#include #include "sm64.h" #include "game/debug.h" #include "game/level_update.h" #include "game/mario.h" #include "game/object_list_processor.h" #include "math_util.h" #include "surface_collision.h" #include "surface_load.h" #include "game/puppyprint.h" /************************************************** * WALLS * **************************************************/ #define CALC_OFFSET(vert, next_step) { \ if (FLT_IS_NONZERO((vert)[1])) { \ v = (v2[1] / (vert)[1]); \ if ((v < 0.0f) || (v > 1.0f)) next_step;\ d00 = (((vert)[0] * v) - v2[0]); \ d01 = (((vert)[2] * v) - v2[2]); \ invDenom = sqrtf(sqr(d00) + sqr(d01)); \ offset = (invDenom - margin_radius); \ if (offset > 0.0f) next_step; \ goto check_collision; \ } \ next_step; \ } /** * Iterate through the list of walls until all walls are checked and * have given their wall push. */ static s32 find_wall_collisions_from_list(struct SurfaceNode *surfaceNode, struct WallCollisionData *data) { const f32 corner_threshold = -0.9f; register struct Surface *surf; register f32 offset; register f32 radius = data->radius; Vec3f pos = { data->x, data->y + data->offsetY, data->z }; Vec3f v0, v1, v2; register f32 d00, d01, d11, d20, d21; register f32 invDenom; register f32 v, w; register TerrainData type = SURFACE_DEFAULT; s32 numCols = 0; // Max collision radius = 200 if (radius > 200) { radius = 200; } f32 margin_radius = radius - 1.0f; // Stay in this loop until out of walls. while (surfaceNode != NULL) { surf = surfaceNode->surface; surfaceNode = surfaceNode->next; type = surf->type; // Exclude a large number of walls immediately to optimize. if (pos[1] < surf->lowerY || pos[1] > surf->upperY) continue; // Determine if checking for the camera or not. if (gCollisionFlags & COLLISION_FLAG_CAMERA) { if (surf->flags & SURFACE_FLAG_NO_CAM_COLLISION) continue; } else { // Ignore camera only surfaces. if (type == SURFACE_CAMERA_BOUNDARY) continue; // If an object can pass through a vanish cap wall, pass through. if (type == SURFACE_VANISH_CAP_WALLS && o != NULL) { // If an object can pass through a vanish cap wall, pass through. if (o->activeFlags & ACTIVE_FLAG_MOVE_THROUGH_GRATE) continue; // If Mario has a vanish cap, pass through the vanish cap wall. if (o == gMarioObject && gMarioState->flags & MARIO_VANISH_CAP) continue; } } // Dot of normal and pos, + origin offset offset = (surf->normal.x * pos[0]) + (surf->normal.y * pos[1]) + (surf->normal.z * pos[2]) + surf->originOffset; // Exclude surfaces outside of the radius. if (offset < -radius || offset > radius) continue; vec3_diff(v0, surf->vertex2, surf->vertex1); vec3_diff(v1, surf->vertex3, surf->vertex1); vec3_diff(v2, pos, surf->vertex1); // Face d00 = vec3_dot(v0, v0); d01 = vec3_dot(v0, v1); d11 = vec3_dot(v1, v1); d20 = vec3_dot(v2, v0); d21 = vec3_dot(v2, v1); invDenom = (d00 * d11) - (d01 * d01); if (FLT_IS_NONZERO(invDenom)) invDenom = 1.0f / invDenom; v = ((d11 * d20) - (d01 * d21)) * invDenom; if (v < 0.0f || v > 1.0f) goto edge_1_2; w = ((d00 * d21) - (d01 * d20)) * invDenom; if (w < 0.0f || w > 1.0f || v + w > 1.0f) goto edge_1_2; pos[0] += surf->normal.x * (radius - offset); pos[2] += surf->normal.z * (radius - offset); goto hasCollision; edge_1_2: if (offset < 0) continue; CALC_OFFSET(v0, goto edge_1_3); edge_1_3: CALC_OFFSET(v1, goto edge_2_3); edge_2_3: vec3_diff(v1, surf->vertex3, surf->vertex2); vec3_diff(v2, pos, surf->vertex2); CALC_OFFSET(v1, continue); check_collision: if (FLT_IS_NONZERO(invDenom)) invDenom = (offset / invDenom); pos[0] += (d00 *= invDenom); pos[2] += (d01 *= invDenom); margin_radius += 0.01f; if ((d00 * surf->normal.x) + (d01 * surf->normal.z) < (corner_threshold * offset)) continue; hasCollision: if (data->numWalls < MAX_REFERENCED_WALLS) { data->walls[data->numWalls++] = surf; } numCols++; if (gCollisionFlags & COLLISION_FLAG_RETURN_FIRST) { break; } } data->x = pos[0]; data->z = pos[2]; return numCols; } #undef CALC_OFFSET /** * Formats the position and wall search for find_wall_collisions. */ s32 f32_find_wall_collision(f32 *xPtr, f32 *yPtr, f32 *zPtr, f32 offsetY, f32 radius) { struct WallCollisionData collision; collision.offsetY = offsetY; collision.radius = radius; collision.x = *xPtr; collision.y = *yPtr; collision.z = *zPtr; collision.numWalls = 0; s32 numCollisions = find_wall_collisions(&collision); *xPtr = collision.x; *yPtr = collision.y; *zPtr = collision.z; return numCollisions; } /** * Find wall collisions and receive their push. */ s32 find_wall_collisions(struct WallCollisionData *colData) { struct SurfaceNode *node; s32 numCollisions = 0; s32 x = colData->x; s32 z = colData->z; colData->numWalls = 0; if (is_outside_level_bounds(x, z)) { return numCollisions; } // World (level) consists of a 16x16 grid. Find where the collision is on the grid (round toward -inf) s32 cellX = GET_CELL_COORD(x); s32 cellZ = GET_CELL_COORD(z); if (!(gCollisionFlags & COLLISION_FLAG_EXCLUDE_DYNAMIC)) { // Check for surfaces belonging to objects. node = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next; numCollisions += find_wall_collisions_from_list(node, colData); } // Check for surfaces that are a part of level geometry. node = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next; numCollisions += find_wall_collisions_from_list(node, colData); gCollisionFlags &= ~(COLLISION_FLAG_RETURN_FIRST | COLLISION_FLAG_EXCLUDE_DYNAMIC | COLLISION_FLAG_INCLUDE_INTANGIBLE); #ifdef VANILLA_DEBUG // Increment the debug tracker. gNumCalls.wall++; #endif return numCollisions; } /** * Collides with walls and returns the most recent wall. */ void resolve_and_return_wall_collisions(Vec3f pos, f32 offset, f32 radius, struct WallCollisionData *collisionData) { collisionData->x = pos[0]; collisionData->y = pos[1]; collisionData->z = pos[2]; collisionData->radius = radius; collisionData->offsetY = offset; find_wall_collisions(collisionData); pos[0] = collisionData->x; pos[1] = collisionData->y; pos[2] = collisionData->z; } /************************************************** * CEILINGS * **************************************************/ void add_ceil_margin(s32 *x, s32 *z, Vec3s target1, Vec3s target2, f32 margin) { register f32 diff_x = target1[0] - *x + target2[0] - *x; register f32 diff_z = target1[2] - *z + target2[2] - *z; register f32 invDenom = margin / sqrtf(sqr(diff_x) + sqr(diff_z)); *x += diff_x * invDenom; *z += diff_z * invDenom; } static s32 check_within_ceil_triangle_bounds(s32 x, s32 z, struct Surface *surf, f32 margin) { s32 addMargin = surf->type != SURFACE_HANGABLE && !FLT_IS_NONZERO(margin); Vec3i vx, vz; vx[0] = surf->vertex1[0]; vz[0] = surf->vertex1[2]; if (addMargin) add_ceil_margin(&vx[0], &vz[0], surf->vertex2, surf->vertex3, margin); vx[1] = surf->vertex2[0]; vz[1] = surf->vertex2[2]; if (addMargin) add_ceil_margin(&vx[1], &vz[1], surf->vertex3, surf->vertex1, margin); // Checking if point is in bounds of the triangle laterally. if (((vz[0] - z) * (vx[1] - vx[0]) - (vx[0] - x) * (vz[1] - vz[0])) > 0) return