You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1015 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1015 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstrProf.cpp - Instrumented profiling format support --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains support for clang's instrumentation based PGO and
 | |
| // coverage.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ProfileData/InstrProf.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Compression.h"
 | |
| #include "llvm/Support/Endian.h"
 | |
| #include "llvm/Support/Error.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/LEB128.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Path.h"
 | |
| #include "llvm/Support/SwapByteOrder.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <system_error>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> StaticFuncFullModulePrefix(
 | |
|     "static-func-full-module-prefix", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Use full module build paths in the profile counter names for "
 | |
|              "static functions."));
 | |
| 
 | |
| // This option is tailored to users that have different top-level directory in
 | |
| // profile-gen and profile-use compilation. Users need to specific the number
 | |
| // of levels to strip. A value larger than the number of directories in the
 | |
| // source file will strip all the directory names and only leave the basename.
 | |
| //
 | |
| // Note current ThinLTO module importing for the indirect-calls assumes
 | |
| // the source directory name not being stripped. A non-zero option value here
 | |
| // can potentially prevent some inter-module indirect-call-promotions.
 | |
| static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
 | |
|     "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
 | |
|     cl::desc("Strip specified level of directory name from source path in "
 | |
|              "the profile counter name for static functions."));
 | |
| 
 | |
| static std::string getInstrProfErrString(instrprof_error Err) {
 | |
|   switch (Err) {
 | |
|   case instrprof_error::success:
 | |
|     return "Success";
 | |
|   case instrprof_error::eof:
 | |
|     return "End of File";
 | |
|   case instrprof_error::unrecognized_format:
 | |
|     return "Unrecognized instrumentation profile encoding format";
 | |
|   case instrprof_error::bad_magic:
 | |
|     return "Invalid instrumentation profile data (bad magic)";
 | |
|   case instrprof_error::bad_header:
 | |
|     return "Invalid instrumentation profile data (file header is corrupt)";
 | |
|   case instrprof_error::unsupported_version:
 | |
|     return "Unsupported instrumentation profile format version";
 | |
|   case instrprof_error::unsupported_hash_type:
 | |
|     return "Unsupported instrumentation profile hash type";
 | |
|   case instrprof_error::too_large:
 | |
|     return "Too much profile data";
 | |
|   case instrprof_error::truncated:
 | |
|     return "Truncated profile data";
 | |
|   case instrprof_error::malformed:
 | |
|     return "Malformed instrumentation profile data";
 | |
|   case instrprof_error::unknown_function:
 | |
|     return "No profile data available for function";
 | |
|   case instrprof_error::hash_mismatch:
 | |
|     return "Function control flow change detected (hash mismatch)";
 | |
|   case instrprof_error::count_mismatch:
 | |
|     return "Function basic block count change detected (counter mismatch)";
 | |
|   case instrprof_error::counter_overflow:
 | |
|     return "Counter overflow";
 | |
|   case instrprof_error::value_site_count_mismatch:
 | |
|     return "Function value site count change detected (counter mismatch)";
 | |
|   case instrprof_error::compress_failed:
 | |
|     return "Failed to compress data (zlib)";
 | |
|   case instrprof_error::uncompress_failed:
 | |
|     return "Failed to uncompress data (zlib)";
 | |
|   case instrprof_error::empty_raw_profile:
 | |
|     return "Empty raw profile file";
 | |
|   case instrprof_error::zlib_unavailable:
 | |
|     return "Profile uses zlib compression but the profile reader was built without zlib support";
 | |
|   }
 | |
|   llvm_unreachable("A value of instrprof_error has no message.");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // FIXME: This class is only here to support the transition to llvm::Error. It
 | |
| // will be removed once this transition is complete. Clients should prefer to
 | |
| // deal with the Error value directly, rather than converting to error_code.
