64ac736ec5
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
526 lines
17 KiB
C++
526 lines
17 KiB
C++
//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Float2Int pass, which aims to demote floating
|
|
// point operations to work on integers, where that is losslessly possible.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "float2int"
|
|
|
|
#include "llvm/Transforms/Scalar/Float2Int.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <deque>
|
|
#include <functional> // For std::function
|
|
using namespace llvm;
|
|
|
|
// The algorithm is simple. Start at instructions that convert from the
|
|
// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
|
|
// graph, using an equivalence datastructure to unify graphs that interfere.
|
|
//
|
|
// Mappable instructions are those with an integer corrollary that, given
|
|
// integer domain inputs, produce an integer output; fadd, for example.
|
|
//
|
|
// If a non-mappable instruction is seen, this entire def-use graph is marked
|
|
// as non-transformable. If we see an instruction that converts from the
|
|
// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
|
|
|
|
/// The largest integer type worth dealing with.
|
|
static cl::opt<unsigned>
|
|
MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
|
|
cl::desc("Max integer bitwidth to consider in float2int"
|
|
"(default=64)"));
|
|
|
|
namespace {
|
|
struct Float2IntLegacyPass : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
Float2IntLegacyPass() : FunctionPass(ID) {
|
|
initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
return Impl.runImpl(F);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
private:
|
|
Float2IntPass Impl;
|
|
};
|
|
}
|
|
|
|
char Float2IntLegacyPass::ID = 0;
|
|
INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
|
|
|
|
// Given a FCmp predicate, return a matching ICmp predicate if one
|
|
// exists, otherwise return BAD_ICMP_PREDICATE.
|
|
static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
|
|
switch (P) {
|
|
case CmpInst::FCMP_OEQ:
|
|
case CmpInst::FCMP_UEQ:
|
|
return CmpInst::ICMP_EQ;
|
|
case CmpInst::FCMP_OGT:
|
|
case CmpInst::FCMP_UGT:
|
|
return CmpInst::ICMP_SGT;
|
|
case CmpInst::FCMP_OGE:
|
|
case CmpInst::FCMP_UGE:
|
|
return CmpInst::ICMP_SGE;
|
|
case CmpInst::FCMP_OLT:
|
|
case CmpInst::FCMP_ULT:
|
|
return CmpInst::ICMP_SLT;
|
|
case CmpInst::FCMP_OLE:
|
|
case CmpInst::FCMP_ULE:
|
|
return CmpInst::ICMP_SLE;
|
|
case CmpInst::FCMP_ONE:
|
|
case CmpInst::FCMP_UNE:
|
|
return CmpInst::ICMP_NE;
|
|
default:
|
|
return CmpInst::BAD_ICMP_PREDICATE;
|
|
}
|
|
}
|
|
|
|
// Given a floating point binary operator, return the matching
|
|
// integer version.
|
|
static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unhandled opcode!");
|
|
case Instruction::FAdd: return Instruction::Add;
|
|
case Instruction::FSub: return Instruction::Sub;
|
|
case Instruction::FMul: return Instruction::Mul;
|
|
}
|
|
}
|
|
|
|
// Find the roots - instructions that convert from the FP domain to
|
|
// integer domain.
|
|
void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
|
|
for (auto &I : instructions(F)) {
|
|
if (isa<VectorType>(I.getType()))
|
|
continue;
|
|
switch (I.getOpcode()) {
|
|
default: break;
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
Roots.insert(&I);
|
|
break;
|
|
case Instruction::FCmp:
|
|
if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
|
|
CmpInst::BAD_ICMP_PREDICATE)
|
|
Roots.insert(&I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper - mark I as having been traversed, having range R.
|
|
void Float2IntPass::seen(Instruction *I, ConstantRange R) {
|
|
DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
|
|
auto IT = SeenInsts.find(I);
|
|
if (IT != SeenInsts.end())
|
|
IT->second = std::move(R);
|
|
else
|
|
SeenInsts.insert(std::make_pair(I, std::move(R)));
|
|
}
|
|
|
|
// Helper - get a range representing a poison value.
