468663ddbb
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
632 lines
22 KiB
C++
632 lines
22 KiB
C++
//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This file implements classes for searching and anlyzing source code clones.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/CloneDetection.h"
|
|
|
|
#include "clang/AST/DataCollection.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
using namespace clang;
|
|
|
|
StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
|
|
unsigned StartIndex, unsigned EndIndex)
|
|
: S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
|
|
assert(Stmt && "Stmt must not be a nullptr");
|
|
assert(StartIndex < EndIndex && "Given array should not be empty");
|
|
assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
|
|
}
|
|
|
|
StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
|
|
: S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
|
|
|
|
StmtSequence::StmtSequence()
|
|
: S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
|
|
|
|
bool StmtSequence::contains(const StmtSequence &Other) const {
|
|
// If both sequences reside in different declarations, they can never contain
|
|
// each other.
|
|
if (D != Other.D)
|
|
return false;
|
|
|
|
const SourceManager &SM = getASTContext().getSourceManager();
|
|
|
|
// Otherwise check if the start and end locations of the current sequence
|
|
// surround the other sequence.
|
|
bool StartIsInBounds =
|
|
SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) ||
|
|
getStartLoc() == Other.getStartLoc();
|
|
if (!StartIsInBounds)
|
|
return false;
|
|
|
|
bool EndIsInBounds =
|
|
SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
|
|
Other.getEndLoc() == getEndLoc();
|
|
return EndIsInBounds;
|
|
}
|
|
|
|
StmtSequence::iterator StmtSequence::begin() const {
|
|
if (!holdsSequence()) {
|
|
return &S;
|
|
}
|
|
auto CS = cast<CompoundStmt>(S);
|
|
return CS->body_begin() + StartIndex;
|
|
}
|
|
|
|
StmtSequence::iterator StmtSequence::end() const {
|
|
if (!holdsSequence()) {
|
|
return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
|
|
}
|
|
auto CS = cast<CompoundStmt>(S);
|
|
return CS->body_begin() + EndIndex;
|
|
}
|
|
|
|
ASTContext &StmtSequence::getASTContext() const {
|
|
assert(D);
|
|
return D->getASTContext();
|
|
}
|
|
|
|
SourceLocation StmtSequence::getStartLoc() const {
|
|
return front()->getLocStart();
|
|
}
|
|
|
|
SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); }
|
|
|
|
SourceRange StmtSequence::getSourceRange() const {
|
|
return SourceRange(getStartLoc(), getEndLoc());
|
|
}
|
|
|
|
void CloneDetector::analyzeCodeBody(const Decl *D) {
|
|
assert(D);
|
|
assert(D->hasBody());
|
|
|
|
Sequences.push_back(StmtSequence(D->getBody(), D));
|
|
}
|
|
|
|
/// Returns true if and only if \p Stmt contains at least one other
|
|
/// sequence in the \p Group.
|
|
static bool containsAnyInGroup(StmtSequence &Seq,
|
|
CloneDetector::CloneGroup &Group) {
|
|
for (StmtSequence &GroupSeq : Group) {
|
|
if (Seq.contains(GroupSeq))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if and only if all sequences in \p OtherGroup are
|
|
/// contained by a sequence in \p Group.
|
|
static bool containsGroup(CloneDetector::CloneGroup &Group,
|
|
CloneDetector::CloneGroup &OtherGroup) {
|
|
// We have less sequences in the current group than we have in the other,
|
|
// so we will never fulfill the requirement for returning true. This is only
|
|
// possible because we know that a sequence in Group can contain at most
|
|
// one sequence in OtherGroup.
|
|
if (Group.size() < OtherGroup.size())
|
|
return false;
|
|
|
|
for (StmtSequence &Stmt : Group) {
|
|
if (!containsAnyInGroup(Stmt, OtherGroup))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void OnlyLargestCloneConstraint::constrain(
|
|
std::vector<CloneDetector::CloneGroup> &Result) {
|
|
std::vector<unsigned> IndexesToRemove;
|
|
|
|
// Compare every group in the result with the rest. If one groups contains
|
|
// another group, we only need to return the bigger group.
