Xamarin Public Jenkins (auto-signing) e19d552987 Imported Upstream version 5.18.0.161
Former-commit-id: 4db48158d3a35497b8f118ab21b5f08ac3d86d98
2018-10-19 08:34:24 +00:00

413 lines
18 KiB
TableGen

//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for Mips architecture.
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A, string Invert = "">
: CCIf<!strconcat(Invert,
"static_cast<const MipsSubtarget&>"
"(State.getMachineFunction().getSubtarget()).",
F),
A>;
// The inverse of CCIfSubtarget
class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
/// Match if the original argument (before lowering) was a float.
/// For example, this is true for i32's that were lowered from soft-float.
class CCIfOrigArgWasNotFloat<CCAction A>
: CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
A>;
/// Match if the original argument (before lowering) was a 128-bit float (i.e.
/// long double).
class CCIfOrigArgWasF128<CCAction A>
: CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
/// Match if this specific argument is a vararg.
/// This is slightly different fro CCIfIsVarArg which matches if any argument is
/// a vararg.
class CCIfArgIsVarArg<CCAction A>
: CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
/// Match if the return was a floating point vector.
class CCIfOrigArgWasNotVectorFloat<CCAction A>
: CCIf<"!static_cast<MipsCCState *>(&State)"
"->WasOriginalRetVectorFloat(ValNo)", A>;
/// Match if the special calling conv is the specified value.
class CCIfSpecialCallingConv<string CC, CCAction A>
: CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
"MipsCCState::" # CC, A>;
// For soft-float, f128 values are returned in A0_64 rather than V1_64.
def RetCC_F128SoftFloat : CallingConv<[
CCAssignToReg<[V0_64, A0_64]>
]>;
// For hard-float, f128 values are returned as a pair of f64's rather than a
// pair of i64's.
def RetCC_F128HardFloat : CallingConv<[
CCBitConvertToType<f64>,
// Contrary to the ABI documentation, a struct containing a long double is
// returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
// match the de facto ABI as implemented by GCC.
CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
CCAssignToReg<[D0_64, D2_64]>
]>;
// Handle F128 specially since we can't identify the original type during the
// tablegen-erated code.
def RetCC_F128 : CallingConv<[
CCIfSubtarget<"useSoftFloat()",
CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
CCIfSubtargetNot<"useSoftFloat()",
CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
]>;
//===----------------------------------------------------------------------===//
// Mips O32 Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsO32 : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
// Integer values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Integer values get stored in stack slots that are 8 bytes in
// size and 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>
]>;
// Only the return rules are defined here for O32. The rules for argument
// passing are defined in MipsISelLowering.cpp.
def RetCC_MipsO32 : CallingConv<[
// Promote i1/i8/i16 return values to i32.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
// i32 are returned in registers V0, V1, A0, A1, unless the original return
// type was a vector of floats.
CCIfOrigArgWasNotVectorFloat<CCIfType<[i32],
CCAssignToReg<[V0, V1, A0, A1]>>>,
// f32 are returned in registers F0, F2
CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
// f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
// in D0 and D1 in FP32bit mode.
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
]>;
def CC_MipsO32_FP32 : CustomCallingConv;
def CC_MipsO32_FP64 : CustomCallingConv;
def CC_MipsO32_FP : CallingConv<[
CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
]>;
//===----------------------------------------------------------------------===//
// Mips N32/64 Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsN_SoftFloat : CallingConv<[
CCAssignToRegWithShadow<[A0, A1, A2, A3,
T0, T1, T2, T3],
[D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64, D19_64]>,
CCAssignToStack<4, 8>
]>;
def CC_MipsN : CallingConv<[
CCIfType<[i8, i16, i32, i64],
CCIfSubtargetNot<"isLittle()",
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// All integers (except soft-float integers) are promoted to 64-bit.
CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
// The only i32's we have left are soft-float arguments.
CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
// Integer arguments are passed in integer registers.
CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64],
[D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64, D19_64]>>,
// f32 arguments are passed in single precision FP registers.
CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
F16, F17, F18, F19],
[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64]>>,
// f64 arguments are passed in double precision FP registers.
CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64, D19_64],
[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64]>>,
// All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
CCIfType<[f32], CCAssignToStack<4, 8>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
// N32/64 variable arguments.
// All arguments are passed in integer registers.
def CC_MipsN_VarArg : CallingConv<[
CCIfType<[i8, i16, i32, i64],
CCIfSubtargetNot<"isLittle()",
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// All integers are promoted to 64-bit.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64]>>,
// All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
CCIfType<[f32], CCAssignToStack<4, 8>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
def RetCC_MipsN : CallingConv<[
// f128 needs to be handled similarly to f32 and f64. However, f128 is not
// legal and is lowered to i128 which is further lowered to a pair of i64's.
// This presents us with a problem for the calling convention since hard-float
// still needs to pass them in FPU registers, and soft-float needs to use $v0,
// and $a0 instead of the usual $v0, and $v1. We therefore resort to a
// pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
// whether the result was originally an f128 into the tablegen-erated code.
//
// f128 should only occur for the N64 ABI where long double is 128-bit. On
// N32, long double is equivalent to double.
CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
// Aggregate returns are positioned at the lowest address in the slot for
// both little and big-endian targets. When passing in registers, this
// requires that big-endian targets shift the value into the upper bits.
CCIfSubtarget<"isLittle()",
CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
CCIfSubtargetNot<"isLittle()",
CCIfType<[i8, i16, i32, i64],
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// i64 are returned in registers V0_64, V1_64
CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
// f32 are returned in registers F0, F2
CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
// f64 are returned in registers D0, D2
CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
]>;
//===----------------------------------------------------------------------===//
// Mips FastCC Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsO32_FastCC : CallingConv<[
// f64 arguments are passed in double-precision floating pointer registers.
CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
D7, D8, D9]>>>,
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
D4_64, D5_64, D6_64, D7_64,
D8_64, D9_64, D10_64, D11_64,
D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64,
D19_64]>>>>,
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
D8_64, D10_64, D12_64, D14_64,
D16_64, D18_64]>>>>,
// Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>
]>;
def CC_MipsN_FastCC : CallingConv<[
// Integer arguments are passed in integer registers.
CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
T8_64, V1_64]>>,
// f64 arguments are passed in double-precision floating pointer registers.
CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
D18_64, D19_64]>>,
// Stack parameter slots for i64 and f64 are 64-bit doublewords and
// 8-byte aligned.
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
def CC_Mips_FastCC : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Integer arguments are passed in integer registers. All scratch registers,
// except for AT, V0 and T9, are available to be used as argument registers.
CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
// In NaCl, T6, T7 and T8 are reserved and not available as argument
// registers for fastcc. T6 contains the mask for sandboxing control flow
// (indirect jumps and calls). T7 contains the mask for sandboxing memory
// accesses (loads and stores). T8 contains the thread pointer.
CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
// f32 arguments are passed in single-precision floating pointer registers.
CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
F14, F15, F16, F17, F18, F19]>>>,
// Don't use odd numbered single-precision registers for -mno-odd-spreg.
CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
// Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
CCDelegateTo<CC_MipsN_FastCC>
]>;
//===----------------------------------------------------------------------===//
// Mips Calling Convention Dispatch
//===----------------------------------------------------------------------===//
def RetCC_Mips : CallingConv<[
CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
CCDelegateTo<RetCC_MipsO32>
]>;
def CC_Mips_ByVal : CallingConv<[
CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
CCIfByVal<CCPassByVal<8, 8>>
]>;
def CC_Mips16RetHelper : CallingConv<[
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
// Integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
]>;
def CC_Mips_FixedArg : CallingConv<[
// Mips16 needs special handling on some functions.
CCIf<"State.getCallingConv() != CallingConv::Fast",
CCIfSpecialCallingConv<"Mips16RetHelperConv",
CCDelegateTo<CC_Mips16RetHelper>>>,
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
// f128 needs to be handled similarly to f32 and f64 on hard-float. However,
// f128 is not legal and is lowered to i128 which is further lowered to a pair
// of i64's.
// This presents us with a problem for the calling convention since hard-float
// still needs to pass them in FPU registers. We therefore resort to a
// pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
// whether the argument was originally an f128 into the tablegen-erated code.
//
// f128 should only occur for the N64 ABI where long double is 128-bit. On
// N32, long double is equivalent to double.
CCIfType<[i64],
CCIfSubtargetNot<"useSoftFloat()",
CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
CCDelegateTo<CC_MipsN>
]>;
def CC_Mips_VarArg : CallingConv<[
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
CCDelegateTo<CC_MipsN_VarArg>
]>;
def CC_Mips : CallingConv<[
CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
CCDelegateTo<CC_Mips_FixedArg>
]>;
//===----------------------------------------------------------------------===//
// Callee-saved register lists.
//===----------------------------------------------------------------------===//
def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
(sequence "S%u", 7, 0))>;
def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
(sequence "S%u", 7, 0))> {
let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
}
def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
(sequence "S%u", 7, 0))>;
def CSR_O32_FP64 :
CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
(sequence "S%u", 7, 0))>;
def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
D30_64, RA_64, FP_64, GP_64,
(sequence "S%u_64", 7, 0))>;
def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
GP_64, (sequence "S%u_64", 7, 0))>;
def CSR_Mips16RetHelper :
CalleeSavedRegs<(add V0, V1, FP,
(sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
(sequence "D%u", 15, 10))>;
def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
(sequence "S%u", 7, 0),
(sequence "V%u", 1, 0),
(sequence "T%u", 9, 0),
RA, FP, GP, AT)>;
def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
(sequence "S%u", 7, 0),
(sequence "V%u", 1, 0),
(sequence "T%u", 9, 0),
RA, FP, GP, AT, LO0, HI0)>;
def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
(sequence "V%u_64", 1, 0),
(sequence "S%u_64", 7, 0),
(sequence "T%u_64", 9, 0),
RA_64, FP_64, GP_64, AT_64)>;
def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
(sequence "S%u_64", 7, 0),
(sequence "T%u_64", 9, 0),
(sequence "V%u_64", 1, 0),
RA_64, FP_64, GP_64, AT_64,
LO0_64, HI0_64)>;