You've already forked linux-packaging-mono
2030 lines
69 KiB
C++
2030 lines
69 KiB
C++
/*
|
|
* kmp_taskq.cpp -- TASKQ support for OpenMP.
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.txt for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "kmp.h"
|
|
#include "kmp_error.h"
|
|
#include "kmp_i18n.h"
|
|
#include "kmp_io.h"
|
|
|
|
#define MAX_MESSAGE 512
|
|
|
|
/* Taskq routines and global variables */
|
|
|
|
#define KMP_DEBUG_REF_CTS(x) KF_TRACE(1, x);
|
|
|
|
#define THREAD_ALLOC_FOR_TASKQ
|
|
|
|
static int in_parallel_context(kmp_team_t *team) {
|
|
return !team->t.t_serialized;
|
|
}
|
|
|
|
static void __kmp_taskq_eo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
|
|
int gtid = *gtid_ref;
|
|
int tid = __kmp_tid_from_gtid(gtid);
|
|
kmp_uint32 my_token;
|
|
kmpc_task_queue_t *taskq;
|
|
kmp_taskq_t *tq = &__kmp_threads[gtid]->th.th_team->t.t_taskq;
|
|
|
|
if (__kmp_env_consistency_check)
|
|
#if KMP_USE_DYNAMIC_LOCK
|
|
__kmp_push_sync(gtid, ct_ordered_in_taskq, loc_ref, NULL, 0);
|
|
#else
|
|
__kmp_push_sync(gtid, ct_ordered_in_taskq, loc_ref, NULL);
|
|
#endif
|
|
|
|
if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) {
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
/* GEH - need check here under stats to make sure */
|
|
/* inside task (curr_thunk[*tid_ref] != NULL) */
|
|
|
|
my_token = tq->tq_curr_thunk[tid]->th_tasknum;
|
|
|
|
taskq = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue;
|
|
|
|
KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_EQ, NULL);
|
|
KMP_MB();
|
|
}
|
|
}
|
|
|
|
static void __kmp_taskq_xo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
|
|
int gtid = *gtid_ref;
|
|
int tid = __kmp_tid_from_gtid(gtid);
|
|
kmp_uint32 my_token;
|
|
kmp_taskq_t *tq = &__kmp_threads[gtid]->th.th_team->t.t_taskq;
|
|
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_pop_sync(gtid, ct_ordered_in_taskq, loc_ref);
|
|
|
|
if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) {
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
/* GEH - need check here under stats to make sure */
|
|
/* inside task (curr_thunk[tid] != NULL) */
|
|
|
|
my_token = tq->tq_curr_thunk[tid]->th_tasknum;
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue->tq_tasknum_serving =
|
|
my_token + 1;
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
}
|
|
}
|
|
|
|
static void __kmp_taskq_check_ordered(kmp_int32 gtid, kmpc_thunk_t *thunk) {
|
|
kmp_uint32 my_token;
|
|
kmpc_task_queue_t *taskq;
|
|
|
|
/* assume we are always called from an active parallel context */
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
my_token = thunk->th_tasknum;
|
|
|
|
taskq = thunk->th.th_shareds->sv_queue;
|
|
|
|
if (taskq->tq_tasknum_serving <= my_token) {
|
|
KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_GE, NULL);
|
|
KMP_MB();
|
|
taskq->tq_tasknum_serving = my_token + 1;
|
|
KMP_MB();
|
|
}
|
|
}
|
|
|
|
#ifdef KMP_DEBUG
|
|
|
|
static void __kmp_dump_TQF(kmp_int32 flags) {
|
|
if (flags & TQF_IS_ORDERED)
|
|
__kmp_printf("ORDERED ");
|
|
if (flags & TQF_IS_LASTPRIVATE)
|
|
__kmp_printf("LAST_PRIV ");
|
|
if (flags & TQF_IS_NOWAIT)
|
|
__kmp_printf("NOWAIT ");
|
|
if (flags & TQF_HEURISTICS)
|
|
__kmp_printf("HEURIST ");
|
|
if (flags & TQF_INTERFACE_RESERVED1)
|
|
__kmp_printf("RESERV1 ");
|
|
if (flags & TQF_INTERFACE_RESERVED2)
|
|
__kmp_printf("RESERV2 ");
|
|
if (flags & TQF_INTERFACE_RESERVED3)
|
|
__kmp_printf("RESERV3 ");
|
|
if (flags & TQF_INTERFACE_RESERVED4)
|
|
__kmp_printf("RESERV4 ");
|
|
if (flags & TQF_IS_LAST_TASK)
|
|
__kmp_printf("LAST_TASK ");
|
|
if (flags & TQF_TASKQ_TASK)
|
|
__kmp_printf("TASKQ_TASK ");
|
|
if (flags & TQF_RELEASE_WORKERS)
|
|
__kmp_printf("RELEASE ");
|
|
if (flags & TQF_ALL_TASKS_QUEUED)
|
|
__kmp_printf("ALL_QUEUED ");
|
|
if (flags & TQF_PARALLEL_CONTEXT)
|
|
__kmp_printf("PARALLEL ");
|
|
if (flags & TQF_DEALLOCATED)
|
|
__kmp_printf("DEALLOC ");
|
|
if (!(flags & (TQF_INTERNAL_FLAGS | TQF_INTERFACE_FLAGS)))
|
|
__kmp_printf("(NONE)");
|
|
}
|
|
|
|
static void __kmp_dump_thunk(kmp_taskq_t *tq, kmpc_thunk_t *thunk,
|
|
kmp_int32 global_tid) {
|
|
int i;
|
|
int nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc;
|
|
|
|
__kmp_printf("\tThunk at %p on (%d): ", thunk, global_tid);
|
|
|
|
if (thunk != NULL) {
|
|
for (i = 0; i < nproc; i++) {
|
|
if (tq->tq_curr_thunk[i] == thunk) {
|
|
__kmp_printf("[%i] ", i);
|
|
}
|
|
}
|
|
__kmp_printf("th_shareds=%p, ", thunk->th.th_shareds);
|
|
__kmp_printf("th_task=%p, ", thunk->th_task);
|
|
__kmp_printf("th_encl_thunk=%p, ", thunk->th_encl_thunk);
|
|
__kmp_printf("th_status=%d, ", thunk->th_status);
|
|
__kmp_printf("th_tasknum=%u, ", thunk->th_tasknum);
|
|
__kmp_printf("th_flags=");
|
|
__kmp_dump_TQF(thunk->th_flags);
|
|
}
|
|
|
|
__kmp_printf("\n");
|
|
}
|
|
|
|
static void __kmp_dump_thunk_stack(kmpc_thunk_t *thunk, kmp_int32 thread_num) {
|
|
kmpc_thunk_t *th;
|
|
|
|
__kmp_printf(" Thunk stack for T#%d: ", thread_num);
|
|
|
|
for (th = thunk; th != NULL; th = th->th_encl_thunk)
|
|
__kmp_printf("%p ", th);
|
|
|
|
__kmp_printf("\n");
|
|
}
|
|
|
|
static void __kmp_dump_task_queue(kmp_taskq_t *tq, kmpc_task_queue_t *queue,
|
|
kmp_int32 global_tid) {
|
|
int qs, count, i;
|
|
kmpc_thunk_t *thunk;
|
|
kmpc_task_queue_t *taskq;
|
|
|
|
__kmp_printf("Task Queue at %p on (%d):\n", queue, global_tid);
|
|
|
|
if (queue != NULL) {
|
|
int in_parallel = queue->tq_flags & TQF_PARALLEL_CONTEXT;
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
__kmp_printf(" tq_loc : ");
|
|
}
|
|
if (in_parallel) {
|
|
|
|
// if (queue->tq.tq_parent != 0)
|
|
//__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
|
|
//__kmp_acquire_lock(& queue->tq_link_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
__kmp_printf(" tq_parent : %p\n", queue->tq.tq_parent);
|
|
__kmp_printf(" tq_first_child : %p\n", queue->tq_first_child);
|
|
__kmp_printf(" tq_next_child : %p\n", queue->tq_next_child);
|
|
__kmp_printf(" tq_prev_child : %p\n", queue->tq_prev_child);
|