|
|
// Note: This doesn't scale well, so if possible avoid calling any heavy
|
|
// function from this loop to minimize the performance impact.
|
|
for (unsigned i = 0; i < Result.size(); ++i) {
|
|
for (unsigned j = 0; j < Result.size(); ++j) {
|
|
// Don't compare a group with itself.
|
|
if (i == j)
|
|
continue;
|
|
|
|
if (containsGroup(Result[j], Result[i])) {
|
|
IndexesToRemove.push_back(i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erasing a list of indexes from the vector should be done with decreasing
|
|
// indexes. As IndexesToRemove is constructed with increasing values, we just
|
|
// reverse iterate over it to get the desired order.
|
|
for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
|
|
Result.erase(Result.begin() + *I);
|
|
}
|
|
}
|
|
|
|
bool FilenamePatternConstraint::isAutoGenerated(
|
|
const CloneDetector::CloneGroup &Group) {
|
|
std::string Error;
|
|
if (IgnoredFilesPattern.empty() || Group.empty() ||
|
|
!IgnoredFilesRegex->isValid(Error))
|
|
return false;
|
|
|
|
for (const StmtSequence &S : Group) {
|
|
const SourceManager &SM = S.getASTContext().getSourceManager();
|
|
StringRef Filename = llvm::sys::path::filename(
|
|
SM.getFilename(S.getContainingDecl()->getLocation()));
|
|
if (IgnoredFilesRegex->match(Filename))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// This class defines what a type II code clone is: If it collects for two
|
|
/// statements the same data, then those two statements are considered to be
|
|
/// clones of each other.
|
|
///
|
|
/// All collected data is forwarded to the given data consumer of the type T.
|
|
/// The data consumer class needs to provide a member method with the signature:
|
|
/// update(StringRef Str)
|
|
namespace {
|
|
template <class T>
|
|
class CloneTypeIIStmtDataCollector
|
|
: public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
|
|
ASTContext &Context;
|
|
/// The data sink to which all data is forwarded.
|
|
T &DataConsumer;
|
|
|
|
template <class Ty> void addData(const Ty &Data) {
|
|
data_collection::addDataToConsumer(DataConsumer, Data);
|
|
}
|
|
|
|
public:
|
|
CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
|
|
T &DataConsumer)
|
|
: Context(Context), DataConsumer(DataConsumer) {
|
|
this->Visit(S);
|
|
}
|
|
|
|
// Define a visit method for each class to collect data and subsequently visit
|
|
// all parent classes. This uses a template so that custom visit methods by us
|
|
// take precedence.
|
|
#define DEF_ADD_DATA(CLASS, CODE) \
|
|
template <class = void> void Visit##CLASS(const CLASS *S) { \
|
|
CODE; \
|
|
ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
|
|
}
|
|
|
|
#include "clang/AST/StmtDataCollectors.inc"
|
|
|
|
// Type II clones ignore variable names and literals, so let's skip them.
|
|
#define SKIP(CLASS) \
|
|
void Visit##CLASS(const CLASS *S) { \
|
|
ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
|
|
}
|
|
SKIP(DeclRefExpr)
|
|
SKIP(MemberExpr)
|
|
SKIP(IntegerLiteral)
|
|
SKIP(FloatingLiteral)
|
|
SKIP(StringLiteral)
|
|
SKIP(CXXBoolLiteralExpr)
|
|
SKIP(CharacterLiteral)
|
|
#undef SKIP
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static size_t createHash(llvm::MD5 &Hash) {
|
|
size_t HashCode;
|
|
|
|
// Create the final hash code for the current Stmt.
|
|
llvm::MD5::MD5Result HashResult;
|
|
Hash.final(HashResult);
|
|
|
|
// Copy as much as possible of the generated hash code to the Stmt's hash
|
|
// code.
