2]) + surf->originOffset;
|
|
if (offset < -radius || offset > radius) {
|
|
continue;
|
|
}
|
|
vec3_diff(v0, surf->vertex2, surf->vertex1);
|
|
vec3_diff(v1, surf->vertex3, surf->vertex1);
|
|
vec3_diff(v2, pos, surf->vertex1);
|
|
// Face
|
|
d00 = vec3_dot(v0, v0);
|
|
d01 = vec3_dot(v0, v1);
|
|
d11 = vec3_dot(v1, v1);
|
|
d20 = vec3_dot(v2, v0);
|
|
d21 = vec3_dot(v2, v1);
|
|
invDenom = 1.0f / ((d00 * d11) - (d01 * d01));
|
|
v = ((d11 * d20) - (d01 * d21)) * invDenom;
|
|
if (v < 0.0f || v > 1.0f) {
|
|
goto edge_1_2;
|
|
}
|
|
w = (d00 * d21 - d01 * d20) * invDenom;
|
|
if (w < 0.0f || w > 1.0f || v + w > 1.0f) {
|
|
goto edge_1_2;
|
|
}
|
|
pos[0] += surf->normal.x * (radius - offset);
|
|
pos[2] += surf->normal.z * (radius - offset);
|
|
goto hasCollision;
|
|
edge_1_2:
|
|
if (offset < 0) continue;
|
|
CALC_OFFSET(v0, goto edge_1_3);
|
|
edge_1_3:
|
|
CALC_OFFSET(v1, goto edge_2_3);
|
|
edge_2_3:
|
|
vec3_diff(v1, surf->vertex3, surf->vertex2);
|
|
vec3_diff(v2, pos, surf->vertex2);
|
|
CALC_OFFSET(v1, continue);
|
|
check_collision:
|
|
invDenom = offset / invDenom;
|
|
pos[0] += (d00 *= invDenom);
|
|
pos[2] += (d01 *= invDenom);
|
|
margin_radius += 0.01f;
|
|
if ((d00 * surf->normal.x) + (d01 * surf->normal.z) < (corner_threshold * offset)) {
|
|
continue;
|
|
}
|
|
hasCollision:
|
|
// (Unreferenced Walls) Since this only returns the first MAX_REFEREMCED_WALLS walls,
|
|
// this can lead to wall interaction being missed. Typically unreferenced walls
|
|
// come from only using one wall, however.
|
|
if (data->numWalls < MAX_REFEREMCED_WALLS) {
|
|
data->walls[data->numWalls++] = surf;
|
|
}
|
|
numCols++;
|
|
}
|
|
// #if EXTENDED_BOUNDS_MODE
|
|
// x *= gWorldScale;
|
|
// y *= gWorldScale;
|
|
// z *= gWorldScale;
|
|
// #endif
|
|
data->x = pos[0];
|
|
data->z = pos[2];
|
|
return numCols;
|
|
}
|
|
|
|
/**
|
|
* Formats the position and wall search for find_wall_collisions.
|
|
*/
|
|
s32 f32_find_wall_collision(f32 *xPtr, f32 *yPtr, f32 *zPtr, f32 offsetY, f32 radius) {
|
|
struct WallCollisionData collision;
|
|
s32 numCollisions = 0;
|
|
|
|
collision.offsetY = offsetY;
|
|
collision.radius = radius;
|
|
|
|
collision.x = *xPtr;
|
|
collision.y = *yPtr;
|
|
collision.z = *zPtr;
|
|
|
|
collision.numWalls = 0;
|
|
|
|
numCollisions = find_wall_collisions(&collision);
|
|
|
|
*xPtr = collision.x;
|
|
*yPtr = collision.y;
|
|
*zPtr = collision.z;
|
|
|
|
return numCollisions;
|
|
}
|
|
|
|
/**
|
|
* Find wall collisions and receive their push.
|
|
*/
|
|
s32 find_wall_collisions(struct WallCollisionData *colData) {
|
|
struct SurfaceNode *node;
|
|
s32 cellX, cellZ;
|
|
s32 numCollisions = 0;
|
|
s32 x = colData->x;
|
|
s32 z = colData->z;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
colData->numWalls = 0;
|
|
|
|
if (is_outside_level_bounds(x, z)) {
|
|
return numCollisions;
|
|
}
|
|
|
|
// World (level) consists of a 16x16 grid. Find where the collision is on
|
|
// the grid (round toward -inf)
|
|
cellX = ((x + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
cellZ = ((z + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
|
|
// Check for surfaces belonging to objects.
|
|
node = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next;
|
|
numCollisions += find_wall_collisions_from_list(node, colData);
|
|
|
|
// Check for surfaces that are a part of level geometry.
|
|
node = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next;
|
|
numCollisions += find_wall_collisions_from_list(node, colData);
|
|
|
|
// Increment the debug tracker.
|
|
gNumCalls.wall++;
|
|
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
|
|
return numCollisions;
|
|
}
|
|
|
|
/**
|
|
* Collides with walls and returns the most recent wall.
