Xamarin Public Jenkins (auto-signing) 94b2861243 Imported Upstream version 4.8.0.309
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
2016-11-10 13:04:39 +00:00

702 lines
18 KiB
Prolog

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# sha1_block procedure for ARMv4.
#
# January 2007.
# Size/performance trade-off
# ====================================================================
# impl size in bytes comp cycles[*] measured performance
# ====================================================================
# thumb 304 3212 4420
# armv4-small 392/+29% 1958/+64% 2250/+96%
# armv4-compact 740/+89% 1552/+26% 1840/+22%
# armv4-large 1420/+92% 1307/+19% 1370/+34%[***]
# full unroll ~5100/+260% ~1260/+4% ~1300/+5%
# ====================================================================
# thumb = same as 'small' but in Thumb instructions[**] and
# with recurring code in two private functions;
# small = detached Xload/update, loops are folded;
# compact = detached Xload/update, 5x unroll;
# large = interleaved Xload/update, 5x unroll;
# full unroll = interleaved Xload/update, full unroll, estimated[!];
#
# [*] Manually counted instructions in "grand" loop body. Measured
# performance is affected by prologue and epilogue overhead,
# i-cache availability, branch penalties, etc.
# [**] While each Thumb instruction is twice smaller, they are not as
# diverse as ARM ones: e.g., there are only two arithmetic
# instructions with 3 arguments, no [fixed] rotate, addressing
# modes are limited. As result it takes more instructions to do
# the same job in Thumb, therefore the code is never twice as
# small and always slower.
# [***] which is also ~35% better than compiler generated code. Dual-
# issue Cortex A8 core was measured to process input block in
# ~990 cycles.
# August 2010.
#
# Rescheduling for dual-issue pipeline resulted in 13% improvement on
# Cortex A8 core and in absolute terms ~870 cycles per input block
# [or 13.6 cycles per byte].
# February 2011.
#
# Profiler-assisted and platform-specific optimization resulted in 10%
# improvement on Cortex A8 core and 12.2 cycles per byte.
# September 2013.
#
# Add NEON implementation (see sha1-586.pl for background info). On
# Cortex A8 it was measured to process one byte in 6.7 cycles or >80%
# faster than integer-only code. Because [fully unrolled] NEON code
# is ~2.5x larger and there are some redundant instructions executed
# when processing last block, improvement is not as big for smallest
# blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per
# byte, which is also >80% faster than integer-only code. Cortex-A15
# is even faster spending 5.6 cycles per byte outperforming integer-
# only code by factor of 2.
# May 2014.
#
# Add ARMv8 code path performing at 2.35 cpb on Apple A7.
$flavour = shift;
if ($flavour=~/^\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
else { while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} }
if ($flavour && $flavour ne "void") {
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open STDOUT,"| \"$^X\" $xlate $flavour $output";
} else {
open STDOUT,">$output";
}
$ctx="r0";
$inp="r1";
$len="r2";
$a="r3";
$b="r4";
$c="r5";
$d="r6";
$e="r7";
$K="r8";
$t0="r9";
$t1="r10";
$t2="r11";
$t3="r12";
$Xi="r14";
@V=($a,$b,$c,$d,$e);
sub Xupdate {
my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_;
$code.=<<___;
ldr $t0,[$Xi,#15*4]
ldr $t1,[$Xi,#13*4]
ldr $t2,[$Xi,#7*4]
add $e,$K,$e,ror#2 @ E+=K_xx_xx
ldr $t3,[$Xi,#2*4]
eor $t0,$t0,$t1
eor $t2,$t2,$t3 @ 1 cycle stall
eor $t1,$c,$d @ F_xx_xx
mov $t0,$t0,ror#31
add $e,$e,$a,ror#27 @ E+=ROR(A,27)
eor $t0,$t0,$t2,ror#31
str $t0,[$Xi,#-4]!