|
|
std::memcpy(&HashCode, &HashResult,
|
|
std::min(sizeof(HashCode), sizeof(HashResult)));
|
|
|
|
return HashCode;
|
|
}
|
|
|
|
/// Generates and saves a hash code for the given Stmt.
|
|
/// \param S The given Stmt.
|
|
/// \param D The Decl containing S.
|
|
/// \param StmtsByHash Output parameter that will contain the hash codes for
|
|
/// each StmtSequence in the given Stmt.
|
|
/// \return The hash code of the given Stmt.
|
|
///
|
|
/// If the given Stmt is a CompoundStmt, this method will also generate
|
|
/// hashes for all possible StmtSequences in the children of this Stmt.
|
|
static size_t
|
|
saveHash(const Stmt *S, const Decl *D,
|
|
std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
|
|
llvm::MD5 Hash;
|
|
ASTContext &Context = D->getASTContext();
|
|
|
|
CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
|
|
|
|
auto CS = dyn_cast<CompoundStmt>(S);
|
|
SmallVector<size_t, 8> ChildHashes;
|
|
|
|
for (const Stmt *Child : S->children()) {
|
|
if (Child == nullptr) {
|
|
ChildHashes.push_back(0);
|
|
continue;
|
|
}
|
|
size_t ChildHash = saveHash(Child, D, StmtsByHash);
|
|
Hash.update(
|
|
StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
|
|
ChildHashes.push_back(ChildHash);
|
|
}
|
|
|
|
if (CS) {
|
|
// If we're in a CompoundStmt, we hash all possible combinations of child
|
|
// statements to find clones in those subsequences.
|
|
// We first go through every possible starting position of a subsequence.
|
|
for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
|
|
// Then we try all possible lengths this subsequence could have and
|
|
// reuse the same hash object to make sure we only hash every child
|
|
// hash exactly once.
|
|
llvm::MD5 Hash;
|
|
for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
|
|
// Grab the current child hash and put it into our hash. We do
|
|
// -1 on the index because we start counting the length at 1.
|
|
size_t ChildHash = ChildHashes[Pos + Length - 1];
|
|
Hash.update(
|
|
StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
|
|
// If we have at least two elements in our subsequence, we can start
|
|
// saving it.
|
|
if (Length > 1) {
|
|
llvm::MD5 SubHash = Hash;
|
|
StmtsByHash.push_back(std::make_pair(
|
|
createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t HashCode = createHash(Hash);
|
|
StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
|
|
return HashCode;
|
|
}
|
|
|
|
namespace {
|
|
/// Wrapper around FoldingSetNodeID that it can be used as the template
|
|
/// argument of the StmtDataCollector.
|
|
class FoldingSetNodeIDWrapper {
|
|
|
|
llvm::FoldingSetNodeID &FS;
|
|
|
|
public:
|
|
FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
|
|
|
|
void update(StringRef Str) { FS.AddString(Str); }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Writes the relevant data from all statements and child statements
|
|
/// in the given StmtSequence into the given FoldingSetNodeID.
|
|
static void CollectStmtSequenceData(const StmtSequence &Sequence,
|
|
FoldingSetNodeIDWrapper &OutputData) {
|
|
for (const Stmt *S : Sequence) {
|
|
CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
|
|
S, Sequence.getASTContext(), OutputData);
|
|
|
|
for (const Stmt *Child : S->children()) {
|
|
if (!Child)
|
|
continue;
|
|
|
|
CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
|
|
OutputData);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if both sequences are clones of each other.
|
|
static bool areSequencesClones(const StmtSequence &LHS,
|
|
const StmtSequence &RHS) {
|
|
// We collect the data from all statements in the sequence as we did before
|
|
// when generating a hash value for each sequence. But this time we don't
|
|
// hash the collected data and compare the whole data set instead. This
|
|
// prevents any false-positives due to hash code collisions.