|
|
*/
|
|
void resolve_and_return_wall_collisions(Vec3f pos, f32 offset, f32 radius, struct WallCollisionData *collisionData) {
|
|
collisionData->x = pos[0];
|
|
collisionData->y = pos[1];
|
|
collisionData->z = pos[2];
|
|
collisionData->radius = radius;
|
|
collisionData->offsetY = offset;
|
|
|
|
find_wall_collisions(collisionData);
|
|
|
|
pos[0] = collisionData->x;
|
|
pos[1] = collisionData->y;
|
|
pos[2] = collisionData->z;
|
|
}
|
|
|
|
/**************************************************
|
|
* CEILINGS *
|
|
**************************************************/
|
|
|
|
void add_ceil_margin(s32 *x, s32 *z, Vec3s target1, Vec3s target2, f32 margin) {
|
|
register f32 diff_x, diff_z, invDenom;
|
|
diff_x = target1[0] - *x + target2[0] - *x;
|
|
diff_z = target1[2] - *z + target2[2] - *z;
|
|
invDenom = margin / sqrtf(sqr(diff_x) + sqr(diff_z));
|
|
*x += diff_x * invDenom;
|
|
*z += diff_z * invDenom;
|
|
}
|
|
|
|
/**
|
|
* Iterate through the list of ceilings and find the first ceiling over a given point.
|
|
*/
|
|
static struct Surface *find_ceil_from_list(struct SurfaceNode *surfaceNode, s32 x, s32 y, s32 z, f32 *pheight) {
|
|
const f32 margin = 1.5f;
|
|
register struct Surface *surf;
|
|
Vec3i vx, vz;
|
|
f32 height;
|
|
struct Surface *ceil = NULL;
|
|
*pheight = CELL_HEIGHT_LIMIT;
|
|
// Stay in this loop until out of ceilings.
|
|
while (surfaceNode != NULL) {
|
|
surf = surfaceNode->surface;
|
|
surfaceNode = surfaceNode->next;
|
|
if (y > surf->upperY) {
|
|
continue;
|
|
}
|
|
vx[0] = surf->vertex1[0];
|
|
vz[0] = surf->vertex1[2];
|
|
if (surf->type != SURFACE_HANGABLE) {
|
|
add_ceil_margin(&vx[0], &vz[0], surf->vertex2, surf->vertex3, margin);
|
|
}
|
|
vx[1] = surf->vertex2[0];
|
|
vz[1] = surf->vertex2[2];
|
|
if (surf->type != SURFACE_HANGABLE) {
|
|
add_ceil_margin(&vx[1], &vz[1], surf->vertex3, surf->vertex1, margin);
|
|
}
|
|
// Checking if point is in bounds of the triangle laterally.
|
|
if ((vz[0] - z) * (vx[1] - vx[0]) - (vx[0] - x) * (vz[1] - vz[0]) > 0) {
|
|
continue;
|
|
}
|
|
// Slight optimization by checking these later.
|
|
vx[2] = surf->vertex3[0];
|
|
vz[2] = surf->vertex3[2];
|
|
if (surf->type != SURFACE_HANGABLE) {
|
|
add_ceil_margin(&vx[2], &vz[2], surf->vertex1, surf->vertex2, margin);
|
|
}
|
|
if ((vz[1] - z) * (vx[2] - vx[1]) - (vx[1] - x) * (vz[2] - vz[1]) > 0) {
|
|
continue;
|
|
}
|
|
if ((vz[2] - z) * (vx[0] - vx[2]) - (vx[2] - x) * (vz[0] - vz[2]) > 0) {
|
|
continue;
|
|
}
|
|
// Determine if checking for the camera or not.
|
|
if (surf->type == SURFACE_NEW_WATER || surf->type == SURFACE_NEW_WATER_BOTTOM) {
|
|
continue;
|
|
}
|
|
if (gCheckingSurfaceCollisionsForCamera) {
|
|
if (surf->flags & SURFACE_FLAG_NO_CAM_COLLISION) {
|
|
continue;
|
|
}
|
|
} else if (surf->type == SURFACE_CAMERA_BOUNDARY) {
|
|
// Ignore camera only surfaces.
|
|
continue;
|
|
}
|
|
// Find the ceil height at the specific point.
|
|
height = get_surface_height_at_location(x, z, surf);
|
|
if (height > *pheight) {
|
|
continue;
|
|
}
|
|
// Checks for ceiling interaction
|
|
if (y > height) {
|
|
continue;
|
|
}
|
|
if (y >= surf->upperY) {
|
|
continue;
|
|
}
|
|
*pheight = height;
|
|
ceil = surf;
|
|
if (height == y) {
|
|
break;
|
|
}
|
|
}
|
|
return ceil;
|
|
}
|
|
|
|
/**
|
|
* Find the lowest ceiling above a given position and return the height.
|
|
*/
|
|
f32 find_ceil(f32 posX, f32 posY, f32 posZ, struct Surface **pceil) {
|
|
s32 cellZ, cellX;
|
|
struct Surface *ceil, *dynamicCeil;
|
|
struct SurfaceNode *surfaceList;
|
|
f32 height = CELL_HEIGHT_LIMIT;
|
|
f32 dynamicHeight = CELL_HEIGHT_LIMIT;
|
|
s32 x, y, z;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
x = posX;
|
|
y = posY;
|
|
z = posZ;
|
|
*pceil = NULL;
|
|
|
|
if (is_outside_level_bounds(x, z)) {
|
|
return height;
|
|
}
|
|
|
|
// Each level is split into cells to limit load, find the appropriate cell.