|
__kmp_printf(" tq_ref_count : %d\n", queue->tq_ref_count);
|
|
|
|
//__kmp_release_lock(& queue->tq_link_lck, global_tid);
|
|
|
|
// if (queue->tq.tq_parent != 0)
|
|
//__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
|
|
//__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid);
|
|
//__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
}
|
|
|
|
__kmp_printf(" tq_shareds : ");
|
|
for (i = 0; i < ((queue == tq->tq_root) ? queue->tq_nproc : 1); i++)
|
|
__kmp_printf("%p ", queue->tq_shareds[i].ai_data);
|
|
__kmp_printf("\n");
|
|
|
|
if (in_parallel) {
|
|
__kmp_printf(" tq_tasknum_queuing : %u\n", queue->tq_tasknum_queuing);
|
|
__kmp_printf(" tq_tasknum_serving : %u\n", queue->tq_tasknum_serving);
|
|
}
|
|
|
|
__kmp_printf(" tq_queue : %p\n", queue->tq_queue);
|
|
__kmp_printf(" tq_thunk_space : %p\n", queue->tq_thunk_space);
|
|
__kmp_printf(" tq_taskq_slot : %p\n", queue->tq_taskq_slot);
|
|
|
|
__kmp_printf(" tq_free_thunks : ");
|
|
for (thunk = queue->tq_free_thunks; thunk != NULL;
|
|
thunk = thunk->th.th_next_free)
|
|
__kmp_printf("%p ", thunk);
|
|
__kmp_printf("\n");
|
|
|
|
__kmp_printf(" tq_nslots : %d\n", queue->tq_nslots);
|
|
__kmp_printf(" tq_head : %d\n", queue->tq_head);
|
|
__kmp_printf(" tq_tail : %d\n", queue->tq_tail);
|
|
__kmp_printf(" tq_nfull : %d\n", queue->tq_nfull);
|
|
__kmp_printf(" tq_hiwat : %d\n", queue->tq_hiwat);
|
|
__kmp_printf(" tq_flags : ");
|
|
__kmp_dump_TQF(queue->tq_flags);
|
|
__kmp_printf("\n");
|
|
|
|
if (in_parallel) {
|
|
__kmp_printf(" tq_th_thunks : ");
|
|
for (i = 0; i < queue->tq_nproc; i++) {
|
|
__kmp_printf("%d ", queue->tq_th_thunks[i].ai_data);
|
|
}
|
|
__kmp_printf("\n");
|
|
}
|
|
|
|
__kmp_printf("\n");
|
|
__kmp_printf(" Queue slots:\n");
|
|
|
|
qs = queue->tq_tail;
|
|
for (count = 0; count < queue->tq_nfull; ++count) {
|
|
__kmp_printf("(%d)", qs);
|
|
__kmp_dump_thunk(tq, queue->tq_queue[qs].qs_thunk, global_tid);
|
|
qs = (qs + 1) % queue->tq_nslots;
|
|
}
|
|
|
|
__kmp_printf("\n");
|
|
|
|
if (in_parallel) {
|
|
if (queue->tq_taskq_slot != NULL) {
|
|
__kmp_printf(" TaskQ slot:\n");
|
|
__kmp_dump_thunk(tq, CCAST(kmpc_thunk_t *, queue->tq_taskq_slot),
|
|
global_tid);
|
|
__kmp_printf("\n");
|
|
}
|
|
//__kmp_release_lock(& queue->tq_queue_lck, global_tid);
|
|
//__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid);
|
|
}
|
|
}
|
|
|
|
__kmp_printf(" Taskq freelist: ");
|
|
|
|
//__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid );
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
for (taskq = tq->tq_freelist; taskq != NULL; taskq = taskq->tq.tq_next_free)
|
|
__kmp_printf("%p ", taskq);
|
|
|
|
//__kmp_release_lock( & tq->tq_freelist_lck, global_tid );
|
|
|
|
__kmp_printf("\n\n");
|
|
}
|
|
|
|
static void __kmp_aux_dump_task_queue_tree(kmp_taskq_t *tq,
|
|
kmpc_task_queue_t *curr_queue,
|
|
kmp_int32 level,
|
|
kmp_int32 global_tid) {
|
|
int i, count, qs;
|
|
int nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc;
|
|
kmpc_task_queue_t *queue = curr_queue;
|
|
|
|
if (curr_queue == NULL)
|
|
return;
|
|
|
|
__kmp_printf(" ");
|
|
|
|
for (i = 0; i < level; i++)
|
|
__kmp_printf(" ");
|
|
|
|
__kmp_printf("%p", curr_queue);
|
|
|
|
for (i = 0; i < nproc; i++) {
|
|
if (tq->tq_curr_thunk[i] &&
|
|
tq->tq_curr_thunk[i]->th.th_shareds->sv_queue == curr_queue) {
|
|
__kmp_printf(" [%i]", i);
|
|
}
|
|
}
|
|
|
|
__kmp_printf(":");
|
|
|
|
//__kmp_acquire_lock(& curr_queue->tq_queue_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
qs = curr_queue->tq_tail;
|
|
|
|
for (count = 0; count < curr_queue->tq_nfull; ++count) {
|
|
__kmp_printf("%p ", curr_queue->tq_queue[qs].qs_thunk);
|
|
qs = (qs + 1) % curr_queue->tq_nslots;
|
|
}
|
|
|
|
//__kmp_release_lock(& curr_queue->tq_queue_lck, global_tid);
|
|
|
|
__kmp_printf("\n");
|
|
|
|
if (curr_queue->tq_first_child) {
|
|
//__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
if (curr_queue->tq_first_child) {
|
|
for (queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child);
|
|
queue != NULL; queue = queue->tq_next_child) {
|
|
__kmp_aux_dump_task_queue_tree(tq, queue, level + 1, global_tid);
|
|
}
|
|
}
|
|
|
|
//__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
|
|
}
|
|
}
|
|
|
|
static void __kmp_dump_task_queue_tree(kmp_taskq_t *tq,
|
|
kmpc_task_queue_t *tqroot,
|
|
kmp_int32 global_tid) {
|
|
__kmp_printf("TaskQ Tree at root %p on (%d):\n", tqroot, global_tid);
|
|
|
|
__kmp_aux_dump_task_queue_tree(tq, tqroot, 0, global_tid);
|
|
|
|
__kmp_printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/* New taskq storage routines that try to minimize overhead of mallocs but
|
|
still provide cache line alignment. */
|
|
static void *__kmp_taskq_allocate(size_t size, kmp_int32 global_tid) {
|
|
void *addr, *orig_addr;
|
|
size_t bytes;
|
|
|
|
KB_TRACE(5, ("__kmp_taskq_allocate: called size=%d, gtid=%d\n", (int)size,
|
|
global_tid));
|
|
|
|
bytes = sizeof(void *) + CACHE_LINE + size;
|
|
|
|
#ifdef THREAD_ALLOC_FOR_TASKQ
|
|
orig_addr =
|
|
(void *)__kmp_thread_malloc(__kmp_thread_from_gtid(global_tid), bytes);
|
|
#else
|
|
KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", bytes));
|
|
orig_addr = (void *)KMP_INTERNAL_MALLOC(bytes);
|
|
#endif /* THREAD_ALLOC_FOR_TASKQ */
|
|
|
|
if (orig_addr == 0)
|
|
KMP_FATAL(OutOfHeapMemory);
|
|
|
|
addr = orig_addr;
|
|
|
|
if (((kmp_uintptr_t)addr & (CACHE_LINE - 1)) != 0) {
|
|
KB_TRACE(50, ("__kmp_taskq_allocate: adjust for cache alignment\n"));
|
|
addr = (void *)(((kmp_uintptr_t)addr + CACHE_LINE) & ~(CACHE_LINE - 1));
|
|
}
|
|
|
|
(*(void **)addr) = orig_addr;
|
|
|
|
KB_TRACE(10,
|
|
("__kmp_taskq_allocate: allocate: %p, use: %p - %p, size: %d, "
|
|
"gtid: %d\n",
|
|
orig_addr, ((void **)addr) + 1,
|
|
((char *)(((void **)addr) + 1)) + size - 1, (int)size, global_tid));
|
|
|
|
return (((void **)addr) + 1);
|
|
}
|
|
|
|
static void __kmpc_taskq_free(void *p, kmp_int32 global_tid) {
|
|
KB_TRACE(5, ("__kmpc_taskq_free: called addr=%p, gtid=%d\n", p, global_tid));