|
|
llvm::FoldingSetNodeID DataLHS, DataRHS;
|
|
FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
|
|
FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
|
|
|
|
CollectStmtSequenceData(LHS, LHSWrapper);
|
|
CollectStmtSequenceData(RHS, RHSWrapper);
|
|
|
|
return DataLHS == DataRHS;
|
|
}
|
|
|
|
void RecursiveCloneTypeIIHashConstraint::constrain(
|
|
std::vector<CloneDetector::CloneGroup> &Sequences) {
|
|
// FIXME: Maybe we can do this in-place and don't need this additional vector.
|
|
std::vector<CloneDetector::CloneGroup> Result;
|
|
|
|
for (CloneDetector::CloneGroup &Group : Sequences) {
|
|
// We assume in the following code that the Group is non-empty, so we
|
|
// skip all empty groups.
|
|
if (Group.empty())
|
|
continue;
|
|
|
|
std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
|
|
|
|
// Generate hash codes for all children of S and save them in StmtsByHash.
|
|
for (const StmtSequence &S : Group) {
|
|
saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
|
|
}
|
|
|
|
// Sort hash_codes in StmtsByHash.
|
|
std::stable_sort(StmtsByHash.begin(), StmtsByHash.end(),
|
|
[](std::pair<size_t, StmtSequence> LHS,
|
|
std::pair<size_t, StmtSequence> RHS) {
|
|
return LHS.first < RHS.first;
|
|
});
|
|
|
|
// Check for each StmtSequence if its successor has the same hash value.
|
|
// We don't check the last StmtSequence as it has no successor.
|
|
// Note: The 'size - 1 ' in the condition is safe because we check for an
|
|
// empty Group vector at the beginning of this function.
|
|
for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
|
|
const auto Current = StmtsByHash[i];
|
|
|
|
// It's likely that we just found an sequence of StmtSequences that
|
|
// represent a CloneGroup, so we create a new group and start checking and
|
|
// adding the StmtSequences in this sequence.
|
|
CloneDetector::CloneGroup NewGroup;
|
|
|
|
size_t PrototypeHash = Current.first;
|
|
|
|
for (; i < StmtsByHash.size(); ++i) {
|
|
// A different hash value means we have reached the end of the sequence.
|
|
if (PrototypeHash != StmtsByHash[i].first) {
|
|
// The current sequence could be the start of a new CloneGroup. So we
|
|
// decrement i so that we visit it again in the outer loop.
|
|
// Note: i can never be 0 at this point because we are just comparing
|
|
// the hash of the Current StmtSequence with itself in the 'if' above.
|
|
assert(i != 0);
|
|
--i;
|
|
break;
|
|
}
|
|
// Same hash value means we should add the StmtSequence to the current
|
|
// group.
|
|
NewGroup.push_back(StmtsByHash[i].second);
|
|
}
|
|
|
|
// We created a new clone group with matching hash codes and move it to
|
|
// the result vector.
|
|
Result.push_back(NewGroup);
|
|
}
|
|
}
|
|
// Sequences is the output parameter, so we copy our result into it.
|
|
Sequences = Result;
|
|
}
|
|
|
|
void RecursiveCloneTypeIIVerifyConstraint::constrain(
|
|
std::vector<CloneDetector::CloneGroup> &Sequences) {
|
|
CloneConstraint::splitCloneGroups(
|
|
Sequences, [](const StmtSequence &A, const StmtSequence &B) {
|
|
return areSequencesClones(A, B);
|
|
});
|
|
}
|
|
|
|
size_t MinComplexityConstraint::calculateStmtComplexity(
|
|
const StmtSequence &Seq, std::size_t Limit,
|
|
const std::string &ParentMacroStack) {
|
|
if (Seq.empty())
|
|
return 0;
|
|
|
|
size_t Complexity = 1;
|
|
|
|
ASTContext &Context = Seq.getASTContext();
|
|
|
|
// Look up what macros expanded into the current statement.
|
|
std::string MacroStack =
|
|
data_collection::getMacroStack(Seq.getStartLoc(), Context);
|
|
|
|
// First, check if ParentMacroStack is not empty which means we are currently
|
|
// dealing with a parent statement which was expanded from a macro.