 | |
| class InstrProfErrorCategoryType : public std::error_category {
 | |
|   const char *name() const noexcept override { return "llvm.instrprof"; }
 | |
| 
 | |
|   std::string message(int IE) const override {
 | |
|     return getInstrProfErrString(static_cast<instrprof_error>(IE));
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
 | |
| 
 | |
| const std::error_category &llvm::instrprof_category() {
 | |
|   return *ErrorCategory;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| const char *InstrProfSectNameCommon[] = {
 | |
| #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
 | |
|   SectNameCommon,
 | |
| #include "llvm/ProfileData/InstrProfData.inc"
 | |
| };
 | |
| 
 | |
| const char *InstrProfSectNameCoff[] = {
 | |
| #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
 | |
|   SectNameCoff,
 | |
| #include "llvm/ProfileData/InstrProfData.inc"
 | |
| };
 | |
| 
 | |
| const char *InstrProfSectNamePrefix[] = {
 | |
| #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
 | |
|   Prefix,
 | |
| #include "llvm/ProfileData/InstrProfData.inc"
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| std::string getInstrProfSectionName(InstrProfSectKind IPSK,
 | |
|                                     Triple::ObjectFormatType OF,
 | |
|                                     bool AddSegmentInfo) {
 | |
|   std::string SectName;
 | |
| 
 | |
|   if (OF == Triple::MachO && AddSegmentInfo)
 | |
|     SectName = InstrProfSectNamePrefix[IPSK];
 | |
| 
 | |
|   if (OF == Triple::COFF)
 | |
|     SectName += InstrProfSectNameCoff[IPSK];
 | |
|   else
 | |
|     SectName += InstrProfSectNameCommon[IPSK];
 | |
| 
 | |
|   if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
 | |
|     SectName += ",regular,live_support";
 | |
| 
 | |
|   return SectName;
 | |
| }
 | |
| 
 | |
| void SoftInstrProfErrors::addError(instrprof_error IE) {
 | |
|   if (IE == instrprof_error::success)
 | |
|     return;
 | |
| 
 | |
|   if (FirstError == instrprof_error::success)
 | |
|     FirstError = IE;
 | |
| 
 | |
|   switch (IE) {
 | |
|   case instrprof_error::hash_mismatch:
 | |
|     ++NumHashMismatches;
 | |
|     break;
 | |
|   case instrprof_error::count_mismatch:
 | |
|     ++NumCountMismatches;
 | |
|     break;
 | |
|   case instrprof_error::counter_overflow:
 | |
|     ++NumCounterOverflows;
 | |
|     break;
 | |
|   case instrprof_error::value_site_count_mismatch:
 | |
|     ++NumValueSiteCountMismatches;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Not a soft error");
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string InstrProfError::message() const {
 | |
|   return getInstrProfErrString(Err);
 | |
| }
 | |
| 
 | |
| char InstrProfError::ID = 0;
 | |
| 
 | |
| std::string getPGOFuncName(StringRef RawFuncName,
 | |
|                            GlobalValue::LinkageTypes Linkage,
 | |
|                            StringRef FileName,
 | |
|                            uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
 | |
|   return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
 | |
| }
 | |
| 
 | |
| // Strip NumPrefix level of directory name from PathNameStr. If the number of
 | |
| // directory separators is less than NumPrefix, strip all the directories and
 | |
| // leave base file name only.
 | |
| static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
 | |
|   uint32_t Count = NumPrefix;
 | |
|   uint32_t Pos = 0, LastPos = 0;
 | |
|   for (auto & CI : PathNameStr) {
 | |
|     ++Pos;
 | |
|     if (llvm::sys::path::is_separator(CI)) {
 | |
|       LastPos = Pos;
 | |
|       --Count;
 | |
|     }
 | |
|     if (Count == 0)
 | |
|       break;
 | |
|   }
 | |
|   return PathNameStr.substr(LastPos);
 | |
| }
 | |
| 
 | |
| // Return the PGOFuncName. This function has some special handling when called
 | |
| // in LTO optimization. The following only applies when calling in LTO passes
 | |
| // (when \c InLTO is true): LTO's internalization privatizes many global linkage
 | |
| // symbols. This happens after value profile annotation, but those internal
 | |
| // linkage functions should not have a source prefix.
 | |
| // Additionally, for ThinLTO mode, exported internal functions are promoted
 | |
| // and renamed. We need to ensure that the original internal PGO name is
 | |
| // used when computing the GUID that is compared against the profiled GUIDs.
 | |
| // To differentiate compiler generated internal symbols from original ones,
 | |
| // PGOFuncName meta data are created and attached to the original internal
 | |
| // symbols in the value profile annotation step
 | |
| // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
 | |
| // data, its original linkage must be non-internal.
 | |
| std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
 | |
|   if (!InLTO) {
 | |
|     StringRef FileName = (StaticFuncFullModulePrefix
 | |
|                               ? F.getParent()->getName()
 | |
|                               : sys::path::filename(F.getParent()->getName()));
 | |
|     if (StaticFuncFullModulePrefix && StaticFuncStripDirNamePrefix != 0)
 | |
|       FileName = stripDirPrefix(FileName, StaticFuncStripDirNamePrefix);
 | |
|     return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
 | |
|   }
 | |
| 
 | |
|   // In LTO mode (when InLTO is true), first check if there is a meta data.
 | |
|   if (MDNode *MD = getPGOFuncNameMetadata(F)) {
 | |
|     StringRef S = cast<MDString>(MD->getOperand(0))->getString();
 | |
|     return S.str();
 | |
|   }
 | |
| 
 | |
|   // If there is no meta data, the function must be a global before the value
 | |
|   // profile annotation pass. Its current linkage may be internal if it is
 | |
|   // internalized in LTO mode.
 | |
|   return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
 | |
| }
 | |
| 
 | |
| StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
 | |
|   if (FileName.empty())
 | |
|     return PGOFuncName;
 | |
|   // Drop the file name including ':'. See also getPGOFuncName.
 | |
|   if (PGOFuncName.startswith(FileName))
 | |
|     PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
 | |
|   return PGOFuncName;
 | |
| }
 | |
| 
 | |
| // \p FuncName is the string used as profile lookup key for the function. A
 | |
| // symbol is created to hold the name. Return the legalized symbol name.