FALSE; // Slight optimization by checking these later. vx[2] = surf->vertex3[0]; vz[2] = surf->vertex3[2]; if (addMargin) add_ceil_margin(&vx[2], &vz[2], surf->vertex1, surf->vertex2, margin); if (((vz[1] - z) * (vx[2] - vx[1]) - (vx[1] - x) * (vz[2] - vz[1])) > 0) return FALSE; if (((vz[2] - z) * (vx[0] - vx[2]) - (vx[2] - x) * (vz[0] - vz[2])) > 0) return FALSE; return TRUE; } /** * Iterate through the list of ceilings and find the first ceiling over a given point. */ static struct Surface *find_ceil_from_list(struct SurfaceNode *surfaceNode, s32 x, s32 y, s32 z, f32 *pheight) { register struct Surface *surf, *ceil = NULL; register f32 height; SurfaceType type = SURFACE_DEFAULT; *pheight = CELL_HEIGHT_LIMIT; // Stay in this loop until out of ceilings. while (surfaceNode != NULL) { surf = surfaceNode->surface; surfaceNode = surfaceNode->next; type = surf->type; // Exclude all ceilings below the point if (y > surf->upperY) continue; // Determine if checking for the camera or not if (gCollisionFlags & COLLISION_FLAG_CAMERA) { if (surf->flags & SURFACE_FLAG_NO_CAM_COLLISION) { continue; } } else if (type == SURFACE_CAMERA_BOUNDARY) { // Ignore camera only surfaces continue; } // Check that the point is within the triangle bounds if (!check_within_ceil_triangle_bounds(x, z, surf, 1.5f)) continue; // Find the height of the ceil at the given location height = get_surface_height_at_location(x, z, surf); // Exclude ceilings above the previous lowest ceiling if (height > *pheight) continue; // Checks for ceiling interaction if (y > height) continue; // Use the current ceiling *pheight = height; ceil = surf; // Exit the loop if it's not possible for another ceiling to be closer // to the original point, or if COLLISION_FLAG_RETURN_FIRST. if (height == y || (gCollisionFlags & COLLISION_FLAG_RETURN_FIRST)) break; } return ceil; } /** * Find the lowest ceiling above a given position and return the height. */ f32 find_ceil(f32 posX, f32 posY, f32 posZ, struct Surface **pceil) { f32 height = CELL_HEIGHT_LIMIT; f32 dynamicHeight = CELL_HEIGHT_LIMIT; s32 x = posX; s32 y = posY; s32 z = posZ; *pceil = NULL; if (is_outside_level_bounds(x, z)) { return height; } // Each level is split into cells to limit load, find the appropriate cell. s32 cellX = GET_CELL_COORD(x); s32 cellZ = GET_CELL_COORD(z); struct SurfaceNode *surfaceList; struct Surface *ceil = NULL; struct Surface *dynamicCeil = NULL; s32 includeDynamic = !(gCollisionFlags & COLLISION_FLAG_EXCLUDE_DYNAMIC); if (includeDynamic) { // Check for surfaces belonging to objects. surfaceList = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next; dynamicCeil = find_ceil_from_list(surfaceList, x, y, z, &dynamicHeight); // In the next check, only check for ceilings lower than the previous check. height = dynamicHeight; } // Check for surfaces that are a part of level geometry. surfaceList = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next; ceil = find_ceil_from_list(surfaceList, x, y, z, &height); // Use the lower ceiling. if (includeDynamic && height >= dynamicHeight) { ceil = dynamicCeil; height = dynamicHeight; } // To prevent accidentally leaving the floor tangible, stop checking for it. gCollisionFlags &= ~(COLLISION_FLAG_RETURN_FIRST | COLLISION_FLAG_EXCLUDE_DYNAMIC | COLLISION_FLAG_INCLUDE_INTANGIBLE); // Return the ceiling. *pceil = ceil; #ifdef VANILLA_DEBUG // Increment the debug tracker. gNumCalls.ceil++; #endif return height; } /************************************************** * FLOORS * **************************************************/ static s32 check_within_floor_triangle_bounds(s32 x, s32 z, struct Surface *surf) { Vec3i vx, vz; vx[0] = surf->vertex1[0]; vz[0] = surf->vertex1[2]; vx[1] = surf->vertex2[0]; vz[1] = surf->vertex2[2]; if (((vz[0] - z) * (vx[1] - vx[0]) - (vx[0] - x) * (vz[1] - vz[0])) < 0) return FALSE; vx[2] = surf->vertex3[0]; vz[2] = surf->vertex3[2]; if (((vz[1] - z) * (vx[2] - vx[1]) - (vx[1] - x) * (vz[2] - vz[1])) < 0) return FALSE; if (((vz[2] - z) * (vx[0] - vx[2]) - (vx[2] - x) * (vz[0] - vz[2])) < 0) return FALSE; return TRUE; } /** * Iterate through the list of floors and find the first floor under a given point. */ static struct Surface *find_floor_from_list(struct SurfaceNode *surfaceNode, s32 x, s32 y, s32 z, f32 *pheight) { register struct Surface *surf, *floor = NULL; register SurfaceType type = SURFACE_DEFAULT; register f32 height; register s32 bufferY = y + FIND_FLOOR_BUFFER; // Iterate through the list of floors until there are no more floors. while (surfaceNode != NULL) { surf = surfaceNode->surface; surfaceNode = surfaceNode->next; type = surf->type; // To prevent the Merry-Go-Round room from loading when Mario passes above the hole that leads // there, SURFACE_INTANGIBLE is used. This prevent the wrong room from loading, but can also allow // Mario to pass through. if (!(gCollisionFlags & COLLISION_FLAG_INCLUDE_INTANGIBLE) && (type == SURFACE_INTANGIBLE)) { continue; } // Determine if we are checking for the camera or not. if (gCollisionFlags & COLLISION_FLAG_CAMERA) { if (surf->flags & SURFACE_FLAG_NO_CAM_COLLISION) { continue; } } else if (type == SURFACE_CAMERA_BOUNDARY) { continue; // If we are not checking for the camera, ignore camera only floors. } // Exclude all floors above the point. if (bufferY < surf->lowerY) continue; // Check that the point is within the triangle bounds. if (!check_within_floor_triangle_bounds(x, z, surf)) continue; // Get the height of the floor under the current location. height = get_surface_height_at_location(x, z, surf); // Exclude floors lower than the previous highest floor. if (height < *pheight) continue; // Checks for floor interaction with a FIND_FLOOR_BUFFER unit buffer. if (bufferY < height) continue; // Use the current floor *pheight = height; floor = surf; // Exit the loop if it's not possible for another floor to be closer // to the original point, or if COLLISION_FLAG_RETURN_FIRST. if ((height == bufferY) || (gCollisionFlags & COLLISION_FLAG_RETURN_FIRST)) break; } return floor; } // Generic triangle bounds func ALWAYS_INLINE static s32 check_within_bounds_y_norm(s32 x, s32 z, struct Surface *surf) { if (surf->normal.y >= NORMAL_FLOOR_THRESHOLD) return check_within_floor_triangle_bounds(x, z, surf); return check_within_ceil_triangle_bounds(x, z, surf, 0); } /** * Iterate through the list of water floors and find the first water floor under a given point. */ struct Surface *find_water_floor_from_list(struct SurfaceNode *surfaceNode, s32 x, s32 y, s32 z, f32 *pheight) { register struct Surface *surf; struct Surface *floor = NULL; struct SurfaceNode *topSurfaceNode = surfaceNode; struct SurfaceNode *bottomSurfaceNode = surfaceNode; f32 height = FLOOR_LOWER_LIMIT; f32 curHeight = FLOOR_LOWER_LIMIT; f32 bottomHeight = FLOOR_LOWER_LIMIT; f32 curBottomHeight = FLOOR_LOWER_LIMIT; f32 buffer = FIND_FLOOR_BUFFER; // Iterate through the list of water floors until there are no more water floors. // SURFACE_NEW_WATER_BOTTOM while (bottomSurfaceNode != NULL) { surf = bottomSurfaceNode->surface; bottomSurfaceNode = bottomSurfaceNode->next; // skip wall angled water if (surf->type != SURFACE_NEW_WATER_BOTTOM || absf(surf->normal.y) < NORMAL_FLOOR_THRESHOLD) continue; if (!check_within_bounds_y_norm(x, z, surf)) continue; curBottomHeight = get_surface_height_at_location(x, z, surf); if (curBottomHeight < y + buffer) { continue; } else { bottomHeight = curBottomHeight; } } // Iterate through the list of water tops until there are no more water tops. // SURFACE_NEW_WATER while (topSurfaceNode != NULL) { surf = topSurfaceNode->surface; topSurfaceNode = topSurfaceNode->next; // skip water tops or wall angled water bottoms if (surf->type == SURFACE_NEW_WATER_BOTTOM || absf(surf->normal.y) < NORMAL_FLOOR_THRESHOLD) continue; if (!check_within_bounds_y_norm(x, z, surf)) continue; curHeight = get_surface_height_at_location(x, z, surf); if (bottomHeight != FLOOR_LOWER_LIMIT && curHeight > bottomHeight) continue; if (curHeight > height) { height = curHeight; *pheight = curHeight; floor = surf; } } return floor; } /** * Find the height of the highest floor below a point. */ f32 find_floor_height(f32 x, f32 y, f32 z) { struct Surface *floor; return find_floor(x, y, z, &floor); } /** * Find the highest dynamic floor under a given position. Perhaps originally static * and dynamic floors were checked separately. */ f32 unused_find_dynamic_floor(f32 xPos, f32 yPos, f32 zPos, struct Surface **pfloor) { f32 floorHeight = FLOOR_LOWER_LIMIT; // Would normally cause PUs, but dynamic floors unload at that range. s32 x = xPos; s32 y = yPos; s32 z = zPos; // Each level is split into cells to limit load, find the appropriate cell. s32 cellX = GET_CELL_COORD(x); s32 cellZ = GET_CELL_COORD(z); struct SurfaceNode *surfaceList = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next; *pfloor = find_floor_from_list(surfaceList, x, y, z, &floorHeight); return floorHeight; } /** * Find the highest floor under a given position and return the height. */ f32 find_floor(f32 xPos, f32 yPos, f32 zPos, struct Surface **pfloor) { f32 height = FLOOR_LOWER_LIMIT; f32 dynamicHeight = FLOOR_LOWER_LIMIT; //! (Parallel Universes) Because position is casted to an s16, reaching higher // float locations can return floors despite them not existing there. // (Dynamic floors will unload due to the range.) s32 x = xPos; s32 y = yPos; s32 z = zPos; *pfloor = NULL; if (is_outside_level_bounds(x, z)) { return height; } // Each level is split into cells to limit load, find the appropriate cell. s32 cellX = GET_CELL_COORD(x); s32 cellZ = GET_CELL_COORD(z); struct SurfaceNode *surfaceList; struct Surface *floor = NULL; struct Surface *dynamicFloor = NULL; s32 includeDynamic = !(gCollisionFlags & COLLISION_FLAG_EXCLUDE_DYNAMIC); if (includeDynamic) { // Check for surfaces belonging to objects. surfaceList = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next; dynamicFloor = find_floor_from_list(surfaceList, x, y, z, &dynamicHeight); // In the next check, only check for floors higher than the previous check. height = dynamicHeight; } // Check for surfaces that are a part of level geometry. surfaceList = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next; floor = find_floor_from_list(surfaceList, x, y, z, &height); // Use the higher floor. if (includeDynamic && height <= dynamicHeight) { floor = dynamicFloor; height = dynamicHeight; } // To prevent accidentally leaving the floor tangible, stop checking