|
|
ConstantRange Float2IntPass::badRange() {
|
|
return ConstantRange(MaxIntegerBW + 1, true);
|
|
}
|
|
ConstantRange Float2IntPass::unknownRange() {
|
|
return ConstantRange(MaxIntegerBW + 1, false);
|
|
}
|
|
ConstantRange Float2IntPass::validateRange(ConstantRange R) {
|
|
if (R.getBitWidth() > MaxIntegerBW + 1)
|
|
return badRange();
|
|
return R;
|
|
}
|
|
|
|
// The most obvious way to structure the search is a depth-first, eager
|
|
// search from each root. However, that require direct recursion and so
|
|
// can only handle small instruction sequences. Instead, we split the search
|
|
// up into two phases:
|
|
// - walkBackwards: A breadth-first walk of the use-def graph starting from
|
|
// the roots. Populate "SeenInsts" with interesting
|
|
// instructions and poison values if they're obvious and
|
|
// cheap to compute. Calculate the equivalance set structure
|
|
// while we're here too.
|
|
// - walkForwards: Iterate over SeenInsts in reverse order, so we visit
|
|
// defs before their uses. Calculate the real range info.
|
|
|
|
// Breadth-first walk of the use-def graph; determine the set of nodes
|
|
// we care about and eagerly determine if some of them are poisonous.
|
|
void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
|
|
std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
|
|
while (!Worklist.empty()) {
|
|
Instruction *I = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (SeenInsts.find(I) != SeenInsts.end())
|
|
// Seen already.
|
|
continue;
|
|
|
|
switch (I->getOpcode()) {
|
|
// FIXME: Handle select and phi nodes.
|
|
default:
|
|
// Path terminated uncleanly.
|
|
seen(I, badRange());
|
|
break;
|
|
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP: {
|
|
// Path terminated cleanly - use the type of the integer input to seed
|
|
// the analysis.
|
|
unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
|
|
auto Input = ConstantRange(BW, true);
|
|
auto CastOp = (Instruction::CastOps)I->getOpcode();
|
|
seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
|
|
continue;
|
|
}
|
|
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FCmp:
|
|
seen(I, unknownRange());
|
|
break;
|
|
}
|
|
|
|
for (Value *O : I->operands()) {
|
|
if (Instruction *OI = dyn_cast<Instruction>(O)) {
|
|
// Unify def-use chains if they interfere.
|
|
ECs.unionSets(I, OI);
|
|
if (SeenInsts.find(I)->second != badRange())
|
|
Worklist.push_back(OI);
|
|
} else if (!isa<ConstantFP>(O)) {
|
|
// Not an instruction or ConstantFP? we can't do anything.
|
|
seen(I, badRange());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Walk forwards down the list of seen instructions, so we visit defs before
|
|
// uses.
|
|
void Float2IntPass::walkForwards() {
|
|
for (auto &It : reverse(SeenInsts)) {
|
|
if (It.second != unknownRange())
|
|
continue;
|
|
|
|
Instruction *I = It.first;
|
|
std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
|
|
switch (I->getOpcode()) {
|
|
// FIXME: Handle select and phi nodes.
|
|
default:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
llvm_unreachable("Should have been handled in walkForwards!");
|
|
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
Op = [I](ArrayRef<ConstantRange> Ops) {
|
|
assert(Ops.size() == 2 && "its a binary operator!");
|
|
auto BinOp = (Instruction::BinaryOps) I->getOpcode();
|
|
return Ops[0].binaryOp(BinOp, Ops[1]);
|
|
};
|
|
break;
|
|
|
|
//
|
|
// Root-only instructions - we'll only see these if they're the
|
|
// first node in a walk.
|
|
//
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
Op = [I](ArrayRef<ConstantRange> Ops) {
|
|
assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
|
|
// Note: We're ignoring the casts output size here as that's what the
|
|
// caller expects.