 | |
| std::string getPGOFuncNameVarName(StringRef FuncName,
 | |
|                                   GlobalValue::LinkageTypes Linkage) {
 | |
|   std::string VarName = getInstrProfNameVarPrefix();
 | |
|   VarName += FuncName;
 | |
| 
 | |
|   if (!GlobalValue::isLocalLinkage(Linkage))
 | |
|     return VarName;
 | |
| 
 | |
|   // Now fix up illegal chars in local VarName that may upset the assembler.
 | |
|   const char *InvalidChars = "-:<>/\"'";
 | |
|   size_t found = VarName.find_first_of(InvalidChars);
 | |
|   while (found != std::string::npos) {
 | |
|     VarName[found] = '_';
 | |
|     found = VarName.find_first_of(InvalidChars, found + 1);
 | |
|   }
 | |
|   return VarName;
 | |
| }
 | |
| 
 | |
| GlobalVariable *createPGOFuncNameVar(Module &M,
 | |
|                                      GlobalValue::LinkageTypes Linkage,
 | |
|                                      StringRef PGOFuncName) {
 | |
|   // We generally want to match the function's linkage, but available_externally
 | |
|   // and extern_weak both have the wrong semantics, and anything that doesn't
 | |
|   // need to link across compilation units doesn't need to be visible at all.
 | |
|   if (Linkage == GlobalValue::ExternalWeakLinkage)
 | |
|     Linkage = GlobalValue::LinkOnceAnyLinkage;
 | |
|   else if (Linkage == GlobalValue::AvailableExternallyLinkage)
 | |
|     Linkage = GlobalValue::LinkOnceODRLinkage;
 | |
|   else if (Linkage == GlobalValue::InternalLinkage ||
 | |
|            Linkage == GlobalValue::ExternalLinkage)
 | |
|     Linkage = GlobalValue::PrivateLinkage;
 | |
| 
 | |
|   auto *Value =
 | |
|       ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
 | |
|   auto FuncNameVar =
 | |
|       new GlobalVariable(M, Value->getType(), true, Linkage, Value,
 | |
|                          getPGOFuncNameVarName(PGOFuncName, Linkage));
 | |
| 
 | |
|   // Hide the symbol so that we correctly get a copy for each executable.
 | |
|   if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
 | |
|     FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
 | |
| 
 | |
|   return FuncNameVar;
 | |
| }
 | |
| 
 | |
| GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
 | |
|   return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
 | |
| }
 | |
| 
 | |
| Error InstrProfSymtab::create(Module &M, bool InLTO) {
 | |
|   for (Function &F : M) {
 | |
|     // Function may not have a name: like using asm("") to overwrite the name.
 | |
|     // Ignore in this case.
 | |
|     if (!F.hasName())
 | |
|       continue;
 | |
|     const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
 | |
|     if (Error E = addFuncName(PGOFuncName))
 | |
|       return E;
 | |
|     MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
 | |
|     // In ThinLTO, local function may have been promoted to global and have
 | |
|     // suffix added to the function name. We need to add the stripped function
 | |
|     // name to the symbol table so that we can find a match from profile.
 | |
|     if (InLTO) {
 | |
|       auto pos = PGOFuncName.find('.');
 | |
|       if (pos != std::string::npos) {
 | |
|         const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
 | |
|         if (Error E = addFuncName(OtherFuncName))
 | |
|           return E;
 | |
|         MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   finalizeSymtab();
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
 | |
|                                 bool doCompression, std::string &Result) {
 | |
|   assert(!NameStrs.empty() && "No name data to emit");
 | |
| 
 | |
|   uint8_t Header[16], *P = Header;
 | |
|   std::string UncompressedNameStrings =
 | |
|       join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
 | |
| 
 | |
|   assert(StringRef(UncompressedNameStrings)
 | |
|                  .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
 | |
|          "PGO name is invalid (contains separator token)");
 | |
| 
 | |
|   unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
 | |
|   P += EncLen;
 | |
| 
 | |
|   auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
 | |
|     EncLen = encodeULEB128(CompressedLen, P);
 | |
|     P += EncLen;
 | |
|     char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
 | |
|     unsigned HeaderLen = P - &Header[0];
 | |
|     Result.append(HeaderStr, HeaderLen);
 | |
|     Result += InputStr;
 | |
|     return Error::success();
 | |
|   };
 | |
| 
 | |
|   if (!doCompression) {
 | |
|     return WriteStringToResult(0, UncompressedNameStrings);
 | |
|   }
 | |
| 
 | |
|   SmallString<128> CompressedNameStrings;
 | |
|   Error E = zlib::compress(StringRef(UncompressedNameStrings),
 | |
|                            CompressedNameStrings, zlib::BestSizeCompression);
 | |
|   if (E) {
 | |
|     consumeError(std::move(E));
 | |
|     return make_error<InstrProfError>(instrprof_error::compress_failed);
 | |
|   }
 | |
| 
 | |
|   return WriteStringToResult(CompressedNameStrings.size(),
 | |
|                              CompressedNameStrings);
 | |
| }
 | |
| 
 | |
| StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
 | |