|
|
|
|
KB_TRACE(10, ("__kmpc_taskq_free: freeing: %p, gtid: %d\n",
|
|
(*(((void **)p) - 1)), global_tid));
|
|
|
|
#ifdef THREAD_ALLOC_FOR_TASKQ
|
|
__kmp_thread_free(__kmp_thread_from_gtid(global_tid), *(((void **)p) - 1));
|
|
#else
|
|
KMP_INTERNAL_FREE(*(((void **)p) - 1));
|
|
#endif /* THREAD_ALLOC_FOR_TASKQ */
|
|
}
|
|
|
|
/* Keep freed kmpc_task_queue_t on an internal freelist and recycle since
|
|
they're of constant size. */
|
|
|
|
static kmpc_task_queue_t *
|
|
__kmp_alloc_taskq(kmp_taskq_t *tq, int in_parallel, kmp_int32 nslots,
|
|
kmp_int32 nthunks, kmp_int32 nshareds, kmp_int32 nproc,
|
|
size_t sizeof_thunk, size_t sizeof_shareds,
|
|
kmpc_thunk_t **new_taskq_thunk, kmp_int32 global_tid) {
|
|
kmp_int32 i;
|
|
size_t bytes;
|
|
kmpc_task_queue_t *new_queue;
|
|
kmpc_aligned_shared_vars_t *shared_var_array;
|
|
char *shared_var_storage;
|
|
char *pt; /* for doing byte-adjusted address computations */
|
|
|
|
__kmp_acquire_lock(&tq->tq_freelist_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
if (tq->tq_freelist) {
|
|
new_queue = tq->tq_freelist;
|
|
tq->tq_freelist = tq->tq_freelist->tq.tq_next_free;
|
|
|
|
KMP_DEBUG_ASSERT(new_queue->tq_flags & TQF_DEALLOCATED);
|
|
|
|
new_queue->tq_flags = 0;
|
|
|
|
__kmp_release_lock(&tq->tq_freelist_lck, global_tid);
|
|
} else {
|
|
__kmp_release_lock(&tq->tq_freelist_lck, global_tid);
|
|
|
|
new_queue = (kmpc_task_queue_t *)__kmp_taskq_allocate(
|
|
sizeof(kmpc_task_queue_t), global_tid);
|
|
new_queue->tq_flags = 0;
|
|
}
|
|
|
|
/* space in the task queue for queue slots (allocate as one big chunk */
|
|
/* of storage including new_taskq_task space) */
|
|
|
|
sizeof_thunk +=
|
|
(CACHE_LINE - (sizeof_thunk % CACHE_LINE)); /* pad to cache line size */
|
|
pt = (char *)__kmp_taskq_allocate(nthunks * sizeof_thunk, global_tid);
|
|
new_queue->tq_thunk_space = (kmpc_thunk_t *)pt;
|
|
*new_taskq_thunk = (kmpc_thunk_t *)(pt + (nthunks - 1) * sizeof_thunk);
|
|
|
|
/* chain the allocated thunks into a freelist for this queue */
|
|
|
|
new_queue->tq_free_thunks = (kmpc_thunk_t *)pt;
|
|
|
|
for (i = 0; i < (nthunks - 2); i++) {
|
|
((kmpc_thunk_t *)(pt + i * sizeof_thunk))->th.th_next_free =
|
|
(kmpc_thunk_t *)(pt + (i + 1) * sizeof_thunk);
|
|
#ifdef KMP_DEBUG
|
|
((kmpc_thunk_t *)(pt + i * sizeof_thunk))->th_flags = TQF_DEALLOCATED;
|
|
#endif
|
|
}
|
|
|
|
((kmpc_thunk_t *)(pt + (nthunks - 2) * sizeof_thunk))->th.th_next_free = NULL;
|
|
#ifdef KMP_DEBUG
|
|
((kmpc_thunk_t *)(pt + (nthunks - 2) * sizeof_thunk))->th_flags =
|
|
TQF_DEALLOCATED;
|
|
#endif
|
|
|
|
/* initialize the locks */
|
|
|
|
if (in_parallel) {
|
|
__kmp_init_lock(&new_queue->tq_link_lck);
|
|
__kmp_init_lock(&new_queue->tq_free_thunks_lck);
|
|
__kmp_init_lock(&new_queue->tq_queue_lck);
|
|
}
|
|
|
|
/* now allocate the slots */
|
|
|
|
bytes = nslots * sizeof(kmpc_aligned_queue_slot_t);
|
|
new_queue->tq_queue =
|
|
(kmpc_aligned_queue_slot_t *)__kmp_taskq_allocate(bytes, global_tid);
|
|
|
|
/* space for array of pointers to shared variable structures */
|
|
sizeof_shareds += sizeof(kmpc_task_queue_t *);
|
|
sizeof_shareds +=
|
|
(CACHE_LINE - (sizeof_shareds % CACHE_LINE)); /* pad to cache line size */
|
|
|
|
bytes = nshareds * sizeof(kmpc_aligned_shared_vars_t);
|
|
shared_var_array =
|
|
(kmpc_aligned_shared_vars_t *)__kmp_taskq_allocate(bytes, global_tid);
|
|
|
|
bytes = nshareds * sizeof_shareds;
|
|
shared_var_storage = (char *)__kmp_taskq_allocate(bytes, global_tid);
|
|
|
|
for (i = 0; i < nshareds; i++) {
|
|
shared_var_array[i].ai_data =
|
|
(kmpc_shared_vars_t *)(shared_var_storage + i * sizeof_shareds);
|
|
shared_var_array[i].ai_data->sv_queue = new_queue;
|
|
}
|
|
new_queue->tq_shareds = shared_var_array;
|
|
|
|
/* array for number of outstanding thunks per thread */
|
|
|
|
if (in_parallel) {
|
|
bytes = nproc * sizeof(kmpc_aligned_int32_t);
|
|
new_queue->tq_th_thunks =
|
|
(kmpc_aligned_int32_t *)__kmp_taskq_allocate(bytes, global_tid);
|
|
new_queue->tq_nproc = nproc;
|
|
|
|
for (i = 0; i < nproc; i++)
|
|
new_queue->tq_th_thunks[i].ai_data = 0;
|
|
}
|
|
|
|
return new_queue;
|
|
}
|
|
|
|
static void __kmp_free_taskq(kmp_taskq_t *tq, kmpc_task_queue_t *p,
|
|
int in_parallel, kmp_int32 global_tid) {
|
|
__kmpc_taskq_free(p->tq_thunk_space, global_tid);
|
|
__kmpc_taskq_free(p->tq_queue, global_tid);
|
|
|
|
/* free shared var structure storage */
|
|
__kmpc_taskq_free(CCAST(kmpc_shared_vars_t *, p->tq_shareds[0].ai_data),
|
|
global_tid);
|
|
/* free array of pointers to shared vars storage */
|
|
__kmpc_taskq_free(p->tq_shareds, global_tid);
|
|
|
|
#ifdef KMP_DEBUG
|
|
p->tq_first_child = NULL;
|
|
p->tq_next_child = NULL;
|
|
p->tq_prev_child = NULL;
|
|
p->tq_ref_count = -10;
|
|
p->tq_shareds = NULL;
|
|
p->tq_tasknum_queuing = 0;
|
|
p->tq_tasknum_serving = 0;
|
|
p->tq_queue = NULL;
|
|
p->tq_thunk_space = NULL;
|
|
p->tq_taskq_slot = NULL;
|
|
p->tq_free_thunks = NULL;
|
|
p->tq_nslots = 0;
|
|
p->tq_head = 0;
|
|
p->tq_tail = 0;
|
|
p->tq_nfull = 0;
|
|
p->tq_hiwat = 0;
|
|
|
|
if (in_parallel) {
|
|
int i;
|
|
|
|
for (i = 0; i < p->tq_nproc; i++)
|
|
p->tq_th_thunks[i].ai_data = 0;
|
|
}
|
|
if (__kmp_env_consistency_check)
|
|
p->tq_loc = NULL;
|
|
KMP_DEBUG_ASSERT(p->tq_flags & TQF_DEALLOCATED);
|
|
p->tq_flags = TQF_DEALLOCATED;
|
|
#endif /* KMP_DEBUG */
|
|
|
|
if (in_parallel) {
|
|
__kmpc_taskq_free(p->tq_th_thunks, global_tid);
|
|
__kmp_destroy_lock(&p->tq_link_lck);
|
|
__kmp_destroy_lock(&p->tq_queue_lck);
|
|
__kmp_destroy_lock(&p->tq_free_thunks_lck);
|
|
}
|
|
#ifdef KMP_DEBUG
|
|
p->tq_th_thunks = NULL;
|
|
#endif /* KMP_DEBUG */
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
__kmp_acquire_lock(&tq->tq_freelist_lck, global_tid);
|
|
p->tq.tq_next_free = tq->tq_freelist;
|
|
|
|
tq->tq_freelist = p;
|
|
__kmp_release_lock(&tq->tq_freelist_lck, global_tid);
|
|
}
|
|
|
|
/* Once a group of thunks has been allocated for use in a particular queue,
|
|
these are managed via a per-queue freelist.