|
|
cellX = ((x + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
cellZ = ((z + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
|
|
// Check for surfaces belonging to objects.
|
|
surfaceList = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next;
|
|
dynamicCeil = find_ceil_from_list(surfaceList, x, y, z, &dynamicHeight);
|
|
|
|
// Check for surfaces that are a part of level geometry.
|
|
surfaceList = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next;
|
|
ceil = find_ceil_from_list(surfaceList, x, y, z, &height);
|
|
|
|
if (dynamicHeight < height) {
|
|
ceil = dynamicCeil;
|
|
height = dynamicHeight;
|
|
}
|
|
|
|
*pceil = ceil;
|
|
|
|
// Increment the debug tracker.
|
|
gNumCalls.ceil++;
|
|
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
|
|
return height;
|
|
}
|
|
|
|
/**************************************************
|
|
* FLOORS *
|
|
**************************************************/
|
|
|
|
/**
|
|
* Find the height of the highest floor below an object.
|
|
*/
|
|
f32 unused_obj_find_floor_height(struct Object *obj) {
|
|
struct Surface *floor;
|
|
f32 floorHeight = find_floor(obj->oPosX, obj->oPosY, obj->oPosZ, &floor);
|
|
return floorHeight;
|
|
}
|
|
|
|
/**
|
|
* Iterate through the list of floors and find the first floor under a given point.
|
|
*/
|
|
static struct Surface *find_floor_from_list(struct SurfaceNode *surfaceNode, s32 x, s32 y, s32 z, f32 *pheight) {
|
|
register struct Surface *surf;
|
|
register Vec3i vx, vz;
|
|
f32 height;
|
|
struct Surface *floor = NULL;
|
|
*pheight = FLOOR_LOWER_LIMIT;
|
|
// Iterate through the list of floors until there are no more floors.
|
|
while (surfaceNode != NULL) {
|
|
surf = surfaceNode->surface;
|
|
surfaceNode = surfaceNode->next;
|
|
if (y < surf->lowerY - 30) {
|
|
continue;
|
|
}
|
|
vx[0] = surf->vertex1[0];
|
|
vz[0] = surf->vertex1[2];
|
|
vx[1] = surf->vertex2[0];
|
|
vz[1] = surf->vertex2[2];
|
|
// Check that the point is within the triangle bounds.
|
|
if ((vz[0] - z) * (vx[1] - vx[0]) - (vx[0] - x) * (vz[1] - vz[0]) < 0) {
|
|
continue;
|
|
}
|
|
// To slightly save on computation time, set this later.
|
|
vx[2] = surf->vertex3[0];
|
|
vz[2] = surf->vertex3[2];
|
|
if ((vz[1] - z) * (vx[2] - vx[1]) - (vx[1] - x) * (vz[2] - vz[1]) < 0) {
|
|
continue;
|
|
}
|
|
if ((vz[2] - z) * (vx[0] - vx[2]) - (vx[2] - x) * (vz[0] - vz[2]) < 0) {
|
|
continue;
|
|
}
|
|
// Determine if we are checking for the camera or not.
|
|
if (gCheckingSurfaceCollisionsForCamera != 0) {
|
|
if (surf->flags & SURFACE_FLAG_NO_CAM_COLLISION || surf->type == SURFACE_NEW_WATER || surf->type == SURFACE_NEW_WATER_BOTTOM) {
|
|
continue;
|
|
}
|
|
} else if (surf->type == SURFACE_CAMERA_BOUNDARY) {
|
|
// If we are not checking for the camera, ignore camera only floors.
|
|
continue;
|
|
}
|
|
// Find the height of the floor at a given location.
|
|
height = get_surface_height_at_location(x, z, surf);
|
|
if (height < *pheight) {
|
|
continue;
|
|
}
|
|
// Checks for floor interaction with a 78 unit buffer.
|
|
if (y < (height - 78.0f)) {
|
|
continue;
|
|
}
|
|
*pheight = height;
|
|
floor = surf;
|
|
if (height - 78.0f == y) {
|
|
break;
|
|
}
|
|
}
|
|
return floor;
|
|
}
|
|
|
|
|
|
static s16 check_within_triangle_bounds(s32 x, s32 z, struct Surface *surf) {
|
|
register Vec3i vx, vz;
|
|
vx[0] = surf->vertex1[0];
|
|
vz[0] = surf->vertex1[2];
|
|
vx[1] = surf->vertex2[0];
|
|
vz[1] = surf->vertex2[2];
|
|
if ((vz[0] - z) * (vx[1] - vx[0]) - (vx[0] - x) * (vz[1] - vz[0]) < 0) return FALSE;
|
|
vx[2] = surf->vertex3[0];
|
|
vz[2] = surf->vertex3[2];
|
|
if ((vz[1] - z) * (vx[2] - vx[1]) - (vx[1] - x) * (vz[2] - vz[1]) < 0) return FALSE;
|
|
if ((vz[2] - z) * (vx[0] - vx[2]) - (vx[2] - x) * (vz[0] - vz[2]) < 0) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* Iterate through the list of water floors and find the first water floor under a given point.