|   auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
 | |
|   StringRef NameStr =
 | |
|       Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
 | |
|   return NameStr;
 | |
| }
 | |
| 
 | |
| Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
 | |
|                                 std::string &Result, bool doCompression) {
 | |
|   std::vector<std::string> NameStrs;
 | |
|   for (auto *NameVar : NameVars) {
 | |
|     NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
 | |
|   }
 | |
|   return collectPGOFuncNameStrings(
 | |
|       NameStrs, zlib::isAvailable() && doCompression, Result);
 | |
| }
 | |
| 
 | |
| Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
 | |
|   const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data());
 | |
|   const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() +
 | |
|                                                           NameStrings.size());
 | |
|   while (P < EndP) {
 | |
|     uint32_t N;
 | |
|     uint64_t UncompressedSize = decodeULEB128(P, &N);
 | |
|     P += N;
 | |
|     uint64_t CompressedSize = decodeULEB128(P, &N);
 | |
|     P += N;
 | |
|     bool isCompressed = (CompressedSize != 0);
 | |
|     SmallString<128> UncompressedNameStrings;
 | |
|     StringRef NameStrings;
 | |
|     if (isCompressed) {
 | |
|       if (!llvm::zlib::isAvailable())
 | |
|         return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
 | |
| 
 | |
|       StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
 | |
|                                       CompressedSize);
 | |
|       if (Error E =
 | |
|               zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
 | |
|                                UncompressedSize)) {
 | |
|         consumeError(std::move(E));
 | |
|         return make_error<InstrProfError>(instrprof_error::uncompress_failed);
 | |
|       }
 | |
|       P += CompressedSize;
 | |
|       NameStrings = StringRef(UncompressedNameStrings.data(),
 | |
|                               UncompressedNameStrings.size());
 | |
|     } else {
 | |
|       NameStrings =
 | |
|           StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
 | |
|       P += UncompressedSize;
 | |
|     }
 | |
|     // Now parse the name strings.
 | |
|     SmallVector<StringRef, 0> Names;
 | |
|     NameStrings.split(Names, getInstrProfNameSeparator());
 | |
|     for (StringRef &Name : Names)
 | |
|       if (Error E = Symtab.addFuncName(Name))
 | |
|         return E;
 | |
| 
 | |
|     while (P < EndP && *P == 0)
 | |
|       P++;
 | |
|   }
 | |
|   Symtab.finalizeSymtab();
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
 | |
|                                      uint64_t Weight,
 | |
|                                      function_ref<void(instrprof_error)> Warn) {
 | |
|   this->sortByTargetValues();
 | |
|   Input.sortByTargetValues();
 | |
|   auto I = ValueData.begin();
 | |
|   auto IE = ValueData.end();
 | |
|   for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
 | |
|        ++J) {
 | |
|     while (I != IE && I->Value < J->Value)
 | |
|       ++I;
 | |
|     if (I != IE && I->Value == J->Value) {
 | |
|       bool Overflowed;
 | |
|       I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
 | |
|       if (Overflowed)
 | |
|         Warn(instrprof_error::counter_overflow);
 | |
|       ++I;
 | |
|       continue;
 | |
|     }
 | |
|     ValueData.insert(I, *J);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InstrProfValueSiteRecord::scale(uint64_t Weight,
 | |
|                                      function_ref<void(instrprof_error)> Warn) {
 | |
|   for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
 | |
|     bool Overflowed;
 | |
|     I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
 | |
|     if (Overflowed)
 | |
|       Warn(instrprof_error::counter_overflow);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Merge Value Profile data from Src record to this record for ValueKind.
 | |
| // Scale merged value counts by \p Weight.
 | |
| void InstrProfRecord::mergeValueProfData(
 | |
|     uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
 | |
|     function_ref<void(instrprof_error)> Warn) {
 | |
|   uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
 | |
|   uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
 | |
|   if (ThisNumValueSites != OtherNumValueSites) {
 | |
|     Warn(instrprof_error::value_site_count_mismatch);
 | |
|     return;
 | |
|   }
 | |
|   if (!ThisNumValueSites)
 | |
|     return;
 | |
|   std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
 | |
|       getOrCreateValueSitesForKind(ValueKind);
 | |
|   MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
 | |
|       Src.getValueSitesForKind(ValueKind);
 | |
|   for (uint32_t I = 0; I < ThisNumValueSites; I++)
 | |
|     ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
 | |
| }
 | |
| 
 | |
| void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
 | |
|                             function_ref<void(instrprof_error)> Warn) {
 | |
|   // If the number of counters doesn't match we either have bad data
 | |
|   // or a hash collision.