$opt1 @ F_xx_xx
$opt2 @ F_xx_xx
add $e,$e,$t0 @ E+=X[i]
___
}
sub BODY_00_15 {
my ($a,$b,$c,$d,$e)=@_;
$code.=<<___;
#if __ARM_ARCH__<7
ldrb $t1,[$inp,#2]
ldrb $t0,[$inp,#3]
ldrb $t2,[$inp,#1]
add $e,$K,$e,ror#2 @ E+=K_00_19
ldrb $t3,[$inp],#4
orr $t0,$t0,$t1,lsl#8
eor $t1,$c,$d @ F_xx_xx
orr $t0,$t0,$t2,lsl#16
add $e,$e,$a,ror#27 @ E+=ROR(A,27)
orr $t0,$t0,$t3,lsl#24
#else
ldr $t0,[$inp],#4 @ handles unaligned
add $e,$K,$e,ror#2 @ E+=K_00_19
eor $t1,$c,$d @ F_xx_xx
add $e,$e,$a,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev $t0,$t0 @ byte swap
#endif
#endif
and $t1,$b,$t1,ror#2
add $e,$e,$t0 @ E+=X[i]
eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D)
str $t0,[$Xi,#-4]!
add $e,$e,$t1 @ E+=F_00_19(B,C,D)
___
}
sub BODY_16_19 {
my ($a,$b,$c,$d,$e)=@_;
&Xupdate(@_,"and $t1,$b,$t1,ror#2");
$code.=<<___;
eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D)
add $e,$e,$t1 @ E+=F_00_19(B,C,D)
___
}
sub BODY_20_39 {
my ($a,$b,$c,$d,$e)=@_;
&Xupdate(@_,"eor $t1,$b,$t1,ror#2");
$code.=<<___;
add $e,$e,$t1 @ E+=F_20_39(B,C,D)
___
}
sub BODY_40_59 {
my ($a,$b,$c,$d,$e)=@_;
&Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d");
$code.=<<___;
add $e,$e,$t1 @ E+=F_40_59(B,C,D)
add $e,$e,$t2,ror#2
___
}
$code=<<___;
#include <openssl/arm_arch.h>
.text
.code 32
.global sha1_block_data_order
.type sha1_block_data_order,%function
.align 5
sha1_block_data_order:
#if __ARM_MAX_ARCH__>=7
sub r3,pc,#8 @ sha1_block_data_order
ldr r12,.LOPENSSL_armcap
ldr r12,[r3,r12] @ OPENSSL_armcap_P
#ifdef __APPLE__
ldr r12,[r12]
#endif
tst r12,#ARMV8_SHA1
bne .LARMv8
tst r12,#ARMV7_NEON
bne .LNEON
#endif
stmdb sp!,{r4-r12,lr}
add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp
ldmia $ctx,{$a,$b,$c,$d,$e}
.Lloop:
ldr $K,.LK_00_19
mov $Xi,sp
sub sp,sp,#15*4
mov $c,$c,ror#30
mov $d,$d,ror#30
mov $e,$e,ror#30 @ [6]
.L_00_15:
___
for($i=0;$i<5;$i++) {
&BODY_00_15(@V); unshift(@V,pop(@V));
}
$code.=<<___;
teq $Xi,sp
bne .L_00_15 @ [((11+4)*5+2)*3]
sub sp,sp,#25*4
___
&BODY_00_15(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
$code.=<<___;
ldr $K,.LK_20_39 @ [+15+16*4]
cmn sp,#0 @ [+3], clear carry to denote 20_39
.L_20_39_or_60_79:
___
for($i=0;$i<5;$i++) {
&BODY_20_39(@V); unshift(@V,pop(@V));
}
$code.=<<___;
teq $Xi,sp @ preserve carry
bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4]
bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes
ldr $K,.LK_40_59
sub sp,sp,#20*4 @ [+2]
.L_40_59:
___
for($i=0;$i<5;$i++) {
&BODY_40_59(@V); unshift(@V,pop(@V));
}
$code.=<<___;
teq $Xi,sp
bne .L_40_59 @ [+((12+5)*5+2)*4]
ldr $K,.LK_60_79
sub sp,sp,#20*4
cmp sp,#0 @ set carry to denote 60_79
b .L_20_39_or_60_79 @ [+4], spare 300 bytes
.L_done:
add sp,sp,#80*4 @ "deallocate" stack frame
ldmia $ctx,{$K,$t0,$t1,$t2,$t3}
add $a,$K,$a
add $b,$t0,$b
add $c,$t1,$c,ror#2
add $d,$t2,$d,ror#2
add $e,$t3,$e,ror#2
stmia $ctx,{$a,$b,$c,$d,$e}
teq $inp,$len
bne .Lloop @ [+18], total 1307
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r12,pc}
#else
ldmia sp!,{r4-r12,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
bx lr @ interoperable with Thumb ISA:-)
#endif
.size sha1_block_data_order,.-sha1_block_data_order
.align 5
.LK_00_19: .word 0x5a827999
.LK_20_39: .word 0x6ed9eba1
.LK_40_59: .word 0x8f1bbcdc
.LK_60_79: .word 0xca62c1d6
#if __ARM_MAX_ARCH__>=7
.LOPENSSL_armcap:
.word OPENSSL_armcap_P-sha1_block_data_order
#endif
.asciz "SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 5
___
#####################################################################
# NEON stuff
#
{{{
my @V=($a,$b,$c,$d,$e);
my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14));
my $Xi=4;
my @X=map("q$_",(8..11,0..3));
my @Tx=("q12","q13");
my ($K,$zero)=("q14","q15");
my $j=0;
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
my $arg = pop;
$arg = "#$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}
sub body_00_19 () {
(
'($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'.
'&bic ($t0,$d,$b)',
'&add ($e,$e,$Ki)', # e+=X[i]+K
'&and ($t1,$c,$b)',
'&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
'&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27)
'&eor ($t1,$t1,$t0)', # F_00_19
'&mov ($b,$b,"ror#2")', # b=ROR(b,2)
'&add ($e,$e,$t1);'. # e+=F_00_19
'$j++; unshift(@V,pop(@V));'
)
}
sub body_20_39 () {
(
'($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'.
'&eor ($t0,$b,$d)',
'&add ($e,$e,$Ki)', # e+=X[i]+K
'&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)',
'&eor ($t1,$t0,$c)', # F_20_39
'&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27)
'&mov ($b,$b,"ror#2")', # b=ROR(b,2)
'&add ($e,$e,$t1);'. # e+=F_20_39
'$j++; unshift(@V,pop(@V));'
)
}
sub body_40_59 () {
(
'($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'.
'&add ($e,$e,$Ki)', # e+=X[i]+K
'&and ($t0,$c,$d)',
'&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
'&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27)
'&eor ($t1,$c,$d)',
'&add ($e,$e,$t0)',
'&and ($t1,$t1,$b)',
'&mov ($b,$b,"ror#2")', # b=ROR(b,2)
'&add ($e,$e,$t1);'. # e+=F_40_59
'$j++; unshift(@V,pop(@V));'
)
}
sub Xupdate_16_31 ()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vext_8 (@X[0],@X[-4&7],@X[-3&7],8); # compose "X[-14]" in "X[0]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@Tx[1],@X[-1&7],$K);
eval(shift(@insns));
&vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0);
eval(shift(@insns));
&vext_8 (@Tx[0],@X[-1&7],$zero,4); # "X[-3]", 3 words
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&veor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&veor (@Tx[0],@Tx[0],@X[0]); # "X[0]"^="X[-3]"^"X[-8]
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer
&sub ($Xfer,$Xfer,64) if ($Xi%4==0);
eval(shift(@insns));
eval(shift(@insns));
&vext_8 (@Tx[1],$zero,@Tx[0],4); # "X[0]"<<96, extract one dword
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@Tx[0],@Tx[0]);
eval(shift(@insns));
eval(shift(@insns));
&vsri_32 (@X[0],@Tx[0],31); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 (@Tx[0],@Tx[1],30);
eval(shift(@insns));
eval(shift(@insns));
&vshl_u32 (@Tx[1],@Tx[1],2);
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@Tx[0]);
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_32_79 ()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vext_8 (@Tx[0],@X[-2&7],@X[-1&7],8); # compose "X[-6]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@Tx[1],@X[-1&7],$K);
eval(shift(@insns));
&vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0);
eval(shift(@insns));
&veor (@Tx[0],@Tx[0],@X[0]); # "X[-6]"^="X[0]"
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 (@X[0],@Tx[0],30);
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer
&sub ($Xfer,$Xfer,64) if ($Xi%4==0);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 (@X[0],@Tx[0],2); # "X[0]"="X[-6]"<<<2
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xuplast_80 ()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vadd_i32 (@Tx[1],@X[-1&7],$K);
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@Tx[1]}","[$Xfer,:128]!");
&sub ($Xfer,$Xfer,64);
&teq ($inp,$len);
&sub ($K_XX_XX,$K_XX_XX,16); # rewind $K_XX_XX
&subeq ($inp,$inp,64); # reload last block to avoid SEGV
&vld1_8 ("{@X[-4&7]-@X[-3&7]}","[$inp]!");
eval(shift(@insns));
eval(shift(@insns));
&vld1_8 ("{@X[-2&7]-@X[-1&7]}","[$inp]!");
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!"); # load K_00_19
eval(shift(@insns));
eval(shift(@insns));
&vrev32_8 (@X[-4&7],@X[-4&7]);
foreach (@insns) { eval; } # remaining instructions
$Xi=0;
}
sub Xloop()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vrev32_8 (@X[($Xi-3)&7],@X[($Xi-3)&7]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[$Xi&7],@X[($Xi-4)&7],$K);
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU
foreach (@insns) { eval; }
$Xi++;
}
$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.arch armv7-a
.fpu neon
.type sha1_block_data_order_neon,%function
.align 4
sha1_block_data_order_neon:
.LNEON:
stmdb sp!,{r4-r12,lr}
add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp
@ dmb @ errata #451034 on early Cortex A8
@ vstmdb sp!,{d8-d15} @ ABI specification says so
mov $saved_sp,sp
sub sp,sp,#64 @ alloca
adr $K_XX_XX,.LK_00_19
bic sp,sp,#15 @ align for 128-bit stores
ldmia $ctx,{$a,$b,$c,$d,$e} @ load context
mov $Xfer,sp
vld1.8 {@X[-4&7]-@X[-3&7]},[$inp]! @ handles unaligned
veor $zero,$zero,$zero
vld1.8 {@X[-2&7]-@X[-1&7]},[$inp]!
vld1.32 {${K}\[]},[$K_XX_XX,:32]! @ load K_00_19
vrev32.8 @X[-4&7],@X[-4&7] @ yes, even on
vrev32.8 @X[-3&7],@X[-3&7] @ big-endian...
vrev32.8 @X[-2&7],@X[-2&7]
vadd.i32 @X[0],@X[-4&7],$K
vrev32.8 @X[-1&7],@X[-1&7]
vadd.i32 @X[1],@X[-3&7],$K
vst1.32 {@X[0]},[$Xfer,:128]!
vadd.i32 @X[2],@X[-2&7],$K
vst1.32 {@X[1]},[$Xfer,:128]!
vst1.32 {@X[2]},[$Xfer,:128]!
ldr $Ki,[sp] @ big RAW stall
.Loop_neon:
___
&Xupdate_16_31(\&body_00_19);
&Xupdate_16_31(\&body_00_19);
&Xupdate_16_31(\&body_00_19);
&Xupdate_16_31(\&body_00_19);
&Xupdate_32_79(\&body_00_19);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_20_39);
&Xuplast_80(\&body_20_39);
&Xloop(\&body_20_39);
&Xloop(\&body_20_39);
&Xloop(\&body_20_39);
$code.=<<___;
ldmia $ctx,{$Ki,$t0,$t1,$Xfer} @ accumulate context
add $a,$a,$Ki
ldr $Ki,[$ctx,#16]
add $b,$b,$t0
add $c,$c,$t1
add $d,$d,$Xfer
moveq sp,$saved_sp
add $e,$e,$Ki
ldrne $Ki,[sp]
stmia $ctx,{$a,$b,$c,$d,$e}
addne $Xfer,sp,#3*16
bne .Loop_neon
@ vldmia sp!,{d8-d15}
ldmia sp!,{r4-r12,pc}
.size sha1_block_data_order_neon,.-sha1_block_data_order_neon
#endif
___
}}}
#####################################################################
# ARMv8 stuff
#
{{{
my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3));
my @MSG=map("q$_",(4..7));
my @Kxx=map("q$_",(8..11));
my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14));
$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.type sha1_block_data_order_armv8,%function
.align 5
sha1_block_data_order_armv8:
.LARMv8:
vstmdb sp!,{d8-d15} @ ABI specification says so
veor $E,$E,$E
adr r3,.LK_00_19
vld1.32 {$ABCD},[$ctx]!