|
|
We force a check that there's always a thunk free if we need one. */
|
|
|
|
static kmpc_thunk_t *__kmp_alloc_thunk(kmpc_task_queue_t *queue,
|
|
int in_parallel, kmp_int32 global_tid) {
|
|
kmpc_thunk_t *fl;
|
|
|
|
if (in_parallel) {
|
|
__kmp_acquire_lock(&queue->tq_free_thunks_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
}
|
|
|
|
fl = queue->tq_free_thunks;
|
|
|
|
KMP_DEBUG_ASSERT(fl != NULL);
|
|
|
|
queue->tq_free_thunks = fl->th.th_next_free;
|
|
fl->th_flags = 0;
|
|
|
|
if (in_parallel)
|
|
__kmp_release_lock(&queue->tq_free_thunks_lck, global_tid);
|
|
|
|
return fl;
|
|
}
|
|
|
|
static void __kmp_free_thunk(kmpc_task_queue_t *queue, kmpc_thunk_t *p,
|
|
int in_parallel, kmp_int32 global_tid) {
|
|
#ifdef KMP_DEBUG
|
|
p->th_task = 0;
|
|
p->th_encl_thunk = 0;
|
|
p->th_status = 0;
|
|
p->th_tasknum = 0;
|
|
/* Also could zero pointers to private vars */
|
|
#endif
|
|
|
|
if (in_parallel) {
|
|
__kmp_acquire_lock(&queue->tq_free_thunks_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
}
|
|
|
|
p->th.th_next_free = queue->tq_free_thunks;
|
|
queue->tq_free_thunks = p;
|
|
|
|
#ifdef KMP_DEBUG
|
|
p->th_flags = TQF_DEALLOCATED;
|
|
#endif
|
|
|
|
if (in_parallel)
|
|
__kmp_release_lock(&queue->tq_free_thunks_lck, global_tid);
|
|
}
|
|
|
|
/* returns nonzero if the queue just became full after the enqueue */
|
|
static kmp_int32 __kmp_enqueue_task(kmp_taskq_t *tq, kmp_int32 global_tid,
|
|
kmpc_task_queue_t *queue,
|
|
kmpc_thunk_t *thunk, int in_parallel) {
|
|
kmp_int32 ret;
|
|
|
|
/* dkp: can we get around the lock in the TQF_RELEASE_WORKERS case (only the
|
|
* master is executing then) */
|
|
if (in_parallel) {
|
|
__kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(queue->tq_nfull < queue->tq_nslots); // check queue not full
|
|
|
|
queue->tq_queue[(queue->tq_head)++].qs_thunk = thunk;
|
|
|
|
if (queue->tq_head >= queue->tq_nslots)
|
|
queue->tq_head = 0;
|
|
|
|
(queue->tq_nfull)++;
|
|
|
|
KMP_MB(); /* to assure that nfull is seen to increase before
|
|
TQF_ALL_TASKS_QUEUED is set */
|
|
|
|
ret = (in_parallel) ? (queue->tq_nfull == queue->tq_nslots) : FALSE;
|
|
|
|
if (in_parallel) {
|
|
/* don't need to wait until workers are released before unlocking */
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
|
|
if (tq->tq_global_flags & TQF_RELEASE_WORKERS) {
|
|
// If just creating the root queue, the worker threads are waiting at a
|
|
// join barrier until now, when there's something in the queue for them to
|
|
// do; release them now to do work. This should only be done when this is
|
|
// the first task enqueued, so reset the flag here also.
|
|
tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; /* no lock needed, workers
|
|
are still in spin mode */
|
|
// avoid releasing barrier twice if taskq_task switches threads
|
|
KMP_MB();
|
|
|
|
__kmpc_end_barrier_master(NULL, global_tid);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static kmpc_thunk_t *__kmp_dequeue_task(kmp_int32 global_tid,
|
|
kmpc_task_queue_t *queue,
|
|
int in_parallel) {
|
|
kmpc_thunk_t *pt;
|
|
int tid = __kmp_tid_from_gtid(global_tid);
|
|
|
|
KMP_DEBUG_ASSERT(queue->tq_nfull > 0); /* check queue not empty */
|
|
|
|
if (queue->tq.tq_parent != NULL && in_parallel) {
|
|
int ct;
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
ct = ++(queue->tq_ref_count);
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct));
|
|
}
|
|
|
|
pt = queue->tq_queue[(queue->tq_tail)++].qs_thunk;
|
|
|
|
if (queue->tq_tail >= queue->tq_nslots)
|
|
queue->tq_tail = 0;
|
|
|
|
if (in_parallel) {
|
|
queue->tq_th_thunks[tid].ai_data++;
|
|
|
|
KMP_MB(); /* necessary so ai_data increment is propagated to other threads
|
|
immediately (digital) */
|
|
|
|
KF_TRACE(200, ("__kmp_dequeue_task: T#%d(:%d) now has %d outstanding "
|
|
"thunks from queue %p\n",
|
|
global_tid, tid, queue->tq_th_thunks[tid].ai_data, queue));
|
|
}
|
|
|
|
(queue->tq_nfull)--;
|
|
|
|
#ifdef KMP_DEBUG
|
|
KMP_MB();
|
|
|
|
/* necessary so (queue->tq_nfull > 0) above succeeds after tq_nfull is
|
|
* decremented */
|
|
|
|
KMP_DEBUG_ASSERT(queue->tq_nfull >= 0);
|
|
|
|
if (in_parallel) {
|
|
KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data <=
|
|
__KMP_TASKQ_THUNKS_PER_TH);
|
|
}
|
|
#endif
|
|
|
|
return pt;
|
|
}
|
|
|
|
/* Find the next (non-null) task to dequeue and return it.
|
|
* This is never called unless in_parallel=TRUE
|
|
*
|
|
* Here are the rules for deciding which queue to take the task from:
|
|
* 1. Walk up the task queue tree from the current queue's parent and look
|
|
* on the way up (for loop, below).
|
|
* 2. Do a depth-first search back down the tree from the root and
|
|
* look (find_task_in_descendant_queue()).
|
|
*
|
|
* Here are the rules for deciding which task to take from a queue
|
|
* (__kmp_find_task_in_queue ()):
|
|
* 1. Never take the last task from a queue if TQF_IS_LASTPRIVATE; this task
|
|
* must be staged to make sure we execute the last one with
|
|
* TQF_IS_LAST_TASK at the end of task queue execution.
|
|
* 2. If the queue length is below some high water mark and the taskq task
|
|
* is enqueued, prefer running the taskq task.
|
|
* 3. Otherwise, take a (normal) task from the queue.
|
|
*
|
|
* If we do all this and return pt == NULL at the bottom of this routine,
|
|
* this means there are no more tasks to execute (except possibly for
|
|
* TQF_IS_LASTPRIVATE).