 | |
|   if (Counts.size() != Other.Counts.size()) {
 | |
|     Warn(instrprof_error::count_mismatch);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
 | |
|     bool Overflowed;
 | |
|     Counts[I] =
 | |
|         SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
 | |
|     if (Overflowed)
 | |
|       Warn(instrprof_error::counter_overflow);
 | |
|   }
 | |
| 
 | |
|   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 | |
|     mergeValueProfData(Kind, Other, Weight, Warn);
 | |
| }
 | |
| 
 | |
| void InstrProfRecord::scaleValueProfData(
 | |
|     uint32_t ValueKind, uint64_t Weight,
 | |
|     function_ref<void(instrprof_error)> Warn) {
 | |
|   for (auto &R : getValueSitesForKind(ValueKind))
 | |
|     R.scale(Weight, Warn);
 | |
| }
 | |
| 
 | |
| void InstrProfRecord::scale(uint64_t Weight,
 | |
|                             function_ref<void(instrprof_error)> Warn) {
 | |
|   for (auto &Count : this->Counts) {
 | |
|     bool Overflowed;
 | |
|     Count = SaturatingMultiply(Count, Weight, &Overflowed);
 | |
|     if (Overflowed)
 | |
|       Warn(instrprof_error::counter_overflow);
 | |
|   }
 | |
|   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 | |
|     scaleValueProfData(Kind, Weight, Warn);
 | |
| }
 | |
| 
 | |
| // Map indirect call target name hash to name string.
 | |
| uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
 | |
|                                      ValueMapType *ValueMap) {
 | |
|   if (!ValueMap)
 | |
|     return Value;
 | |
|   switch (ValueKind) {
 | |
|   case IPVK_IndirectCallTarget: {
 | |
|     auto Result =
 | |
|         std::lower_bound(ValueMap->begin(), ValueMap->end(), Value,
 | |
|                          [](const std::pair<uint64_t, uint64_t> &LHS,
 | |
|                             uint64_t RHS) { return LHS.first < RHS; });
 | |
|    // Raw function pointer collected by value profiler may be from 
 | |
|    // external functions that are not instrumented. They won't have
 | |
|    // mapping data to be used by the deserializer. Force the value to
 | |
|    // be 0 in this case.
 | |
|     if (Result != ValueMap->end() && Result->first == Value)
 | |
|       Value = (uint64_t)Result->second;
 | |
|     else
 | |
|       Value = 0;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
 | |
|                                    InstrProfValueData *VData, uint32_t N,
 | |
|                                    ValueMapType *ValueMap) {
 | |
|   for (uint32_t I = 0; I < N; I++) {
 | |
|     VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
 | |
|   }
 | |
|   std::vector<InstrProfValueSiteRecord> &ValueSites =
 | |
|       getOrCreateValueSitesForKind(ValueKind);
 | |
|   if (N == 0)
 | |
|     ValueSites.emplace_back();
 | |
|   else
 | |
|     ValueSites.emplace_back(VData, VData + N);
 | |
| }
 | |
| 
 | |
| #define INSTR_PROF_COMMON_API_IMPL
 | |
| #include "llvm/ProfileData/InstrProfData.inc"
 | |
| 
 | |
| /*!
 | |
|  * \brief ValueProfRecordClosure Interface implementation for  InstrProfRecord
 | |
|  *  class. These C wrappers are used as adaptors so that C++ code can be
 | |
|  *  invoked as callbacks.
 | |
|  */
 | |
| uint32_t getNumValueKindsInstrProf(const void *Record) {
 | |
|   return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
 | |
| }
 | |
| 
 | |
| uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
 | |
|   return reinterpret_cast<const InstrProfRecord *>(Record)
 | |
|       ->getNumValueSites(VKind);
 | |
| }
 | |
| 
 | |
| uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
 | |
|   return reinterpret_cast<const InstrProfRecord *>(Record)
 | |
|       ->getNumValueData(VKind);
 | |
| }
 | |
| 
 | |
| uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
 | |
|                                          uint32_t S) {
 | |
|   return reinterpret_cast<const InstrProfRecord *>(R)
 | |
|       ->getNumValueDataForSite(VK, S);
 | |
| }
 | |
| 
 | |
| void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
 | |
|                               uint32_t K, uint32_t S) {
 | |
|   reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
 | |
| }
 | |
| 
 | |
| ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
 | |
|   ValueProfData *VD =
 | |
|       (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
 | |
|   memset(VD, 0, TotalSizeInBytes);
 | |
|   return VD;
 | |
| }
 | |
| 
 | |
| static ValueProfRecordClosure InstrProfRecordClosure = {
 | |
|     nullptr,
 | |
|     getNumValueKindsInstrProf,
 | |
|     getNumValueSitesInstrProf,
 | |
|     getNumValueDataInstrProf,
 | |
|     getNumValueDataForSiteInstrProf,
 | |
|     nullptr,
 | |
|     getValueForSiteInstrProf,
 | |
|     allocValueProfDataInstrProf};
 | |
| 
 | |
| // Wrapper implementation using the closure mechanism.