|
|
auto CastOp = (Instruction::CastOps)I->getOpcode();
|
|
return Ops[0].castOp(CastOp, MaxIntegerBW+1);
|
|
};
|
|
break;
|
|
|
|
case Instruction::FCmp:
|
|
Op = [](ArrayRef<ConstantRange> Ops) {
|
|
assert(Ops.size() == 2 && "FCmp is a binary operator!");
|
|
return Ops[0].unionWith(Ops[1]);
|
|
};
|
|
break;
|
|
}
|
|
|
|
bool Abort = false;
|
|
SmallVector<ConstantRange,4> OpRanges;
|
|
for (Value *O : I->operands()) {
|
|
if (Instruction *OI = dyn_cast<Instruction>(O)) {
|
|
assert(SeenInsts.find(OI) != SeenInsts.end() &&
|
|
"def not seen before use!");
|
|
OpRanges.push_back(SeenInsts.find(OI)->second);
|
|
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
|
|
// Work out if the floating point number can be losslessly represented
|
|
// as an integer.
|
|
// APFloat::convertToInteger(&Exact) purports to do what we want, but
|
|
// the exactness can be too precise. For example, negative zero can
|
|
// never be exactly converted to an integer.
|
|
//
|
|
// Instead, we ask APFloat to round itself to an integral value - this
|
|
// preserves sign-of-zero - then compare the result with the original.
|
|
//
|
|
const APFloat &F = CF->getValueAPF();
|
|
|
|
// First, weed out obviously incorrect values. Non-finite numbers
|
|
// can't be represented and neither can negative zero, unless
|
|
// we're in fast math mode.
|
|
if (!F.isFinite() ||
|
|
(F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
|
|
!I->hasNoSignedZeros())) {
|
|
seen(I, badRange());
|
|
Abort = true;
|
|
break;
|
|
}
|
|
|
|
APFloat NewF = F;
|
|
auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
|
|
if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
|
|
seen(I, badRange());
|
|
Abort = true;
|
|
break;
|
|
}
|
|
// OK, it's representable. Now get it.
|
|
APSInt Int(MaxIntegerBW+1, false);
|
|
bool Exact;
|
|
CF->getValueAPF().convertToInteger(Int,
|
|
APFloat::rmNearestTiesToEven,
|
|
&Exact);
|
|
OpRanges.push_back(ConstantRange(Int));
|
|
} else {
|
|
llvm_unreachable("Should have already marked this as badRange!");
|
|
}
|
|
}
|
|
|
|
// Reduce the operands' ranges to a single range and return.
|
|
if (!Abort)
|
|
seen(I, Op(OpRanges));
|
|
}
|
|
}
|
|
|
|
// If there is a valid transform to be done, do it.
|
|
bool Float2IntPass::validateAndTransform() {
|
|
bool MadeChange = false;
|
|
|
|
// Iterate over every disjoint partition of the def-use graph.
|
|
for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
|
|
ConstantRange R(MaxIntegerBW + 1, false);
|
|
bool Fail = false;
|
|
Type *ConvertedToTy = nullptr;
|
|
|
|
// For every member of the partition, union all the ranges together.
|
|
for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
|
|
MI != ME; ++MI) {
|
|
Instruction *I = *MI;
|
|
auto SeenI = SeenInsts.find(I);
|
|
if (SeenI == SeenInsts.end())
|
|
continue;
|
|
|
|
R = R.unionWith(SeenI->second);
|
|
// We need to ensure I has no users that have not been seen.
|
|
// If it does, transformation would be illegal.
|
|
//
|
|
// Don't count the roots, as they terminate the graphs.
|
|
if (Roots.count(I) == 0) {
|
|
// Set the type of the conversion while we're here.
|
|
if (!ConvertedToTy)
|
|
ConvertedToTy = I->getType();
|
|
for (User *U : I->users()) {
|
|
Instruction *UI = dyn_cast<Instruction>(U);
|
|
if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
|
|
DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
|
|
Fail = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (Fail)
|
|
break;
|
|
}
|
|
|
|
// If the set was empty, or we failed, or the range is poisonous,
|
|
// bail out.
|
|
if (ECs.member_begin(It) == ECs.member_end() || Fail ||
|
|
R.isFullSet() || R.isSignWrappedSet())
|
|
continue;
|
|
assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
|
|
|
|
// The number of bits required is the maximum of the upper and
|
|
// lower limits, plus one so it can be signed.