vld1.32 {$E\[0]},[$ctx]
sub $ctx,$ctx,#16
vld1.32 {@Kxx[0]\[]},[r3,:32]!
vld1.32 {@Kxx[1]\[]},[r3,:32]!
vld1.32 {@Kxx[2]\[]},[r3,:32]!
vld1.32 {@Kxx[3]\[]},[r3,:32]
.Loop_v8:
vld1.8 {@MSG[0]-@MSG[1]},[$inp]!
vld1.8 {@MSG[2]-@MSG[3]},[$inp]!
vrev32.8 @MSG[0],@MSG[0]
vrev32.8 @MSG[1],@MSG[1]
vadd.i32 $W0,@Kxx[0],@MSG[0]
vrev32.8 @MSG[2],@MSG[2]
vmov $ABCD_SAVE,$ABCD @ offload
subs $len,$len,#1
vadd.i32 $W1,@Kxx[0],@MSG[1]
vrev32.8 @MSG[3],@MSG[3]
sha1h $E1,$ABCD @ 0
sha1c $ABCD,$E,$W0
vadd.i32 $W0,@Kxx[$j],@MSG[2]
sha1su0 @MSG[0],@MSG[1],@MSG[2]
___
for ($j=0,$i=1;$i<20-3;$i++) {
my $f=("c","p","m","p")[$i/5];
$code.=<<___;
sha1h $E0,$ABCD @ $i
sha1$f $ABCD,$E1,$W1
vadd.i32 $W1,@Kxx[$j],@MSG[3]
sha1su1 @MSG[0],@MSG[3]
___
$code.=<<___ if ($i<20-4);
sha1su0 @MSG[1],@MSG[2],@MSG[3]
___
($E0,$E1)=($E1,$E0); ($W0,$W1)=($W1,$W0);
push(@MSG,shift(@MSG)); $j++ if ((($i+3)%5)==0);
}
$code.=<<___;
sha1h $E0,$ABCD @ $i
sha1p $ABCD,$E1,$W1
vadd.i32 $W1,@Kxx[$j],@MSG[3]
sha1h $E1,$ABCD @ 18
sha1p $ABCD,$E0,$W0
sha1h $E0,$ABCD @ 19
sha1p $ABCD,$E1,$W1
vadd.i32 $E,$E,$E0
vadd.i32 $ABCD,$ABCD,$ABCD_SAVE
bne .Loop_v8
vst1.32 {$ABCD},[$ctx]!
vst1.32 {$E\[0]},[$ctx]
vldmia sp!,{d8-d15}
ret @ bx lr
.size sha1_block_data_order_armv8,.-sha1_block_data_order_armv8
#endif
___
}}}
$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.comm OPENSSL_armcap_P,4,4
.hidden OPENSSL_armcap_P
#endif
___
{ my %opcode = (
"sha1c" => 0xf2000c40, "sha1p" => 0xf2100c40,
"sha1m" => 0xf2200c40, "sha1su0" => 0xf2300c40,
"sha1h" => 0xf3b902c0, "sha1su1" => 0xf3ba0380 );
sub unsha1 {
my ($mnemonic,$arg)=@_;
if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
|(($2&7)<<17)|(($2&8)<<4)
|(($3&7)<<1) |(($3&8)<<2);
# since ARMv7 instructions are always encoded little-endian.
# correct solution is to use .inst directive, but older
# assemblers don't implement it:-(
sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
$word&0xff,($word>>8)&0xff,
($word>>16)&0xff,($word>>24)&0xff,
$mnemonic,$arg;
}
}
}
foreach (split($/,$code)) {
s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo or
s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo;
s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo;
s/\bret\b/bx lr/o or
s/\bbx\s+lr\b/.word\t0xe12fff1e/o; # make it possible to compile with -march=armv4
print $_,$/;
}
close STDOUT; # enforce flush