 | |
| uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
 | |
|   auto Closure = InstrProfRecordClosure;
 | |
|   Closure.Record = &Record;
 | |
|   return getValueProfDataSize(&Closure);
 | |
| }
 | |
| 
 | |
| // Wrapper implementation using the closure mechanism.
 | |
| std::unique_ptr<ValueProfData>
 | |
| ValueProfData::serializeFrom(const InstrProfRecord &Record) {
 | |
|   InstrProfRecordClosure.Record = &Record;
 | |
| 
 | |
|   std::unique_ptr<ValueProfData> VPD(
 | |
|       serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
 | |
|   return VPD;
 | |
| }
 | |
| 
 | |
| void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
 | |
|                                     InstrProfRecord::ValueMapType *VMap) {
 | |
|   Record.reserveSites(Kind, NumValueSites);
 | |
| 
 | |
|   InstrProfValueData *ValueData = getValueProfRecordValueData(this);
 | |
|   for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
 | |
|     uint8_t ValueDataCount = this->SiteCountArray[VSite];
 | |
|     Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap);
 | |
|     ValueData += ValueDataCount;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For writing/serializing,  Old is the host endianness, and  New is
 | |
| // byte order intended on disk. For Reading/deserialization, Old
 | |
| // is the on-disk source endianness, and New is the host endianness.
 | |
| void ValueProfRecord::swapBytes(support::endianness Old,
 | |
|                                 support::endianness New) {
 | |
|   using namespace support;
 | |
| 
 | |
|   if (Old == New)
 | |
|     return;
 | |
| 
 | |
|   if (getHostEndianness() != Old) {
 | |
|     sys::swapByteOrder<uint32_t>(NumValueSites);
 | |
|     sys::swapByteOrder<uint32_t>(Kind);
 | |
|   }
 | |
|   uint32_t ND = getValueProfRecordNumValueData(this);
 | |
|   InstrProfValueData *VD = getValueProfRecordValueData(this);
 | |
| 
 | |
|   // No need to swap byte array: SiteCountArrray.
 | |
|   for (uint32_t I = 0; I < ND; I++) {
 | |
|     sys::swapByteOrder<uint64_t>(VD[I].Value);
 | |
|     sys::swapByteOrder<uint64_t>(VD[I].Count);
 | |
|   }
 | |
|   if (getHostEndianness() == Old) {
 | |
|     sys::swapByteOrder<uint32_t>(NumValueSites);
 | |
|     sys::swapByteOrder<uint32_t>(Kind);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueProfData::deserializeTo(InstrProfRecord &Record,
 | |
|                                   InstrProfRecord::ValueMapType *VMap) {
 | |
|   if (NumValueKinds == 0)
 | |
|     return;
 | |
| 
 | |
|   ValueProfRecord *VR = getFirstValueProfRecord(this);
 | |
|   for (uint32_t K = 0; K < NumValueKinds; K++) {
 | |
|     VR->deserializeTo(Record, VMap);
 | |
|     VR = getValueProfRecordNext(VR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
 | |
|   using namespace support;
 | |
| 
 | |
|   if (Orig == little)
 | |
|     return endian::readNext<T, little, unaligned>(D);
 | |
|   else
 | |
|     return endian::readNext<T, big, unaligned>(D);
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
 | |
|   return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
 | |
|                                             ValueProfData());
 | |
| }
 | |
| 
 | |
| Error ValueProfData::checkIntegrity() {
 | |
|   if (NumValueKinds > IPVK_Last + 1)
 | |
|     return make_error<InstrProfError>(instrprof_error::malformed);
 | |
|   // Total size needs to be mulltiple of quadword size.
 | |
|   if (TotalSize % sizeof(uint64_t))
 | |
|     return make_error<InstrProfError>(instrprof_error::malformed);
 | |
| 
 | |
|   ValueProfRecord *VR = getFirstValueProfRecord(this);
 | |
|   for (uint32_t K = 0; K < this->NumValueKinds; K++) {
 | |
|     if (VR->Kind > IPVK_Last)
 | |
|       return make_error<InstrProfError>(instrprof_error::malformed);
 | |
|     VR = getValueProfRecordNext(VR);
 | |
|     if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
 | |
|       return make_error<InstrProfError>(instrprof_error::malformed);
 | |
|   }
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Expected<std::unique_ptr<ValueProfData>>
 | |
| ValueProfData::getValueProfData(const unsigned char *D,
 | |
|                                 const unsigned char *const BufferEnd,
 | |
|                                 support::endianness Endianness) {
 | |
|   using namespace support;
 | |
| 
 | |
|   if (D + sizeof(ValueProfData) > BufferEnd)
 | |
|     return make_error<InstrProfError>(instrprof_error::truncated);
 | |
| 
 | |
|   const unsigned char *Header = D;
 | |
|   uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
 | |
|   if (D + TotalSize > BufferEnd)
 | |
|     return make_error<InstrProfError>(instrprof_error::too_large);
 | |
| 
 | |
|   std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
 | |
|   memcpy(VPD.get(), D, TotalSize);
 | |
|   // Byte swap.
