Xamarin Public Jenkins (auto-signing) e19d552987 Imported Upstream version 5.18.0.161
Former-commit-id: 4db48158d3a35497b8f118ab21b5f08ac3d86d98
2018-10-19 08:34:24 +00:00

327 lines
11 KiB
C++

//===- CalcSpillWeights.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "calcspillweights"
void llvm::calculateSpillWeightsAndHints(LiveIntervals &LIS,
MachineFunction &MF,
VirtRegMap *VRM,
const MachineLoopInfo &MLI,
const MachineBlockFrequencyInfo &MBFI,
VirtRegAuxInfo::NormalizingFn norm) {
DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: " << MF.getName() << '\n');
MachineRegisterInfo &MRI = MF.getRegInfo();
VirtRegAuxInfo VRAI(MF, LIS, VRM, MLI, MBFI, norm);
for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI.reg_nodbg_empty(Reg))
continue;
VRAI.calculateSpillWeightAndHint(LIS.getInterval(Reg));
}
}
// Return the preferred allocation register for reg, given a COPY instruction.
static unsigned copyHint(const MachineInstr *mi, unsigned reg,
const TargetRegisterInfo &tri,
const MachineRegisterInfo &mri) {
unsigned sub, hreg, hsub;
if (mi->getOperand(0).getReg() == reg) {
sub = mi->getOperand(0).getSubReg();
hreg = mi->getOperand(1).getReg();
hsub = mi->getOperand(1).getSubReg();
} else {
sub = mi->getOperand(1).getSubReg();
hreg = mi->getOperand(0).getReg();
hsub = mi->getOperand(0).getSubReg();
}
if (!hreg)
return 0;
if (TargetRegisterInfo::isVirtualRegister(hreg))
return sub == hsub ? hreg : 0;
const TargetRegisterClass *rc = mri.getRegClass(reg);
if (!tri.enableMultipleCopyHints()) {
// Only allow physreg hints in rc.
if (sub == 0)
return rc->contains(hreg) ? hreg : 0;
// reg:sub should match the physreg hreg.
return tri.getMatchingSuperReg(hreg, sub, rc);
}
unsigned CopiedPReg = (hsub ? tri.getSubReg(hreg, hsub) : hreg);
if (rc->contains(CopiedPReg))
return CopiedPReg;
// Check if reg:sub matches so that a super register could be hinted.
if (sub)
return tri.getMatchingSuperReg(CopiedPReg, sub, rc);
return 0;
}
// Check if all values in LI are rematerializable
static bool isRematerializable(const LiveInterval &LI,
const LiveIntervals &LIS,
VirtRegMap *VRM,
const TargetInstrInfo &TII) {
unsigned Reg = LI.reg;
unsigned Original = VRM ? VRM->getOriginal(Reg) : 0;
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
if (VNI->isPHIDef())
return false;
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
// Trace copies introduced by live range splitting. The inline
// spiller can rematerialize through these copies, so the spill
// weight must reflect this.
if (VRM) {
while (MI->isFullCopy()) {
// The copy destination must match the interval register.
if (MI->getOperand(0).getReg() != Reg)
return false;
// Get the source register.
Reg = MI->getOperand(1).getReg();
// If the original (pre-splitting) registers match this
// copy came from a split.
if (!TargetRegisterInfo::isVirtualRegister(Reg) ||
VRM->getOriginal(Reg) != Original)
return false;
// Follow the copy live-in value.
const LiveInterval &SrcLI = LIS.getInterval(Reg);
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
VNI = SrcQ.valueIn();
assert(VNI && "Copy from non-existing value");
if (VNI->isPHIDef())
return false;
MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
}
}
if (!TII.isTriviallyReMaterializable(*MI, LIS.getAliasAnalysis()))
return false;
}
return true;
}
void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) {
float weight = weightCalcHelper(li);
// Check if unspillable.
if (weight < 0)
return;
li.weight = weight;
}
float VirtRegAuxInfo::futureWeight(LiveInterval &li, SlotIndex start,
SlotIndex end) {
return weightCalcHelper(li, &start, &end);
}
float VirtRegAuxInfo::weightCalcHelper(LiveInterval &li, SlotIndex *start,
SlotIndex *end) {
MachineRegisterInfo &mri = MF.getRegInfo();
const TargetRegisterInfo &tri = *MF.getSubtarget().getRegisterInfo();
MachineBasicBlock *mbb = nullptr;
MachineLoop *loop = nullptr;
bool isExiting = false;
float totalWeight = 0;
unsigned numInstr = 0; // Number of instructions using li
SmallPtrSet<MachineInstr*, 8> visited;
std::pair<unsigned, unsigned> TargetHint = mri.getRegAllocationHint(li.reg);
// Don't recompute spill weight for an unspillable register.
bool Spillable = li.isSpillable();
bool localSplitArtifact = start && end;
// Do not update future local split artifacts.
bool updateLI = !localSplitArtifact;
if (localSplitArtifact) {
MachineBasicBlock *localMBB = LIS.getMBBFromIndex(*end);
assert(localMBB == LIS.getMBBFromIndex(*start) &&
"start and end are expected to be in the same basic block");
// Local split artifact will have 2 additional copy instructions and they
// will be in the same BB.