|
|
*/
|
|
struct Surface *find_water_floor_from_list(struct SurfaceNode *surfaceNode, s32 x, s32 y, s32 z, f32 *pheight) {
|
|
register struct Surface *surf;
|
|
struct Surface *floor = NULL;
|
|
struct SurfaceNode *topSurfaceNode = surfaceNode;
|
|
struct SurfaceNode *bottomSurfaceNode = surfaceNode;
|
|
f32 height = FLOOR_LOWER_LIMIT;
|
|
f32 bottomHeight = FLOOR_LOWER_LIMIT;
|
|
|
|
// Iterate through the list of water floors until there are no more water floors.
|
|
while (bottomSurfaceNode != NULL) {
|
|
f32 curBottomHeight = FLOOR_LOWER_LIMIT;
|
|
surf = bottomSurfaceNode->surface;
|
|
bottomSurfaceNode = bottomSurfaceNode->next;
|
|
|
|
if (surf->type != SURFACE_NEW_WATER_BOTTOM || !check_within_triangle_bounds(x, z, surf)) continue;
|
|
|
|
curBottomHeight = get_surface_height_at_location(x, z, surf);
|
|
|
|
if (curBottomHeight < y - 78.0f) continue;
|
|
if (curBottomHeight >= y - 78.0f) bottomHeight = curBottomHeight;
|
|
}
|
|
|
|
// Iterate through the list of water tops until there are no more water tops.
|
|
while (topSurfaceNode != NULL) {
|
|
f32 curHeight = FLOOR_LOWER_LIMIT;
|
|
surf = topSurfaceNode->surface;
|
|
topSurfaceNode = topSurfaceNode->next;
|
|
|
|
if (surf->type == SURFACE_NEW_WATER_BOTTOM || !check_within_triangle_bounds(x, z, surf)) continue;
|
|
|
|
curHeight = get_surface_height_at_location(x, z, surf);
|
|
|
|
if (bottomHeight != FLOOR_LOWER_LIMIT && curHeight > bottomHeight) continue;
|
|
|
|
if (curHeight > height) {
|
|
height = curHeight;
|
|
*pheight = curHeight;
|
|
floor = surf;
|
|
}
|
|
}
|
|
|
|
return floor;
|
|
}
|
|
|
|
/**
|
|
* Find the height of the highest floor below a point.
|
|
*/
|
|
f32 find_floor_height(f32 x, f32 y, f32 z) {
|
|
struct Surface *floor;
|
|
|
|
f32 floorHeight = find_floor(x, y, z, &floor);
|
|
|
|
return floorHeight;
|
|
}
|
|
|
|
/**
|
|
* Find the highest dynamic floor under a given position. Perhaps originally static
|
|
* and dynamic floors were checked separately.
|
|
*/
|
|
f32 unused_find_dynamic_floor(f32 xPos, f32 yPos, f32 zPos, struct Surface **pfloor) {
|
|
struct SurfaceNode *surfaceList;
|
|
struct Surface *floor;
|
|
f32 floorHeight = FLOOR_LOWER_LIMIT;
|
|
|
|
// Would normally cause PUs, but dynamic floors unload at that range.
|
|
s32 x = xPos;
|
|
s32 y = yPos;
|
|
s32 z = zPos;
|
|
|
|
// Each level is split into cells to limit load, find the appropriate cell.
|
|
s32 cellX = ((x + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
s32 cellZ = ((z + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
|
|
surfaceList = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next;
|
|
floor = find_floor_from_list(surfaceList, x, y, z, &floorHeight);
|
|
|
|
*pfloor = floor;
|
|
|
|
return floorHeight;
|
|
}
|
|
|
|
/**
|
|
* Find the highest floor under a given position and return the height.
|
|
*/
|
|
f32 find_floor(f32 xPos, f32 yPos, f32 zPos, struct Surface **pfloor) {
|
|
s32 cellZ, cellX;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
struct Surface *floor, *dynamicFloor;
|
|
struct SurfaceNode *surfaceList;
|
|
|
|
f32 height = FLOOR_LOWER_LIMIT;
|
|
f32 dynamicHeight = FLOOR_LOWER_LIMIT;
|
|
|
|
//! (Parallel Universes) Because position is casted to an s16, reaching higher
|
|
// float locations can return floors despite them not existing there.
|
|
//(Dynamic floors will unload due to the range.)
|
|
s32 x = xPos;
|
|
s32 y = yPos;
|
|
s32 z = zPos;
|
|
|
|
*pfloor = NULL;
|
|
|
|
if (is_outside_level_bounds(x, z)) {
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
return height;
|
|
}
|
|
|
|
// Each level is split into cells to limit load, find the appropriate cell.
|
|
cellX = ((x + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
cellZ = ((z + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
|
|
// Check for surfaces belonging to objects.
|
|
surfaceList = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next;
|
|
dynamicFloor = find_floor_from_list(surfaceList, x, y, z, &dynamicHeight);
|
|
|
|
// Check for surfaces that are a part of level geometry.
|
|
surfaceList = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next;
|
|
floor = find_floor_from_list(surfaceList, x, y, z, &height);
|
|
|
|
// To prevent the Merry-Go-Round room from loading when Mario passes above the hole that leads
|
|
// there, SURFACE_INTANGIBLE is used. This prevent the wrong room from loading, but can also allow
|
|
// Mario to pass through.