 | |
|   VPD->swapBytesToHost(Endianness);
 | |
| 
 | |
|   Error E = VPD->checkIntegrity();
 | |
|   if (E)
 | |
|     return std::move(E);
 | |
| 
 | |
|   return std::move(VPD);
 | |
| }
 | |
| 
 | |
| void ValueProfData::swapBytesToHost(support::endianness Endianness) {
 | |
|   using namespace support;
 | |
| 
 | |
|   if (Endianness == getHostEndianness())
 | |
|     return;
 | |
| 
 | |
|   sys::swapByteOrder<uint32_t>(TotalSize);
 | |
|   sys::swapByteOrder<uint32_t>(NumValueKinds);
 | |
| 
 | |
|   ValueProfRecord *VR = getFirstValueProfRecord(this);
 | |
|   for (uint32_t K = 0; K < NumValueKinds; K++) {
 | |
|     VR->swapBytes(Endianness, getHostEndianness());
 | |
|     VR = getValueProfRecordNext(VR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
 | |
|   using namespace support;
 | |
| 
 | |
|   if (Endianness == getHostEndianness())
 | |
|     return;
 | |
| 
 | |
|   ValueProfRecord *VR = getFirstValueProfRecord(this);
 | |
|   for (uint32_t K = 0; K < NumValueKinds; K++) {
 | |
|     ValueProfRecord *NVR = getValueProfRecordNext(VR);
 | |
|     VR->swapBytes(getHostEndianness(), Endianness);
 | |
|     VR = NVR;
 | |
|   }
 | |
|   sys::swapByteOrder<uint32_t>(TotalSize);
 | |
|   sys::swapByteOrder<uint32_t>(NumValueKinds);
 | |
| }
 | |
| 
 | |
| void annotateValueSite(Module &M, Instruction &Inst,
 | |
|                        const InstrProfRecord &InstrProfR,
 | |
|                        InstrProfValueKind ValueKind, uint32_t SiteIdx,
 | |
|                        uint32_t MaxMDCount) {
 | |
|   uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
 | |
|   if (!NV)
 | |
|     return;
 | |
| 
 | |
|   uint64_t Sum = 0;
 | |
|   std::unique_ptr<InstrProfValueData[]> VD =
 | |
|       InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
 | |
| 
 | |
|   ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
 | |
|   annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
 | |
| }
 | |
| 
 | |
| void annotateValueSite(Module &M, Instruction &Inst,
 | |
|                        ArrayRef<InstrProfValueData> VDs,
 | |
|                        uint64_t Sum, InstrProfValueKind ValueKind,
 | |
|                        uint32_t MaxMDCount) {
 | |
|   LLVMContext &Ctx = M.getContext();
 | |
|   MDBuilder MDHelper(Ctx);
 | |
|   SmallVector<Metadata *, 3> Vals;
 | |
|   // Tag
 | |
|   Vals.push_back(MDHelper.createString("VP"));
 | |
|   // Value Kind
 | |
|   Vals.push_back(MDHelper.createConstant(
 | |
|       ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
 | |
|   // Total Count
 | |
|   Vals.push_back(
 | |
|       MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
 | |
| 
 | |
|   // Value Profile Data
 | |
|   uint32_t MDCount = MaxMDCount;
 | |
|   for (auto &VD : VDs) {
 | |
|     Vals.push_back(MDHelper.createConstant(
 | |
|         ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
 | |
|     Vals.push_back(MDHelper.createConstant(
 | |
|         ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
 | |
|     if (--MDCount == 0)
 | |
|       break;
 | |
|   }
 | |
|   Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
 | |
| }
 | |
| 
 | |
| bool getValueProfDataFromInst(const Instruction &Inst,
 | |
|                               InstrProfValueKind ValueKind,
 | |
|                               uint32_t MaxNumValueData,
 | |
|                               InstrProfValueData ValueData[],
 | |
|                               uint32_t &ActualNumValueData, uint64_t &TotalC) {
 | |
|   MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
 | |
|   if (!MD)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NOps = MD->getNumOperands();
 | |
| 
 | |
|   if (NOps < 5)
 | |
|     return false;
 | |
| 
 | |
|   // Operand 0 is a string tag "VP":
 | |
|   MDString *Tag = cast<MDString>(MD->getOperand(0));
 | |
|   if (!Tag)
 | |
|     return false;
 | |
| 
 | |
|   if (!Tag->getString().equals("VP"))
 | |
|     return false;
 | |
| 
 | |
|   // Now check kind:
 | |
|   ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
 | |
|   if (!KindInt)
 | |
|     return false;
 | |
|   if (KindInt->getZExtValue() != ValueKind)
 | |
|     return false;
 | |
| 
 | |
|   // Get total count
 | |
|   ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | |
|   if (!TotalCInt)
 | |
|     return false;
 | |
|   TotalC = TotalCInt->getZExtValue();
 | |
| 
 | |
|   ActualNumValueData = 0;
 | |
| 
 | |
|   for (unsigned I = 3; I < NOps; I += 2) {
 | |
|     if (ActualNumValueData >= MaxNumValueData)
 | |
|       break;
 | |
|     ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
 | |
|     ConstantInt *Count =
 | |
|         mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
 | |
|     if (!Value || !Count)
 | |
|       return false;
 | |
|     ValueData[ActualNumValueData].Value = Value->getZExtValue();
 | |
|     ValueData[ActualNumValueData].Count = Count->getZExtValue();
 | |
|     ActualNumValueData++;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MDNode *getPGOFuncNameMetadata(const Function &F) {
 | |
|   return F.getMetadata(getPGOFuncNameMetadataName());
 | |
| }
 | |
| 
 | |
| void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
 | |
|   // Only for internal linkage functions.