// localLI = COPY other
// ...
// other = COPY localLI
totalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, localMBB);
totalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, localMBB);
numInstr += 2;
}
// CopyHint is a sortable hint derived from a COPY instruction.
struct CopyHint {
unsigned Reg;
float Weight;
bool IsPhys;
unsigned HintOrder;
CopyHint(unsigned R, float W, bool P, unsigned HR) :
Reg(R), Weight(W), IsPhys(P), HintOrder(HR) {}
bool operator<(const CopyHint &rhs) const {
// Always prefer any physreg hint.
if (IsPhys != rhs.IsPhys)
return (IsPhys && !rhs.IsPhys);
if (Weight != rhs.Weight)
return (Weight > rhs.Weight);
// This is just a temporary way to achive NFC for targets that don't
// enable multiple copy hints. HintOrder should be removed when all
// targets return true in enableMultipleCopyHints().
return (HintOrder < rhs.HintOrder);
#if 0 // Should replace the HintOrder check, see above.
// (just for the purpose of maintaining the set)
return Reg < rhs.Reg;
#endif
}
};
std::set<CopyHint> CopyHints;
// Temporary: see comment for HintOrder above.
unsigned CopyHintOrder = 0;
for (MachineRegisterInfo::reg_instr_iterator
I = mri.reg_instr_begin(li.reg), E = mri.reg_instr_end();
I != E; ) {
MachineInstr *mi = &*(I++);
// For local split artifacts, we are interested only in instructions between
// the expected start and end of the range.
SlotIndex si = LIS.getInstructionIndex(*mi);
if (localSplitArtifact && ((si < *start) || (si > *end)))
continue;
numInstr++;
if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue())
continue;
if (!visited.insert(mi).second)
continue;
float weight = 1.0f;
if (Spillable) {
// Get loop info for mi.
if (mi->getParent() != mbb) {
mbb = mi->getParent();
loop = Loops.getLoopFor(mbb);
isExiting = loop ? loop->isLoopExiting(mbb) : false;
}
// Calculate instr weight.
bool reads, writes;
std::tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg);
weight = LiveIntervals::getSpillWeight(writes, reads, &MBFI, *mi);
// Give extra weight to what looks like a loop induction variable update.
if (writes && isExiting && LIS.isLiveOutOfMBB(li, mbb))
weight *= 3;
totalWeight += weight;
}
// Get allocation hints from copies.
if (!mi->isCopy() ||
(TargetHint.first != 0 && !tri.enableMultipleCopyHints()))
continue;
unsigned hint = copyHint(mi, li.reg, tri, mri);
if (!hint)
continue;
// Force hweight onto the stack so that x86 doesn't add hidden precision,
// making the comparison incorrectly pass (i.e., 1 > 1 == true??).
//
// FIXME: we probably shouldn't use floats at all.
volatile float hweight = Hint[hint] += weight;
if (TargetRegisterInfo::isVirtualRegister(hint) || mri.isAllocatable(hint))
CopyHints.insert(CopyHint(hint, hweight, tri.isPhysicalRegister(hint),
(tri.enableMultipleCopyHints() ? hint : CopyHintOrder++)));
}
Hint.clear();
// Pass all the sorted copy hints to mri.
if (updateLI && CopyHints.size()) {
// Remove a generic hint if previously added by target.
if (TargetHint.first == 0 && TargetHint.second)
mri.clearSimpleHint(li.reg);
for (auto &Hint : CopyHints) {
if (TargetHint.first != 0 && Hint.Reg == TargetHint.second)
// Don't add again the target-type hint.
continue;
mri.addRegAllocationHint(li.reg, Hint.Reg);
if (!tri.enableMultipleCopyHints())
break;
}
// Weakly boost the spill weight of hinted registers.
totalWeight *= 1.01F;
}
// If the live interval was already unspillable, leave it that way.
if (!Spillable)
return -1.0;
// Mark li as unspillable if all live ranges are tiny and the interval
// is not live at any reg mask. If the interval is live at a reg mask
// spilling may be required.
if (updateLI && li.isZeroLength(LIS.getSlotIndexes()) &&
!li.isLiveAtIndexes(LIS.getRegMaskSlots())) {
li.markNotSpillable();
return -1.0;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
if (isRematerializable(li, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
totalWeight *= 0.5F;
if (localSplitArtifact)
return normalize(totalWeight, start->distance(*end), numInstr);
return normalize(totalWeight, li.getSize(), numInstr);
}