|
|
if (!gFindFloorIncludeSurfaceIntangible) {
|
|
//! (BBH Crash) Most NULL checking is done by checking the height of the floor returned
|
|
// instead of checking directly for a NULL floor. If this check returns a NULL floor
|
|
// (happens when there is no floor under the SURFACE_INTANGIBLE floor) but returns the height
|
|
// of the SURFACE_INTANGIBLE floor instead of the typical -11000 returned for a NULL floor.
|
|
if (floor != NULL && floor->type == SURFACE_INTANGIBLE) {
|
|
floor = find_floor_from_list(surfaceList, x, (s32)(height - 200.0f), z, &height);
|
|
}
|
|
} else {
|
|
// To prevent accidentally leaving the floor tangible, stop checking for it.
|
|
gFindFloorIncludeSurfaceIntangible = FALSE;
|
|
}
|
|
|
|
// If a floor was missed, increment the debug counter.
|
|
if (floor == NULL) {
|
|
gNumFindFloorMisses++;
|
|
}
|
|
|
|
if (dynamicHeight > height) {
|
|
floor = dynamicFloor;
|
|
height = dynamicHeight;
|
|
}
|
|
|
|
*pfloor = floor;
|
|
|
|
// Increment the debug tracker.
|
|
gNumCalls.floor++;
|
|
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
|
|
return height;
|
|
}
|
|
|
|
/**
|
|
* Find the highest water floor under a given position and return the height.
|
|
*/
|
|
f32 find_water_floor(s32 xPos, s32 yPos, s32 zPos, struct Surface **pfloor) {
|
|
s32 cellZ, cellX;
|
|
|
|
struct Surface *floor = NULL;
|
|
struct SurfaceNode *surfaceList;
|
|
|
|
f32 height = FLOOR_LOWER_LIMIT;
|
|
|
|
s32 x = xPos;
|
|
s32 y = yPos;
|
|
s32 z = zPos;
|
|
|
|
if (is_outside_level_bounds(x, z)) {
|
|
return height;
|
|
}
|
|
|
|
// Each level is split into cells to limit load, find the appropriate cell.
|
|
cellX = ((x + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
cellZ = ((z + LEVEL_BOUNDARY_MAX) / CELL_SIZE) & NUM_CELLS_INDEX;
|
|
|
|
// Check for surfaces that are a part of level geometry.
|
|
surfaceList = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WATER].next;
|
|
floor = find_water_floor_from_list(surfaceList, x, y, z, &height);
|
|
|
|
if (floor == NULL) {
|
|
height = FLOOR_LOWER_LIMIT;
|
|
} else {
|
|
*pfloor = floor;
|
|
}
|
|
|
|
return height;
|
|
}
|
|
|
|
/**************************************************
|
|
* ENVIRONMENTAL BOXES *
|
|
**************************************************/
|
|
|
|
/**
|
|
* Finds the height of water at a given location.
|
|
*/
|
|
s32 find_water_level_and_floor(s32 x, s32 z, struct Surface **pfloor) {
|
|
s32 i;
|
|
s32 numRegions;
|
|
s32 val;
|
|
s32 loX, hiX, loZ, hiZ;
|
|
s32 waterLevel = FLOOR_LOWER_LIMIT;
|
|
TerrainData *p = gEnvironmentRegions;
|
|
struct Surface *floor = NULL;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
if (gCheckingSurfaceCollisionsForCamera) {
|
|
waterLevel = find_water_floor(x, gLakituState.pos[1], z, &floor);
|
|
} else {
|
|
waterLevel = find_water_floor(x, gMarioState->pos[1], z, &floor);
|
|
}
|
|
|
|
if (p != NULL && waterLevel == FLOOR_LOWER_LIMIT) {
|
|
numRegions = *p++;
|
|
|
|
for (i = 0; i < numRegions; i++) {
|
|
val = *p++;
|
|
loX = *p++;
|
|
loZ = *p++;
|
|
hiX = *p++;
|
|
hiZ = *p++;
|
|
|
|
// If the location is within a water box and it is a water box.
|
|
// Water is less than 50 val only, while above is gas and such.
|
|
if (loX < x && x < hiX && loZ < z && z < hiZ && val < 50) {
|
|
// Set the water height. Since this breaks, only return the first height.
|
|
waterLevel = *p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
} else {
|
|
*pfloor = floor;
|
|
}
|
|
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
|
|
return waterLevel;
|
|
}
|
|
|
|
/**
|
|
* Finds the height of water at a given location.
|
|
*/
|
|
s32 find_water_level(s32 x, s32 z) {
|
|
s32 i;
|
|
s32 numRegions;
|
|
s32 val;
|
|
s32 loX, hiX, loZ, hiZ;
|
|
s32 waterLevel = FLOOR_LOWER_LIMIT;
|
|
TerrainData *p = gEnvironmentRegions;
|
|
struct Surface *floor;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
if (gCheckingSurfaceCollisionsForCamera) {
|
|
waterLevel = find_water_floor(x, gLakituState.pos[1], z, &floor);
|
|
} else {
|
|
waterLevel = find_water_floor(x, gMarioState->pos[1], z, &floor);
|
|
}
|
|
|
|
if (p != NULL && waterLevel == FLOOR_LOWER_LIMIT) {
|
|
numRegions = *p++;
|
|
|
|
for (i = 0; i < numRegions; i++) {
|
|
val = *p++;
|
|
loX = *p++;
|
|
loZ = *p++;
|
|
hiX = *p++;
|
|
hiZ = *p++;
|
|
|
|
// If the location is within a water box and it is a water box.