|
|
*/
|
|
|
|
static kmpc_thunk_t *__kmp_find_task_in_queue(kmp_int32 global_tid,
|
|
kmpc_task_queue_t *queue) {
|
|
kmpc_thunk_t *pt = NULL;
|
|
int tid = __kmp_tid_from_gtid(global_tid);
|
|
|
|
/* To prevent deadlock from tq_queue_lck if queue already deallocated */
|
|
if (!(queue->tq_flags & TQF_DEALLOCATED)) {
|
|
|
|
__kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
|
|
|
|
/* Check again to avoid race in __kmpc_end_taskq() */
|
|
if (!(queue->tq_flags & TQF_DEALLOCATED)) {
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
if ((queue->tq_taskq_slot != NULL) &&
|
|
(queue->tq_nfull <= queue->tq_hiwat)) {
|
|
/* if there's enough room in the queue and the dispatcher */
|
|
/* (taskq task) is available, schedule more tasks */
|
|
pt = CCAST(kmpc_thunk_t *, queue->tq_taskq_slot);
|
|
queue->tq_taskq_slot = NULL;
|
|
} else if (queue->tq_nfull == 0 ||
|
|
queue->tq_th_thunks[tid].ai_data >=
|
|
__KMP_TASKQ_THUNKS_PER_TH) {
|
|
/* do nothing if no thunks available or this thread can't */
|
|
/* run any because it already is executing too many */
|
|
pt = NULL;
|
|
} else if (queue->tq_nfull > 1) {
|
|
/* always safe to schedule a task even if TQF_IS_LASTPRIVATE */
|
|
|
|
pt = __kmp_dequeue_task(global_tid, queue, TRUE);
|
|
} else if (!(queue->tq_flags & TQF_IS_LASTPRIVATE)) {
|
|
// one thing in queue, always safe to schedule if !TQF_IS_LASTPRIVATE
|
|
pt = __kmp_dequeue_task(global_tid, queue, TRUE);
|
|
} else if (queue->tq_flags & TQF_IS_LAST_TASK) {
|
|
/* TQF_IS_LASTPRIVATE, one thing in queue, kmpc_end_taskq_task() */
|
|
/* has been run so this is last task, run with TQF_IS_LAST_TASK so */
|
|
/* instrumentation does copy-out. */
|
|
pt = __kmp_dequeue_task(global_tid, queue, TRUE);
|
|
pt->th_flags |=
|
|
TQF_IS_LAST_TASK; /* don't need test_then_or since already locked */
|
|
}
|
|
}
|
|
|
|
/* GEH - What happens here if is lastprivate, but not last task? */
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
}
|
|
|
|
return pt;
|
|
}
|
|
|
|
/* Walk a tree of queues starting at queue's first child and return a non-NULL
|
|
thunk if one can be scheduled. Must only be called when in_parallel=TRUE */
|
|
|
|
static kmpc_thunk_t *
|
|
__kmp_find_task_in_descendant_queue(kmp_int32 global_tid,
|
|
kmpc_task_queue_t *curr_queue) {
|
|
kmpc_thunk_t *pt = NULL;
|
|
kmpc_task_queue_t *queue = curr_queue;
|
|
|
|
if (curr_queue->tq_first_child != NULL) {
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child);
|
|
if (queue == NULL) {
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
return NULL;
|
|
}
|
|
|
|
while (queue != NULL) {
|
|
int ct;
|
|
kmpc_task_queue_t *next;
|
|
|
|
ct = ++(queue->tq_ref_count);
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct));
|
|
|
|
pt = __kmp_find_task_in_queue(global_tid, queue);
|
|
|
|
if (pt != NULL) {
|
|
int ct;
|
|
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
ct = --(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
|
|
global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(queue->tq_ref_count >= 0);
|
|
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
|
|
return pt;
|
|
}
|
|
|
|
/* although reference count stays active during descendant walk, shouldn't
|
|
matter since if children still exist, reference counts aren't being
|
|
monitored anyway */
|
|
|
|
pt = __kmp_find_task_in_descendant_queue(global_tid, queue);
|
|
|
|
if (pt != NULL) {
|
|
int ct;
|
|
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
ct = --(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
|
|
global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(ct >= 0);
|
|
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
|
|
return pt;
|
|
}
|
|
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
next = queue->tq_next_child;
|
|
|
|
ct = --(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(ct >= 0);
|
|
|
|
queue = next;
|
|
}
|
|
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
}
|
|
|
|
return pt;
|
|
}
|
|
|
|
/* Walk up the taskq tree looking for a task to execute. If we get to the root,
|
|
search the tree for a descendent queue task. Must only be called when
|
|
in_parallel=TRUE */
|
|
static kmpc_thunk_t *
|
|
__kmp_find_task_in_ancestor_queue(kmp_taskq_t *tq, kmp_int32 global_tid,
|
|
kmpc_task_queue_t *curr_queue) {
|
|
kmpc_task_queue_t *queue;
|
|
kmpc_thunk_t *pt;
|
|
|
|
pt = NULL;
|
|
|
|
if (curr_queue->tq.tq_parent != NULL) {
|
|
queue = curr_queue->tq.tq_parent;
|
|
|
|
while (queue != NULL) {
|
|
if (queue->tq.tq_parent != NULL) {
|
|
int ct;
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
ct = ++(queue->tq_ref_count);
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__,
|
|
global_tid, queue, ct));
|
|
}
|
|
|
|
pt = __kmp_find_task_in_queue(global_tid, queue);
|
|
if (pt != NULL) {
|
|
if (queue->tq.tq_parent != NULL) {
|
|
int ct;
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
ct = --(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
|
|
global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(ct >= 0);
|
|
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
}
|
|
|
|
return pt;
|
|
}
|
|
|
|
if (queue->tq.tq_parent != NULL) {
|
|
int ct;
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
ct = --(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
|
|
global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(ct >= 0);
|
|
}
|
|
queue = queue->tq.tq_parent;
|
|
|
|
if (queue != NULL)
|
|
__kmp_release_lock(&queue->tq_link_lck, global_tid);
|
|
}
|
|
}
|
|
|
|
pt = __kmp_find_task_in_descendant_queue(global_tid, tq->tq_root);
|
|
|
|
return pt;
|
|
}
|
|
|
|
static int __kmp_taskq_tasks_finished(kmpc_task_queue_t *queue) {
|
|
int i;
|
|
|
|
/* KMP_MB(); */ /* is this really necessary? */
|
|
|
|
for (i = 0; i < queue->tq_nproc; i++) {
|
|
if (queue->tq_th_thunks[i].ai_data != 0)
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int __kmp_taskq_has_any_children(kmpc_task_queue_t *queue) {
|
|
return (queue->tq_first_child != NULL);
|
|
}
|
|
|
|
static void __kmp_remove_queue_from_tree(kmp_taskq_t *tq, kmp_int32 global_tid,
|
|
kmpc_task_queue_t *queue,
|
|
int in_parallel) {
|
|
#ifdef KMP_DEBUG
|
|
kmp_int32 i;
|
|
kmpc_thunk_t *thunk;
|
|
#endif
|
|
|
|
KF_TRACE(50,
|
|
("Before Deletion of TaskQ at %p on (%d):\n", queue, global_tid));
|
|
KF_DUMP(50, __kmp_dump_task_queue(tq, queue, global_tid));
|
|
|
|
/* sub-queue in a recursion, not the root task queue */
|
|
KMP_DEBUG_ASSERT(queue->tq.tq_parent != NULL);
|
|
|
|
if (in_parallel) {
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(queue->tq_first_child == NULL);
|
|
|
|
/* unlink queue from its siblings if any at this level */
|
|
if (queue->tq_prev_child != NULL)
|
|
queue->tq_prev_child->tq_next_child = queue->tq_next_child;
|
|
if (queue->tq_next_child != NULL)
|
|
queue->tq_next_child->tq_prev_child = queue->tq_prev_child;
|
|
if (queue->tq.tq_parent->tq_first_child == queue)
|
|
queue->tq.tq_parent->tq_first_child = queue->tq_next_child;
|
|
|
|
queue->tq_prev_child = NULL;
|
|
queue->tq_next_child = NULL;
|
|
|
|
if (in_parallel) {
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p waiting for ref_count of %d to reach 1\n",
|
|
__LINE__, global_tid, queue, queue->tq_ref_count));
|
|
|
|
/* wait until all other threads have stopped accessing this queue */
|
|
while (queue->tq_ref_count > 1) {
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
|
|
KMP_WAIT_YIELD((volatile kmp_uint32 *)&queue->tq_ref_count, 1, KMP_LE,
|
|
NULL);
|
|
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
}
|
|
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
}
|
|
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p freeing queue\n", __LINE__, global_tid, queue));
|
|
|
|
#ifdef KMP_DEBUG
|
|
KMP_DEBUG_ASSERT(queue->tq_flags & TQF_ALL_TASKS_QUEUED);
|
|
KMP_DEBUG_ASSERT(queue->tq_nfull == 0);
|
|
|
|
for (i = 0; i < queue->tq_nproc; i++) {
|
|
KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0);
|
|
}
|
|
|
|
i = 0;
|
|
for (thunk = queue->tq_free_thunks; thunk != NULL;
|
|
thunk = thunk->th.th_next_free)
|
|
++i;
|
|
|
|
KMP_ASSERT(i ==
|
|
queue->tq_nslots + (queue->tq_nproc * __KMP_TASKQ_THUNKS_PER_TH));
|
|
#endif
|
|
|
|
/* release storage for queue entry */
|
|
__kmp_free_taskq(tq, queue, TRUE, global_tid);
|
|
|
|
KF_TRACE(50, ("After Deletion of TaskQ at %p on (%d):\n", queue, global_tid));
|
|
KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid));
|
|
}
|
|
|
|
/* Starting from indicated queue, proceed downward through tree and remove all
|
|
taskqs which are finished, but only go down to taskqs which have the "nowait"
|
|
clause present. Assume this is only called when in_parallel=TRUE. */
|
|
|
|
static void __kmp_find_and_remove_finished_child_taskq(
|
|
kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue) {
|
|
kmpc_task_queue_t *queue = curr_queue;
|
|
|
|
if (curr_queue->tq_first_child != NULL) {
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this call for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child);
|
|
if (queue != NULL) {
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
return;
|
|
}
|
|
|
|
while (queue != NULL) {
|
|
kmpc_task_queue_t *next;
|
|
int ct = ++(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct));
|
|
|
|
/* although reference count stays active during descendant walk, */
|
|
/* shouldn't matter since if children still exist, reference */
|
|
/* counts aren't being monitored anyway */
|
|
|
|
if (queue->tq_flags & TQF_IS_NOWAIT) {
|
|
__kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue);
|
|
|
|
if ((queue->tq_flags & TQF_ALL_TASKS_QUEUED) &&
|
|
(queue->tq_nfull == 0) && __kmp_taskq_tasks_finished(queue) &&
|
|
!__kmp_taskq_has_any_children(queue)) {
|
|
|
|
/* Only remove this if we have not already marked it for deallocation.