for it. gCollisionFlags &= ~(COLLISION_FLAG_RETURN_FIRST | COLLISION_FLAG_EXCLUDE_DYNAMIC | COLLISION_FLAG_INCLUDE_INTANGIBLE); // If a floor was missed, increment the debug counter. if (floor == NULL) { gNumFindFloorMisses++; } // Return the floor. *pfloor = floor; #ifdef VANILLA_DEBUG // Increment the debug tracker. gNumCalls.floor++; #endif return height; } f32 find_room_floor(f32 x, f32 y, f32 z, struct Surface **pfloor) { gCollisionFlags |= (COLLISION_FLAG_RETURN_FIRST | COLLISION_FLAG_EXCLUDE_DYNAMIC | COLLISION_FLAG_INCLUDE_INTANGIBLE); return find_floor(x, y, z, pfloor); } /** * Find the highest water floor under a given position and return the height. */ f32 find_water_floor(s32 xPos, s32 yPos, s32 zPos, struct Surface **pfloor) { f32 height = FLOOR_LOWER_LIMIT; s32 x = xPos; s32 y = yPos; s32 z = zPos; if (is_outside_level_bounds(x, z)) return height; // Each level is split into cells to limit load, find the appropriate cell. s32 cellX = GET_CELL_COORD(x); s32 cellZ = GET_CELL_COORD(z); // Check for surfaces that are a part of level geometry. struct SurfaceNode *surfaceList = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WATER].next; struct Surface *floor = find_water_floor_from_list(surfaceList, x, y, z, &height); if (floor == NULL) { height = FLOOR_LOWER_LIMIT; } else { *pfloor = floor; } #ifdef VANILLA_DEBUG // Increment the debug tracker. gNumCalls.floor++; #endif return height; } /************************************************** * ENVIRONMENTAL BOXES * **************************************************/ /** * Finds the height of water at a given location. */ s32 find_water_level_and_floor(s32 x, s32 y, s32 z, struct Surface **pfloor) { s32 val; s32 loX, hiX, loZ, hiZ; TerrainData *p = gEnvironmentRegions; struct Surface *floor = NULL; s32 waterLevel = find_water_floor(x, y, z, &floor); if (p != NULL && waterLevel == FLOOR_LOWER_LIMIT) { s32 numRegions = *p++; for (s32 i = 0; i < numRegions; i++) { val = *p++; loX = *p++; loZ = *p++; hiX = *p++; hiZ = *p++; // If the location is within a water box and it is a water box. // Water is less than 50 val only, while above is gas and such. if (loX < x && x < hiX && loZ < z && z < hiZ && val < 50) { // Set the water height. Since this breaks, only return the first height. waterLevel = *p; break; } p++; } } else { *pfloor = floor; } return waterLevel; } /** * Finds the height of water at a given location. */ s32 find_water_level(s32 x, s32 z) { // TODO: Allow y pos s32 val; s32 loX, hiX, loZ, hiZ; TerrainData *p = gEnvironmentRegions; struct Surface *floor = NULL; s32 waterLevel = find_water_floor(x, ((gCollisionFlags & COLLISION_FLAG_CAMERA) ? gLakituState.pos[1] : gMarioState->pos[1]), z, &floor); if ((p != NULL) && (waterLevel == FLOOR_LOWER_LIMIT)) { s32 numRegions = *p++; for (s32 i = 0; i < numRegions; i++) { val = *p++; loX = *p++; loZ = *p++; hiX = *p++; hiZ = *p++; // If the location is within a water box and it is a water box. // Water is less than 50 val only, while above is gas and such. if (loX <= x && x <= hiX && loZ <= z && z <= hiZ && val < 50) { // Set the water height. Since this breaks, only return the first height. waterLevel = *p; break; } p++; } } return waterLevel; } /** * Finds the height of the poison gas (used only in HMC) at a given location. */ s32 find_poison_gas_level(s32 x, s32 z) { s32 val; s32 loX, hiX, loZ, hiZ; s32 gasLevel = FLOOR_LOWER_LIMIT; TerrainData *p = gEnvironmentRegions; if (p != NULL) { s32 numRegions = *p++; for (s32 i = 