|
|
// Water is less than 50 val only, while above is gas and such.
|
|
if (loX < x && x < hiX && loZ < z && z < hiZ && val < 50) {
|
|
// Set the water height. Since this breaks, only return the first height.
|
|
waterLevel = *p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
|
|
return waterLevel;
|
|
}
|
|
|
|
/**
|
|
* Finds the height of the poison gas (used only in HMC) at a given location.
|
|
*/
|
|
s32 find_poison_gas_level(s32 x, s32 z) {
|
|
s32 i;
|
|
s32 numRegions;
|
|
s32 val;
|
|
s32 loX, hiX, loZ, hiZ;
|
|
s32 gasLevel = FLOOR_LOWER_LIMIT;
|
|
TerrainData *p = gEnvironmentRegions;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
if (p != NULL) {
|
|
numRegions = *p++;
|
|
|
|
for (i = 0; i < numRegions; i++) {
|
|
val = *p;
|
|
|
|
if (val >= 50) {
|
|
loX = p[1];
|
|
loZ = p[2];
|
|
hiX = p[3];
|
|
hiZ = p[4];
|
|
|
|
// If the location is within a gas's box and it is a gas box.
|
|
// Gas has a value of 50, 60, etc.
|
|
if (loX < x && x < hiX && loZ < z && z < hiZ && val % 10 == 0) {
|
|
// Set the gas height. Since this breaks, only return the first height.
|
|
gasLevel = p[5];
|
|
break;
|
|
}
|
|
}
|
|
|
|
p += 6;
|
|
}
|
|
}
|
|
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
|
|
return gasLevel;
|
|
}
|
|
|
|
/**************************************************
|
|
* DEBUG *
|
|
**************************************************/
|
|
|
|
/**
|
|
* Finds the length of a surface list for debug purposes.
|
|
*/
|
|
static s32 surface_list_length(struct SurfaceNode *list) {
|
|
s32 count = 0;
|
|
|
|
while (list != NULL) {
|
|
list = list->next;
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* Print the area,number of walls, how many times they were called,
|
|
* and some allocation information.
|
|
*/
|
|
void debug_surface_list_info(f32 xPos, f32 zPos) {
|
|
struct SurfaceNode *list;
|
|
s32 numFloors = 0;
|
|
s32 numWalls = 0;
|
|
s32 numCeils = 0;
|
|
|
|
s32 cellX = (xPos + LEVEL_BOUNDARY_MAX) / CELL_SIZE;
|
|
s32 cellZ = (zPos + LEVEL_BOUNDARY_MAX) / CELL_SIZE;
|
|
|
|
list = gStaticSurfacePartition[cellZ & NUM_CELLS_INDEX][cellX & NUM_CELLS_INDEX][SPATIAL_PARTITION_FLOORS].next;
|
|
numFloors += surface_list_length(list);
|
|
|
|
list = gDynamicSurfacePartition[cellZ & NUM_CELLS_INDEX][cellX & NUM_CELLS_INDEX][SPATIAL_PARTITION_FLOORS].next;
|
|
numFloors += surface_list_length(list);
|
|
|
|
list = gStaticSurfacePartition[cellZ & NUM_CELLS_INDEX][cellX & NUM_CELLS_INDEX][SPATIAL_PARTITION_WALLS].next;
|
|
numWalls += surface_list_length(list);
|
|
|
|
list = gDynamicSurfacePartition[cellZ & NUM_CELLS_INDEX][cellX & NUM_CELLS_INDEX][SPATIAL_PARTITION_WALLS].next;
|
|
numWalls += surface_list_length(list);
|
|
|
|
list = gStaticSurfacePartition[cellZ & NUM_CELLS_INDEX][cellX & NUM_CELLS_INDEX][SPATIAL_PARTITION_CEILS].next;
|
|
numCeils += surface_list_length(list);
|
|
|
|
list = gDynamicSurfacePartition[cellZ & NUM_CELLS_INDEX][cellX & NUM_CELLS_INDEX][SPATIAL_PARTITION_CEILS].next;
|
|
numCeils += surface_list_length(list);
|
|
|
|
print_debug_top_down_mapinfo("area %x", cellZ * NUM_CELLS + cellX);
|
|
|
|
// Names represent ground, walls, and roofs as found in SMS.
|
|
print_debug_top_down_mapinfo("dg %d", numFloors);
|
|
print_debug_top_down_mapinfo("dw %d", numWalls);
|
|
print_debug_top_down_mapinfo("dr %d", numCeils);
|
|
|
|
set_text_array_x_y(80, -3);
|
|
|
|
print_debug_top_down_mapinfo("%d", gNumCalls.floor);
|
|
print_debug_top_down_mapinfo("%d", gNumCalls.wall);
|
|
print_debug_top_down_mapinfo("%d", gNumCalls.ceil);
|
|
|
|
set_text_array_x_y(-80, 0);
|
|
|
|
// listal- List Allocated?, statbg- Static Background?, movebg- Moving Background?