|
|
This should prevent multiple threads from trying to free this. */
|
|
|
|
if (__kmp_test_lock(&queue->tq_queue_lck, global_tid)) {
|
|
if (!(queue->tq_flags & TQF_DEALLOCATED)) {
|
|
queue->tq_flags |= TQF_DEALLOCATED;
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
|
|
__kmp_remove_queue_from_tree(tq, global_tid, queue, TRUE);
|
|
|
|
/* Can't do any more here since can't be sure where sibling queue
|
|
* is so just exit this level */
|
|
return;
|
|
} else {
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
}
|
|
}
|
|
/* otherwise, just fall through and decrement reference count */
|
|
}
|
|
}
|
|
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
next = queue->tq_next_child;
|
|
|
|
ct = --(queue->tq_ref_count);
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(ct >= 0);
|
|
|
|
queue = next;
|
|
}
|
|
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
}
|
|
}
|
|
|
|
/* Starting from indicated queue, proceed downward through tree and remove all
|
|
taskq's assuming all are finished and assuming NO other threads are executing
|
|
at this point. */
|
|
static void __kmp_remove_all_child_taskq(kmp_taskq_t *tq, kmp_int32 global_tid,
|
|
kmpc_task_queue_t *queue) {
|
|
kmpc_task_queue_t *next_child;
|
|
|
|
queue = CCAST(kmpc_task_queue_t *, queue->tq_first_child);
|
|
|
|
while (queue != NULL) {
|
|
__kmp_remove_all_child_taskq(tq, global_tid, queue);
|
|
|
|
next_child = queue->tq_next_child;
|
|
queue->tq_flags |= TQF_DEALLOCATED;
|
|
__kmp_remove_queue_from_tree(tq, global_tid, queue, FALSE);
|
|
queue = next_child;
|
|
}
|
|
}
|
|
|
|
static void __kmp_execute_task_from_queue(kmp_taskq_t *tq, ident_t *loc,
|
|
kmp_int32 global_tid,
|
|
kmpc_thunk_t *thunk,
|
|
int in_parallel) {
|
|
kmpc_task_queue_t *queue = thunk->th.th_shareds->sv_queue;
|
|
kmp_int32 tid = __kmp_tid_from_gtid(global_tid);
|
|
|
|
KF_TRACE(100, ("After dequeueing this Task on (%d):\n", global_tid));
|
|
KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid));
|
|
KF_TRACE(100, ("Task Queue: %p looks like this (%d):\n", queue, global_tid));
|
|
KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
|
|
|
|
/* For the taskq task, the curr_thunk pushes and pop pairs are set up as
|
|
* follows:
|
|
*
|
|
* happens exactly once:
|
|
* 1) __kmpc_taskq : push (if returning thunk only)
|
|
* 4) __kmpc_end_taskq_task : pop
|
|
*
|
|
* optionally happens *each* time taskq task is dequeued/enqueued:
|
|
* 2) __kmpc_taskq_task : pop
|
|
* 3) __kmp_execute_task_from_queue : push
|
|
*
|
|
* execution ordering: 1,(2,3)*,4
|
|
*/
|
|
|
|
if (!(thunk->th_flags & TQF_TASKQ_TASK)) {
|
|
kmp_int32 index = (queue == tq->tq_root) ? tid : 0;
|
|
thunk->th.th_shareds =
|
|
CCAST(kmpc_shared_vars_t *, queue->tq_shareds[index].ai_data);
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
__kmp_push_workshare(global_tid,
|
|
(queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered
|
|
: ct_task,
|
|
queue->tq_loc);
|
|
}
|
|
} else {
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_push_workshare(global_tid, ct_taskq, queue->tq_loc);
|
|
}
|
|
|
|
if (in_parallel) {
|
|
thunk->th_encl_thunk = tq->tq_curr_thunk[tid];
|
|
tq->tq_curr_thunk[tid] = thunk;
|
|
|
|
KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
|
|
}
|
|
|
|
KF_TRACE(50, ("Begin Executing Thunk %p from queue %p on (%d)\n", thunk,
|
|
queue, global_tid));
|
|
thunk->th_task(global_tid, thunk);
|
|
KF_TRACE(50, ("End Executing Thunk %p from queue %p on (%d)\n", thunk, queue,
|
|
global_tid));
|
|
|
|
if (!(thunk->th_flags & TQF_TASKQ_TASK)) {
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_pop_workshare(global_tid,
|
|
(queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered
|
|
: ct_task,
|
|
queue->tq_loc);
|
|
|
|
if (in_parallel) {
|
|
tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
|
|
thunk->th_encl_thunk = NULL;
|
|
KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
|
|
}
|
|
|
|
if ((thunk->th_flags & TQF_IS_ORDERED) && in_parallel) {
|
|
__kmp_taskq_check_ordered(global_tid, thunk);
|
|
}
|
|
|
|
__kmp_free_thunk(queue, thunk, in_parallel, global_tid);
|
|
|
|
KF_TRACE(100, ("T#%d After freeing thunk: %p, TaskQ looks like this:\n",
|
|
global_tid, thunk));
|
|
KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
|
|
|
|
if (in_parallel) {
|
|
KMP_MB(); /* needed so thunk put on free list before outstanding thunk
|
|
count is decremented */
|
|
|
|
KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data >= 1);
|
|
|
|
KF_TRACE(
|
|
200,
|
|
("__kmp_execute_task_from_queue: T#%d has %d thunks in queue %p\n",
|
|
global_tid, queue->tq_th_thunks[tid].ai_data - 1, queue));
|
|
|
|
queue->tq_th_thunks[tid].ai_data--;
|
|
|
|
/* KMP_MB(); */ /* is MB really necessary ? */
|
|
}
|
|
|
|
if (queue->tq.tq_parent != NULL && in_parallel) {
|
|
int ct;
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
ct = --(queue->tq_ref_count);
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
KMP_DEBUG_REF_CTS(
|
|
("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct));
|
|
KMP_DEBUG_ASSERT(ct >= 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* starts a taskq; creates and returns a thunk for the taskq_task */
|
|
/* also, returns pointer to shared vars for this thread in "shareds" arg */
|
|
kmpc_thunk_t *__kmpc_taskq(ident_t *loc, kmp_int32 global_tid,
|
|
kmpc_task_t taskq_task, size_t sizeof_thunk,
|
|
size_t sizeof_shareds, kmp_int32 flags,
|
|
kmpc_shared_vars_t **shareds) {
|
|
int in_parallel;
|
|
kmp_int32 nslots, nthunks, nshareds, nproc;
|
|
kmpc_task_queue_t *new_queue, *curr_queue;
|
|
kmpc_thunk_t *new_taskq_thunk;
|
|
kmp_info_t *th;
|
|
kmp_team_t *team;
|
|
kmp_taskq_t *tq;
|
|
kmp_int32 tid;
|
|
|
|
KE_TRACE(10, ("__kmpc_taskq called (%d)\n", global_tid));
|
|
|
|
th = __kmp_threads[global_tid];
|
|
team = th->th.th_team;
|
|
tq = &team->t.t_taskq;
|
|
nproc = team->t.t_nproc;
|
|
tid = __kmp_tid_from_gtid(global_tid);
|
|
|
|
/* find out whether this is a parallel taskq or serialized one. */
|
|
in_parallel = in_parallel_context(team);
|
|
|
|
if (!tq->tq_root) {
|
|
if (in_parallel) {
|
|
/* Vector ORDERED SECTION to taskq version */
|
|
th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo;
|
|
|
|
/* Vector ORDERED SECTION to taskq version */
|
|
th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo;
|
|
}
|
|
|
|
if (in_parallel) {
|
|
// This shouldn't be a barrier region boundary, it will confuse the user.