0; i < numRegions; i++) { val = *p; if (val >= 50) { loX = p[1]; loZ = p[2]; hiX = p[3]; hiZ = p[4]; // If the location is within a gas's box and it is a gas box. // Gas has a value of 50, 60, etc. if (loX < x && x < hiX && loZ < z && z < hiZ && val % 10 == 0) { // Set the gas height. Since this breaks, only return the first height. gasLevel = p[5]; break; } } p += 6; } } return gasLevel; } /************************************************** * DEBUG * **************************************************/ #ifdef VANILLA_DEBUG /** * Finds the length of a surface list for debug purposes. */ static s32 surface_list_length(struct SurfaceNode *list) { s32 count = 0; while (list != NULL) { list = list->next; count++; } return count; } /** * Print the area,number of walls, how many times they were called, * and some allocation information. */ void debug_surface_list_info(f32 xPos, f32 zPos) { struct SurfaceNode *list; s32 numFloors = 0; s32 numWalls = 0; s32 numCeils = 0; s32 cellX = GET_CELL_COORD(xPos); s32 cellZ = GET_CELL_COORD(zPos); list = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next; numFloors += surface_list_length(list); list = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_FLOORS].next; numFloors += surface_list_length(list); list = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next; numWalls += surface_list_length(list); list = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_WALLS].next; numWalls += surface_list_length(list); list = gStaticSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next; numCeils += surface_list_length(list); list = gDynamicSurfacePartition[cellZ][cellX][SPATIAL_PARTITION_CEILS].next; numCeils += surface_list_length(list); print_debug_top_down_mapinfo("area %x", cellZ * NUM_CELLS + cellX); // Names represent ground, walls, and roofs as found in SMS. print_debug_top_down_mapinfo("dg %d", numFloors); print_debug_top_down_mapinfo("dw %d", numWalls); print_debug_top_down_mapinfo("dr %d", numCeils); set_text_array_x_y(80, -3); print_debug_top_down_mapinfo("%d", gNumCalls.floor); print_debug_top_down_mapinfo("%d", gNumCalls.wall); print_debug_top_down_mapinfo("%d", gNumCalls.ceil); set_text_array_x_y(-80, 0); // listal- List Allocated?, statbg- Static Background?, movebg- Moving Background? print_debug_top_down_mapinfo("listal %d", gSurfaceNodesAllocated); print_debug_top_down_mapinfo("statbg %d", gNumStaticSurfaces); print_debug_top_down_mapinfo("movebg %d", (gSurfacesAllocated - gNumStaticSurfaces)); gNumCalls.floor = 0; gNumCalls.ceil = 0; gNumCalls.wall = 0; } #endif /** * An unused function that finds and interacts with any type of surface. * Perhaps an original implementation of surfaces before they were more specialized. */ s32 unused_resolve_floor_or_ceil_collisions(s32 checkCeil, f32 *px, f32 *py, f32 *pz, f32 radius, struct Surface **psurface, f32 *surfaceHeight) { f32 x = *px; f32 y = *py; f32 z = *pz; *psurface = NULL; if (checkCeil) { *surfaceHeight = find_ceil(x, y, z, psurface); } else { *surfaceHeight = find_floor(x, y, z, psurface); } if (*psurface == NULL) return -1; f32 nx = (*psurface)->normal.x; f32 ny = (*psurface)->normal.y; f32 nz = (*psurface)->normal.z; f32 oo = (*psurface)->originOffset; f32 offset = absf((nx * x) + (ny * y) + (nz * z) + oo); // Interesting surface interaction that should be surf type independent. if (offset < radius) { offset = (radius - offset); *px += (nx * offset); *py += (ny * offset); *pz += (nz * offset); return 1; } return 0; }