|
|
// If this parent statement was expanded from the same macros as this
|
|
// statement, we reduce the initial complexity of this statement to zero.
|
|
// This causes that a group of statements that were generated by a single
|
|
// macro expansion will only increase the total complexity by one.
|
|
// Note: This is not the final complexity of this statement as we still
|
|
// add the complexity of the child statements to the complexity value.
|
|
if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
|
|
Complexity = 0;
|
|
}
|
|
|
|
// Iterate over the Stmts in the StmtSequence and add their complexity values
|
|
// to the current complexity value.
|
|
if (Seq.holdsSequence()) {
|
|
for (const Stmt *S : Seq) {
|
|
Complexity += calculateStmtComplexity(
|
|
StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
|
|
if (Complexity >= Limit)
|
|
return Limit;
|
|
}
|
|
} else {
|
|
for (const Stmt *S : Seq.front()->children()) {
|
|
Complexity += calculateStmtComplexity(
|
|
StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
|
|
if (Complexity >= Limit)
|
|
return Limit;
|
|
}
|
|
}
|
|
return Complexity;
|
|
}
|
|
|
|
void MatchingVariablePatternConstraint::constrain(
|
|
std::vector<CloneDetector::CloneGroup> &CloneGroups) {
|
|
CloneConstraint::splitCloneGroups(
|
|
CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
|
|
VariablePattern PatternA(A);
|
|
VariablePattern PatternB(B);
|
|
return PatternA.countPatternDifferences(PatternB) == 0;
|
|
});
|
|
}
|
|
|
|
void CloneConstraint::splitCloneGroups(
|
|
std::vector<CloneDetector::CloneGroup> &CloneGroups,
|
|
llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
|
|
Compare) {
|
|
std::vector<CloneDetector::CloneGroup> Result;
|
|
for (auto &HashGroup : CloneGroups) {
|
|
// Contains all indexes in HashGroup that were already added to a
|
|
// CloneGroup.
|
|
std::vector<char> Indexes;
|
|
Indexes.resize(HashGroup.size());
|
|
|
|
for (unsigned i = 0; i < HashGroup.size(); ++i) {
|
|
// Skip indexes that are already part of a CloneGroup.
|
|
if (Indexes[i])
|
|
continue;
|
|
|
|
// Pick the first unhandled StmtSequence and consider it as the
|
|
// beginning
|
|
// of a new CloneGroup for now.
|
|
// We don't add i to Indexes because we never iterate back.
|
|
StmtSequence Prototype = HashGroup[i];
|
|
CloneDetector::CloneGroup PotentialGroup = {Prototype};
|
|
++Indexes[i];
|
|
|
|
// Check all following StmtSequences for clones.
|
|
for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
|
|
// Skip indexes that are already part of a CloneGroup.
|
|
if (Indexes[j])
|
|
continue;
|
|
|
|
// If a following StmtSequence belongs to our CloneGroup, we add it.
|
|
const StmtSequence &Candidate = HashGroup[j];
|
|
|
|
if (!Compare(Prototype, Candidate))
|
|
continue;
|
|
|
|
PotentialGroup.push_back(Candidate);
|
|
// Make sure we never visit this StmtSequence again.
|
|
++Indexes[j];
|
|
}
|
|
|
|
// Otherwise, add it to the result and continue searching for more
|
|
// groups.
|
|
Result.push_back(PotentialGroup);
|
|
}
|
|
|
|
assert(std::all_of(Indexes.begin(), Indexes.end(),
|
|
[](char c) { return c == 1; }));
|
|
}
|
|
CloneGroups = Result;
|
|
}
|
|
|
|
void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
|
|
const Stmt *Mention) {
|
|
// First check if we already reference this variable
|
|
for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
|
|
if (Variables[KindIndex] == VarDecl) {
|
|
// If yes, add a new occurence that points to the existing entry in
|
|
// the Variables vector.