|
|
print_debug_top_down_mapinfo("listal %d", gSurfaceNodesAllocated);
|
|
print_debug_top_down_mapinfo("statbg %d", gNumStaticSurfaces);
|
|
print_debug_top_down_mapinfo("movebg %d", gSurfacesAllocated - gNumStaticSurfaces);
|
|
|
|
gNumCalls.floor = 0;
|
|
gNumCalls.ceil = 0;
|
|
gNumCalls.wall = 0;
|
|
}
|
|
|
|
/**
|
|
* An unused function that finds and interacts with any type of surface.
|
|
* Perhaps an original implementation of surfaces before they were more specialized.
|
|
*/
|
|
s32 unused_resolve_floor_or_ceil_collisions(s32 checkCeil, f32 *px, f32 *py, f32 *pz, f32 radius,
|
|
struct Surface **psurface, f32 *surfaceHeight) {
|
|
f32 nx, ny, nz, oo;
|
|
f32 x = *px;
|
|
f32 y = *py;
|
|
f32 z = *pz;
|
|
f32 offset, distance;
|
|
|
|
*psurface = NULL;
|
|
|
|
if (checkCeil) {
|
|
*surfaceHeight = find_ceil(x, y, z, psurface);
|
|
} else {
|
|
*surfaceHeight = find_floor(x, y, z, psurface);
|
|
}
|
|
|
|
if (*psurface == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
nx = (*psurface)->normal.x;
|
|
ny = (*psurface)->normal.y;
|
|
nz = (*psurface)->normal.z;
|
|
oo = (*psurface)->originOffset;
|
|
|
|
offset = (nx * x) + (ny * y) + (nz * z) + oo;
|
|
distance = offset >= 0 ? offset : -offset;
|
|
|
|
// Interesting surface interaction that should be surf type independent.
|
|
if (distance < radius) {
|
|
*px += nx * (radius - offset);
|
|
*py += ny * (radius - offset);
|
|
*pz += nz * (radius - offset);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************
|
|
* RAYCASTING *
|
|
**************************************************/
|
|
|
|
#define RAY_OFFSET 30.0f /*How many units to extrapolate surfaces when testing for a raycast*/
|
|
#define RAY_STEPS 4 /*How many steps to do when casting rays, default to quartersteps.*/
|
|
|
|
s32 ray_surface_intersect(Vec3f orig, Vec3f dir, f32 dir_length, struct Surface *surface, Vec3f hit_pos, f32 *length) {
|
|
Vec3f v0, v1, v2, e1, e2, h, s, q;
|
|
f32 a, f, u, v;
|
|
Vec3f add_dir;
|
|
Vec3f norm;
|
|
|
|
//Ignore certain surface types.
|
|
if (surface->type == SURFACE_INTANGIBLE || surface->flags & SURFACE_FLAG_NO_CAM_COLLISION)
|
|
return FALSE;
|
|
|
|
// Get surface normal and some other stuff
|
|
vec3_set(norm, 0, surface->normal.y, 0);
|
|
vec3_mul_val(norm, RAY_OFFSET);
|
|
|
|
vec3_copy(v0, surface->vertex1);
|
|
vec3_copy(v1, surface->vertex2);
|
|
vec3_copy(v2, surface->vertex3);
|
|
|
|
vec3_add(v0, norm);
|
|
vec3_add(v1, norm);
|
|
vec3_add(v2, norm);
|
|
|
|
vec3_diff(e1, v1, v0);
|
|
vec3_diff(e2, v2, v0);
|
|
|
|
vec3_cross(h, dir, e2);
|
|
|
|
// Check if we're perpendicular from the surface
|
|
a = vec3_dot(e1, h);
|
|
if (a > -0.00001f && a < 0.00001f) {
|
|
return FALSE;
|
|
}
|
|
// Check if we're making contact with the surface
|
|
f = 1.0f / a;
|
|
|
|
vec3_diff(s, orig, v0);
|
|
u = f * vec3_dot(s, h);
|
|
if (u < 0.0f || u > 1.0f) {
|
|
return FALSE;
|
|
}
|
|
vec3_cross(q, s, e1);
|
|
v = f * vec3_dot(dir, q);
|
|
if (v < 0.0f || u + v > 1.0f) {
|
|
return FALSE;
|
|
}
|
|
// Get the length between our origin and the surface contact point
|
|
*length = f * vec3_dot(e2, q);
|
|
if (*length <= 0.00001 || *length > dir_length) {
|
|
return FALSE;
|
|
}
|
|
// Successful contact
|
|
vec3f_copy(add_dir, dir);
|
|
vec3_mul_val(add_dir, *length);
|
|
vec3_sum(hit_pos, orig, add_dir);
|
|
return TRUE;
|
|
}
|
|
|
|
void find_surface_on_ray_list(struct SurfaceNode *list, Vec3f orig, Vec3f dir, f32 dir_length, struct Surface **hit_surface, Vec3f hit_pos, f32 *max_length) {
|
|
s32 hit;
|
|
f32 length;
|
|
Vec3f chk_hit_pos;
|
|
f32 top, bottom;
|
|
#if PUPPYPRINT_DEBUG
|
|
OSTime first = osGetTime();
|
|
#endif
|
|
|
|
// Get upper and lower bounds of ray
|
|
if (dir[1] >= 0.0f) {
|
|
top = orig[1] + dir[1] * dir_length;
|
|
bottom = orig[1];
|
|
} else {
|
|
top = orig[1];
|
|
bottom = orig[1] + dir[1] * dir_length;
|
|
}
|
|
|
|
// Iterate through every surface of the list
|
|