|
|
/* Need the boundary to be at the end taskq instead. */
|
|
if (__kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL)) {
|
|
/* Creating the active root queue, and we are not the master thread. */
|
|
/* The master thread below created the queue and tasks have been */
|
|
/* enqueued, and the master thread released this barrier. This */
|
|
/* worker thread can now proceed and execute tasks. See also the */
|
|
/* TQF_RELEASE_WORKERS which is used to handle this case. */
|
|
*shareds =
|
|
CCAST(kmpc_shared_vars_t *, tq->tq_root->tq_shareds[tid].ai_data);
|
|
KE_TRACE(10, ("__kmpc_taskq return (%d)\n", global_tid));
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* master thread only executes this code */
|
|
if (tq->tq_curr_thunk_capacity < nproc) {
|
|
if (tq->tq_curr_thunk)
|
|
__kmp_free(tq->tq_curr_thunk);
|
|
else {
|
|
/* only need to do this once at outer level, i.e. when tq_curr_thunk is
|
|
* still NULL */
|
|
__kmp_init_lock(&tq->tq_freelist_lck);
|
|
}
|
|
|
|
tq->tq_curr_thunk =
|
|
(kmpc_thunk_t **)__kmp_allocate(nproc * sizeof(kmpc_thunk_t *));
|
|
tq->tq_curr_thunk_capacity = nproc;
|
|
}
|
|
|
|
if (in_parallel)
|
|
tq->tq_global_flags = TQF_RELEASE_WORKERS;
|
|
}
|
|
|
|
/* dkp: in future, if flags & TQF_HEURISTICS, will choose nslots based */
|
|
/* on some heuristics (e.g., depth of queue nesting?). */
|
|
nslots = (in_parallel) ? (2 * nproc) : 1;
|
|
|
|
/* There must be nproc * __KMP_TASKQ_THUNKS_PER_TH extra slots for pending */
|
|
/* jobs being executed by other threads, and one extra for taskq slot */
|
|
nthunks = (in_parallel) ? (nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH) + 1)
|
|
: nslots + 2;
|
|
|
|
/* Only the root taskq gets a per-thread array of shareds. */
|
|
/* The rest of the taskq's only get one copy of the shared vars. */
|
|
nshareds = (!tq->tq_root && in_parallel) ? nproc : 1;
|
|
|
|
/* create overall queue data structure and its components that require
|
|
* allocation */
|
|
new_queue = __kmp_alloc_taskq(tq, in_parallel, nslots, nthunks, nshareds,
|
|
nproc, sizeof_thunk, sizeof_shareds,
|
|
&new_taskq_thunk, global_tid);
|
|
|
|
/* rest of new_queue initializations */
|
|
new_queue->tq_flags = flags & TQF_INTERFACE_FLAGS;
|
|
|
|
if (in_parallel) {
|
|
new_queue->tq_tasknum_queuing = 0;
|
|
new_queue->tq_tasknum_serving = 0;
|
|
new_queue->tq_flags |= TQF_PARALLEL_CONTEXT;
|
|
}
|
|
|
|
new_queue->tq_taskq_slot = NULL;
|
|
new_queue->tq_nslots = nslots;
|
|
new_queue->tq_hiwat = HIGH_WATER_MARK(nslots);
|
|
new_queue->tq_nfull = 0;
|
|
new_queue->tq_head = 0;
|
|
new_queue->tq_tail = 0;
|
|
new_queue->tq_loc = loc;
|
|
|
|
if ((new_queue->tq_flags & TQF_IS_ORDERED) && in_parallel) {
|
|
/* prepare to serve the first-queued task's ORDERED directive */
|
|
new_queue->tq_tasknum_serving = 1;
|
|
|
|
/* Vector ORDERED SECTION to taskq version */
|
|
th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo;
|
|
|
|
/* Vector ORDERED SECTION to taskq version */
|
|
th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo;
|
|
}
|
|
|
|
/* create a new thunk for the taskq_task in the new_queue */
|
|
*shareds = CCAST(kmpc_shared_vars_t *, new_queue->tq_shareds[0].ai_data);
|
|
|
|
new_taskq_thunk->th.th_shareds = *shareds;
|
|
new_taskq_thunk->th_task = taskq_task;
|
|
new_taskq_thunk->th_flags = new_queue->tq_flags | TQF_TASKQ_TASK;
|
|
new_taskq_thunk->th_status = 0;
|
|
|
|
KMP_DEBUG_ASSERT(new_taskq_thunk->th_flags & TQF_TASKQ_TASK);
|
|
|
|
// Make sure these inits complete before threads start using this queue
|
|
/* KMP_MB(); */ // (necessary?)