 | |
|   if (PGOFuncName == F.getName())
 | |
|       return;
 | |
|   // Don't create duplicated meta-data.
 | |
|   if (getPGOFuncNameMetadata(F))
 | |
|     return;
 | |
|   LLVMContext &C = F.getContext();
 | |
|   MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
 | |
|   F.setMetadata(getPGOFuncNameMetadataName(), N);
 | |
| }
 | |
| 
 | |
| bool needsComdatForCounter(const Function &F, const Module &M) {
 | |
|   if (F.hasComdat())
 | |
|     return true;
 | |
| 
 | |
|   Triple TT(M.getTargetTriple());
 | |
|   if (!TT.isOSBinFormatELF() && !TT.isOSBinFormatWasm())
 | |
|     return false;
 | |
| 
 | |
|   // See createPGOFuncNameVar for more details. To avoid link errors, profile
 | |
|   // counters for function with available_externally linkage needs to be changed
 | |
|   // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
 | |
|   // created. Without using comdat, duplicate entries won't be removed by the
 | |
|   // linker leading to increased data segement size and raw profile size. Even
 | |
|   // worse, since the referenced counter from profile per-function data object
 | |
|   // will be resolved to the common strong definition, the profile counts for
 | |
|   // available_externally functions will end up being duplicated in raw profile
 | |
|   // data. This can result in distorted profile as the counts of those dups
 | |
|   // will be accumulated by the profile merger.
 | |
|   GlobalValue::LinkageTypes Linkage = F.getLinkage();
 | |
|   if (Linkage != GlobalValue::ExternalWeakLinkage &&
 | |
|       Linkage != GlobalValue::AvailableExternallyLinkage)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
 | |
| bool isIRPGOFlagSet(const Module *M) {
 | |
|   auto IRInstrVar =
 | |
|       M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
 | |
|   if (!IRInstrVar || IRInstrVar->isDeclaration() ||
 | |
|       IRInstrVar->hasLocalLinkage())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the flag is set.
 | |
|   if (!IRInstrVar->hasInitializer())
 | |
|     return false;
 | |
| 
 | |
|   const Constant *InitVal = IRInstrVar->getInitializer();
 | |
|   if (!InitVal)
 | |
|     return false;
 | |
| 
 | |
|   return (dyn_cast<ConstantInt>(InitVal)->getZExtValue() &
 | |
|           VARIANT_MASK_IR_PROF) != 0;
 | |
| }
 | |
| 
 | |
| // Check if we can safely rename this Comdat function.
 | |
| bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
 | |
|   if (F.getName().empty())
 | |
|     return false;
 | |
|   if (!needsComdatForCounter(F, *(F.getParent())))
 | |
|     return false;
 | |
|   // Unsafe to rename the address-taken function (which can be used in
 | |
|   // function comparison).
 | |
|   if (CheckAddressTaken && F.hasAddressTaken())
 | |
|     return false;
 | |
|   // Only safe to do if this function may be discarded if it is not used
 | |
|   // in the compilation unit.
 | |
|   if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
 | |
|     return false;
 | |
| 
 | |
|   // For AvailableExternallyLinkage functions.
 | |
|   if (!F.hasComdat()) {
 | |
|     assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
 | |
|     return true;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Parse the value profile options.
 | |
| void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
 | |
|                                  int64_t &RangeLast) {
 | |
|   static const int64_t DefaultMemOPSizeRangeStart = 0;
 | |
|   static const int64_t DefaultMemOPSizeRangeLast = 8;
 | |
|   RangeStart = DefaultMemOPSizeRangeStart;
 | |
|   RangeLast = DefaultMemOPSizeRangeLast;
 | |
| 
 | |
|   if (!MemOPSizeRange.empty()) {
 | |
|     auto Pos = MemOPSizeRange.find(':');
 | |
|     if (Pos != std::string::npos) {
 | |
|       if (Pos > 0)
 | |
|         MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
 | |
|       if (Pos < MemOPSizeRange.size() - 1)
 | |
|         MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
 | |
|     } else
 | |
|       MemOPSizeRange.getAsInteger(10, RangeLast);
 | |
|   }
 | |
|   assert(RangeLast >= RangeStart);
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 |