for (; list != NULL; list = list->next) {
|
|
// Reject surface if out of vertical bounds
|
|
if (list->surface->lowerY > top || list->surface->upperY < bottom) {
|
|
continue;
|
|
}
|
|
// Check intersection between the ray and this surface
|
|
if ((hit = ray_surface_intersect(orig, dir, dir_length, list->surface, chk_hit_pos, &length)) != 0) {
|
|
if (length <= *max_length) {
|
|
*hit_surface = list->surface;
|
|
vec3f_copy(hit_pos, chk_hit_pos);
|
|
*max_length = length;
|
|
}
|
|
}
|
|
}
|
|
#if PUPPYPRINT_DEBUG
|
|
collisionTime[perfIteration] += osGetTime()-first;
|
|
#endif
|
|
}
|
|
|
|
void find_surface_on_ray_cell(s32 cellX, s32 cellZ, Vec3f orig, Vec3f normalized_dir, f32 dir_length, struct Surface **hit_surface, Vec3f hit_pos, f32 *max_length, s32 flags) {
|
|
// Skip if OOB
|
|
if (cellX >= 0 && cellX <= (NUM_CELLS - 1) && cellZ >= 0 && cellZ <= (NUM_CELLS - 1)) {
|
|
// Iterate through each surface in this partition
|
|
if (normalized_dir[1] > -0.99999f && flags & RAYCAST_FIND_CEIL) {
|
|
find_surface_on_ray_list(gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
find_surface_on_ray_list(gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
}
|
|
if (normalized_dir[1] < 0.99999f && flags & RAYCAST_FIND_FLOOR) {
|
|
find_surface_on_ray_list(gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
find_surface_on_ray_list(gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
}
|
|
if (flags & RAYCAST_FIND_WALL) {
|
|
find_surface_on_ray_list(gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
find_surface_on_ray_list(gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
}
|
|
if (flags & RAYCAST_FIND_WATER) {
|
|
find_surface_on_ray_list(gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WATER].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
find_surface_on_ray_list(gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WATER].next, orig, normalized_dir, dir_length, hit_surface, hit_pos, max_length);
|
|
}
|
|
}
|
|
}
|
|
|
|
void find_surface_on_ray(Vec3f orig, Vec3f dir, struct Surface **hit_surface, Vec3f hit_pos, s32 flags) {
|
|
f32 max_length;
|
|
s32 cellZ, cellX, cellPrevX, cellPrevZ;
|
|
f32 fCellZ, fCellX;
|
|
f32 dir_length;
|
|
Vec3f normalized_dir;
|
|
f32 step, dx, dz;
|
|
s32 i;
|
|
|
|
// Set that no surface has been hit
|
|
*hit_surface = NULL;
|
|
vec3_sum(hit_pos, orig, dir);
|
|
|
|
// Get normalized direction
|
|
dir_length = vec3_mag(dir);
|
|
max_length = dir_length;
|
|
vec3f_copy(normalized_dir, dir);
|
|
vec3f_normalize(normalized_dir);
|
|
|
|
// Get our cell coordinate
|
|
fCellX = (orig[0] + LEVEL_BOUNDARY_MAX) / CELL_SIZE;
|
|
fCellZ = (orig[2] + LEVEL_BOUNDARY_MAX) / CELL_SIZE;
|
|
cellX = fCellX;
|
|
cellZ = fCellZ;
|
|
cellPrevX = cellX;
|
|
cellPrevZ = cellZ;
|
|
|
|
// Don't do DDA if straight down
|
|
if (normalized_dir[1] >= 0.99999f || normalized_dir[1] <= -0.99999f) {
|
|
find_surface_on_ray_cell(cellX, cellZ, orig, normalized_dir, dir_length, hit_surface, hit_pos, &max_length, flags);
|
|
return;
|
|
}
|
|
|
|
// Get cells we cross using DDA
|
|
if (ABS(dir[0]) >= ABS(dir[2]))
|
|
step = RAY_STEPS * ABS(dir[0]) / CELL_SIZE;
|
|
else
|
|
step = RAY_STEPS * ABS(dir[2]) / CELL_SIZE;
|
|
|
|
dx = dir[0] / step / CELL_SIZE;
|
|
dz = dir[2] / step / CELL_SIZE;
|
|
|
|
for (i = 0; i < step && *hit_surface == NULL; i++) {
|
|
find_surface_on_ray_cell(cellX, cellZ, orig, normalized_dir, dir_length, hit_surface, hit_pos, &max_length, flags);
|
|
|
|
// Move cell coordinate
|
|
fCellX += dx;
|
|
fCellZ += dz;
|
|
cellPrevX = cellX;
|
|
cellPrevZ = cellZ;
|
|
cellX = fCellX;
|
|
cellZ = fCellZ;
|
|
|
|
if ((cellPrevX != cellX) && (cellPrevZ != cellZ)) {
|
|
find_surface_on_ray_cell(cellX, cellPrevZ, orig, normalized_dir, dir_length, hit_surface, hit_pos, &max_length, flags);
|
|
find_surface_on_ray_cell(cellPrevX, cellZ, orig, normalized_dir, dir_length, hit_surface, hit_pos, &max_length, flags);
|
|
}
|
|
}
|
|
}
|
|
|