|
|
unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
|
|
R.getUpper().getMinSignedBits()) + 1;
|
|
DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
|
|
|
|
// If we've run off the realms of the exactly representable integers,
|
|
// the floating point result will differ from an integer approximation.
|
|
|
|
// Do we need more bits than are in the mantissa of the type we converted
|
|
// to? semanticsPrecision returns the number of mantissa bits plus one
|
|
// for the sign bit.
|
|
unsigned MaxRepresentableBits
|
|
= APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
|
|
if (MinBW > MaxRepresentableBits) {
|
|
DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
|
|
continue;
|
|
}
|
|
if (MinBW > 64) {
|
|
DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
|
|
continue;
|
|
}
|
|
|
|
// OK, R is known to be representable. Now pick a type for it.
|
|
// FIXME: Pick the smallest legal type that will fit.
|
|
Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
|
|
|
|
for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
|
|
MI != ME; ++MI)
|
|
convert(*MI, Ty);
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
|
|
if (ConvertedInsts.find(I) != ConvertedInsts.end())
|
|
// Already converted this instruction.
|
|
return ConvertedInsts[I];
|
|
|
|
SmallVector<Value*,4> NewOperands;
|
|
for (Value *V : I->operands()) {
|
|
// Don't recurse if we're an instruction that terminates the path.
|
|
if (I->getOpcode() == Instruction::UIToFP ||
|
|
I->getOpcode() == Instruction::SIToFP) {
|
|
NewOperands.push_back(V);
|
|
} else if (Instruction *VI = dyn_cast<Instruction>(V)) {
|
|
NewOperands.push_back(convert(VI, ToTy));
|
|
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
|
|
APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
|
|
bool Exact;
|
|
CF->getValueAPF().convertToInteger(Val,
|
|
APFloat::rmNearestTiesToEven,
|
|
&Exact);
|
|
NewOperands.push_back(ConstantInt::get(ToTy, Val));
|
|
} else {
|
|
llvm_unreachable("Unhandled operand type?");
|
|
}
|
|
}
|
|
|
|
// Now create a new instruction.
|
|
IRBuilder<> IRB(I);
|
|
Value *NewV = nullptr;
|
|
switch (I->getOpcode()) {
|
|
default: llvm_unreachable("Unhandled instruction!");
|
|
|
|
case Instruction::FPToUI:
|
|
NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
|
|
break;
|
|
|
|
case Instruction::FPToSI:
|
|
NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
|
|
break;
|
|
|
|
case Instruction::FCmp: {
|
|
CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
|
|
assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
|
|
NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
|
|
break;
|
|
}
|
|
|
|
case Instruction::UIToFP:
|
|
NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
|
|
break;
|
|
|
|
case Instruction::SIToFP:
|
|
NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
|
|
break;
|
|
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
|
|
NewOperands[0], NewOperands[1],
|
|
I->getName());
|
|
break;
|
|
}
|
|
|
|
// If we're a root instruction, RAUW.
|
|
if (Roots.count(I))
|
|
I->replaceAllUsesWith(NewV);
|
|
|
|
ConvertedInsts[I] = NewV;
|
|
return NewV;
|
|
}
|
|
|
|
// Perform dead code elimination on the instructions we just modified.
|
|
void Float2IntPass::cleanup() {
|
|
for (auto &I : reverse(ConvertedInsts))
|
|
I.first->eraseFromParent();
|
|
}
|
|
|
|
bool Float2IntPass::runImpl(Function &F) {
|
|
DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
|
|
// Clear out all state.
|
|
ECs = EquivalenceClasses<Instruction*>();
|
|
SeenInsts.clear();
|
|
ConvertedInsts.clear();
|
|
Roots.clear();
|
|
|
|
Ctx = &F.getParent()->getContext();
|
|
|
|
findRoots(F, Roots);
|
|
|
|
walkBackwards(Roots);
|
|
walkForwards();
|
|
|
|
bool Modified = validateAndTransform();
|
|
if (Modified)
|
|
cleanup();
|
|
return Modified;
|
|
}
|
|
|
|
namespace llvm {
|
|
FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
|
|
|
|
PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
|
|
if (!runImpl(F))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
} // End namespace llvm
|