|
|
Occurences.emplace_back(KindIndex, Mention);
|
|
return;
|
|
}
|
|
}
|
|
// If this variable wasn't already referenced, add it to the list of
|
|
// referenced variables and add a occurence that points to this new entry.
|
|
Occurences.emplace_back(Variables.size(), Mention);
|
|
Variables.push_back(VarDecl);
|
|
}
|
|
|
|
void VariablePattern::addVariables(const Stmt *S) {
|
|
// Sometimes we get a nullptr (such as from IfStmts which often have nullptr
|
|
// children). We skip such statements as they don't reference any
|
|
// variables.
|
|
if (!S)
|
|
return;
|
|
|
|
// Check if S is a reference to a variable. If yes, add it to the pattern.
|
|
if (auto D = dyn_cast<DeclRefExpr>(S)) {
|
|
if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
|
|
addVariableOccurence(VD, D);
|
|
}
|
|
|
|
// Recursively check all children of the given statement.
|
|
for (const Stmt *Child : S->children()) {
|
|
addVariables(Child);
|
|
}
|
|
}
|
|
|
|
unsigned VariablePattern::countPatternDifferences(
|
|
const VariablePattern &Other,
|
|
VariablePattern::SuspiciousClonePair *FirstMismatch) {
|
|
unsigned NumberOfDifferences = 0;
|
|
|
|
assert(Other.Occurences.size() == Occurences.size());
|
|
for (unsigned i = 0; i < Occurences.size(); ++i) {
|
|
auto ThisOccurence = Occurences[i];
|
|
auto OtherOccurence = Other.Occurences[i];
|
|
if (ThisOccurence.KindID == OtherOccurence.KindID)
|
|
continue;
|
|
|
|
++NumberOfDifferences;
|
|
|
|
// If FirstMismatch is not a nullptr, we need to store information about
|
|
// the first difference between the two patterns.
|
|
if (FirstMismatch == nullptr)
|
|
continue;
|
|
|
|
// Only proceed if we just found the first difference as we only store
|
|
// information about the first difference.
|
|
if (NumberOfDifferences != 1)
|
|
continue;
|
|
|
|
const VarDecl *FirstSuggestion = nullptr;
|
|
// If there is a variable available in the list of referenced variables
|
|
// which wouldn't break the pattern if it is used in place of the
|
|
// current variable, we provide this variable as the suggested fix.
|
|
if (OtherOccurence.KindID < Variables.size())
|
|
FirstSuggestion = Variables[OtherOccurence.KindID];
|
|
|
|
// Store information about the first clone.
|
|
FirstMismatch->FirstCloneInfo =
|
|
VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
|
|
Variables[ThisOccurence.KindID], ThisOccurence.Mention,
|
|
FirstSuggestion);
|
|
|
|
// Same as above but with the other clone. We do this for both clones as
|
|
// we don't know which clone is the one containing the unintended
|
|
// pattern error.
|
|
const VarDecl *SecondSuggestion = nullptr;
|
|
if (ThisOccurence.KindID < Other.Variables.size())
|
|
SecondSuggestion = Other.Variables[ThisOccurence.KindID];
|
|
|
|
// Store information about the second clone.
|
|
FirstMismatch->SecondCloneInfo =
|
|
VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
|
|
Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
|
|
SecondSuggestion);
|
|
|
|
// SuspiciousClonePair guarantees that the first clone always has a
|
|
// suggested variable associated with it. As we know that one of the two
|
|
// clones in the pair always has suggestion, we swap the two clones
|
|
// in case the first clone has no suggested variable which means that
|
|
// the second clone has a suggested variable and should be first.
|
|
if (!FirstMismatch->FirstCloneInfo.Suggestion)
|
|
std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
|
|
|
|
// This ensures that we always have at least one suggestion in a pair.
|
|
assert(FirstMismatch->FirstCloneInfo.Suggestion);
|
|
}
|
|
|
|
return NumberOfDifferences;
|
|
}
|