|
|
|
|
/* insert the new task queue into the tree, but only after all fields
|
|
* initialized */
|
|
|
|
if (in_parallel) {
|
|
if (!tq->tq_root) {
|
|
new_queue->tq.tq_parent = NULL;
|
|
new_queue->tq_first_child = NULL;
|
|
new_queue->tq_next_child = NULL;
|
|
new_queue->tq_prev_child = NULL;
|
|
new_queue->tq_ref_count = 1;
|
|
tq->tq_root = new_queue;
|
|
} else {
|
|
curr_queue = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue;
|
|
new_queue->tq.tq_parent = curr_queue;
|
|
new_queue->tq_first_child = NULL;
|
|
new_queue->tq_prev_child = NULL;
|
|
new_queue->tq_ref_count =
|
|
1; /* for this the thread that built the queue */
|
|
|
|
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p alloc %d\n", __LINE__,
|
|
global_tid, new_queue, new_queue->tq_ref_count));
|
|
|
|
__kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
new_queue->tq_next_child =
|
|
CCAST(struct kmpc_task_queue_t *, curr_queue->tq_first_child);
|
|
|
|
if (curr_queue->tq_first_child != NULL)
|
|
curr_queue->tq_first_child->tq_prev_child = new_queue;
|
|
|
|
curr_queue->tq_first_child = new_queue;
|
|
|
|
__kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
|
|
}
|
|
|
|
/* set up thunk stack only after code that determines curr_queue above */
|
|
new_taskq_thunk->th_encl_thunk = tq->tq_curr_thunk[tid];
|
|
tq->tq_curr_thunk[tid] = new_taskq_thunk;
|
|
|
|
KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
|
|
} else {
|
|
new_taskq_thunk->th_encl_thunk = 0;
|
|
new_queue->tq.tq_parent = NULL;
|
|
new_queue->tq_first_child = NULL;
|
|
new_queue->tq_next_child = NULL;
|
|
new_queue->tq_prev_child = NULL;
|
|
new_queue->tq_ref_count = 1;
|
|
}
|
|
|
|
#ifdef KMP_DEBUG
|
|
KF_TRACE(150, ("Creating TaskQ Task on (%d):\n", global_tid));
|
|
KF_DUMP(150, __kmp_dump_thunk(tq, new_taskq_thunk, global_tid));
|
|
|
|
if (in_parallel) {
|
|
KF_TRACE(25,
|
|
("After TaskQ at %p Creation on (%d):\n", new_queue, global_tid));
|
|
} else {
|
|
KF_TRACE(25, ("After Serial TaskQ at %p Creation on (%d):\n", new_queue,
|
|
global_tid));
|
|
}
|
|
|
|
KF_DUMP(25, __kmp_dump_task_queue(tq, new_queue, global_tid));
|
|
|
|
if (in_parallel) {
|
|
KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid));
|
|
}
|
|
#endif /* KMP_DEBUG */
|
|
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_push_workshare(global_tid, ct_taskq, new_queue->tq_loc);
|
|
|
|
KE_TRACE(10, ("__kmpc_taskq return (%d)\n", global_tid));
|
|
|
|
return new_taskq_thunk;
|
|
}
|
|
|
|
/* ends a taskq; last thread out destroys the queue */
|
|
|
|
void __kmpc_end_taskq(ident_t *loc, kmp_int32 global_tid,
|
|
kmpc_thunk_t *taskq_thunk) {
|
|
#ifdef KMP_DEBUG
|
|
kmp_int32 i;
|
|
#endif
|
|
kmp_taskq_t *tq;
|
|
int in_parallel;
|
|
kmp_info_t *th;
|
|
kmp_int32 is_outermost;
|
|
kmpc_task_queue_t *queue;
|
|
kmpc_thunk_t *thunk;
|
|
int nproc;
|
|
|
|
KE_TRACE(10, ("__kmpc_end_taskq called (%d)\n", global_tid));
|
|
|
|
tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
|
|
nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc;
|
|
|
|
/* For the outermost taskq only, all but one thread will have taskq_thunk ==
|
|
* NULL */
|
|
queue = (taskq_thunk == NULL) ? tq->tq_root
|
|
: taskq_thunk->th.th_shareds->sv_queue;
|
|
|
|
KE_TRACE(50, ("__kmpc_end_taskq queue=%p (%d) \n", queue, global_tid));
|
|
is_outermost = (queue == tq->tq_root);
|
|
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
|
|
|
|
if (in_parallel) {
|
|
kmp_uint32 spins;
|
|
|
|
/* this is just a safeguard to release the waiting threads if */
|
|
/* the outermost taskq never queues a task */
|
|
|
|
if (is_outermost && (KMP_MASTER_GTID(global_tid))) {
|
|
if (tq->tq_global_flags & TQF_RELEASE_WORKERS) {
|
|
/* no lock needed, workers are still in spin mode */
|
|
tq->tq_global_flags &= ~TQF_RELEASE_WORKERS;
|
|
|
|
__kmp_end_split_barrier(bs_plain_barrier, global_tid);
|
|
}
|
|
}
|
|
|
|
/* keep dequeueing work until all tasks are queued and dequeued */
|
|
|
|
do {
|
|
/* wait until something is available to dequeue */
|
|
KMP_INIT_YIELD(spins);
|
|
|
|
while ((queue->tq_nfull == 0) && (queue->tq_taskq_slot == NULL) &&
|
|
(!__kmp_taskq_has_any_children(queue)) &&
|
|
(!(queue->tq_flags & TQF_ALL_TASKS_QUEUED))) {
|
|
KMP_YIELD_WHEN(TRUE, spins);
|
|
}
|
|
|
|
/* check to see if we can execute tasks in the queue */
|
|
while (((queue->tq_nfull != 0) || (queue->tq_taskq_slot != NULL)) &&
|
|
(thunk = __kmp_find_task_in_queue(global_tid, queue)) != NULL) {
|
|
KF_TRACE(50, ("Found thunk: %p in primary queue %p (%d)\n", thunk,
|
|
queue, global_tid));
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
|
|
}
|
|
|
|
/* see if work found can be found in a descendant queue */
|
|
if ((__kmp_taskq_has_any_children(queue)) &&
|
|
(thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) !=
|
|
NULL) {
|
|
|
|
KF_TRACE(50,
|
|
("Stole thunk: %p in descendant queue: %p while waiting in "
|
|
"queue: %p (%d)\n",
|
|
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
|
|
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
|
|
}
|
|
|
|
} while ((!(queue->tq_flags & TQF_ALL_TASKS_QUEUED)) ||
|
|
(queue->tq_nfull != 0));
|
|
|
|
KF_TRACE(50, ("All tasks queued and dequeued in queue: %p (%d)\n", queue,
|
|
global_tid));
|
|
|
|
/* wait while all tasks are not finished and more work found
|
|
in descendant queues */
|
|
|
|
while ((!__kmp_taskq_tasks_finished(queue)) &&
|
|
(thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) !=
|
|
NULL) {
|
|
|
|
KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in "
|
|
"queue: %p (%d)\n",
|
|
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
|
|
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
|
|
}
|
|
|
|
KF_TRACE(50, ("No work found in descendent queues or all work finished in "
|
|
"queue: %p (%d)\n",
|
|
queue, global_tid));
|
|
|
|
if (!is_outermost) {
|
|
/* need to return if NOWAIT present and not outermost taskq */
|
|
|
|
if (queue->tq_flags & TQF_IS_NOWAIT) {
|
|
__kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
queue->tq_ref_count--;
|
|
KMP_DEBUG_ASSERT(queue->tq_ref_count >= 0);
|
|
__kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
|
|
|
|
KE_TRACE(
|
|
10, ("__kmpc_end_taskq return for nowait case (%d)\n", global_tid));
|
|
|
|
return;
|
|
}
|
|
|
|
__kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue);
|
|
|
|
/* WAIT until all tasks are finished and no child queues exist before
|
|
* proceeding */
|
|
KMP_INIT_YIELD(spins);
|
|
|
|
while (!__kmp_taskq_tasks_finished(queue) ||
|
|
__kmp_taskq_has_any_children(queue)) {
|
|
thunk = __kmp_find_task_in_ancestor_queue(tq, global_tid, queue);
|
|
|
|
if (thunk != NULL) {
|
|
KF_TRACE(50,
|
|
("Stole thunk: %p in ancestor queue: %p while waiting in "
|
|
"queue: %p (%d)\n",
|
|
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, thunk,
|
|
in_parallel);
|
|
}
|
|
|
|
KMP_YIELD_WHEN(thunk == NULL, spins);
|
|
|
|
__kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue);
|
|
}
|
|
|
|
__kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
|
|
if (!(queue->tq_flags & TQF_DEALLOCATED)) {
|
|
queue->tq_flags |= TQF_DEALLOCATED;
|
|
}
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
|
|
/* only the allocating thread can deallocate the queue */
|
|
if (taskq_thunk != NULL) {
|
|
__kmp_remove_queue_from_tree(tq, global_tid, queue, TRUE);
|
|
}
|
|
|
|
KE_TRACE(
|
|
10,
|
|
("__kmpc_end_taskq return for non_outermost queue, wait case (%d)\n",
|
|
global_tid));
|
|
|
|
return;
|
|
}
|
|
|
|
// Outermost Queue: steal work from descendants until all tasks are finished
|
|
|
|
KMP_INIT_YIELD(spins);
|
|
|
|
while (!__kmp_taskq_tasks_finished(queue)) {
|
|
thunk = __kmp_find_task_in_descendant_queue(global_tid, queue);
|
|
|
|
if (thunk != NULL) {
|
|
KF_TRACE(50,
|
|
("Stole thunk: %p in descendant queue: %p while waiting in "
|
|
"queue: %p (%d)\n",
|
|
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
|
|
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
|
|
}
|
|
|
|
KMP_YIELD_WHEN(thunk == NULL, spins);
|
|
}
|
|
|
|
/* Need this barrier to prevent destruction of queue before threads have all
|
|
* executed above code */
|
|
/* This may need to be done earlier when NOWAIT is implemented for the
|
|
* outermost level */
|
|
|
|
if (!__kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL)) {
|
|
/* the queue->tq_flags & TQF_IS_NOWAIT case is not yet handled here; */
|
|
/* for right now, everybody waits, and the master thread destroys the */
|
|
/* remaining queues. */
|
|
|
|
__kmp_remove_all_child_taskq(tq, global_tid, queue);
|
|
|
|
/* Now destroy the root queue */
|
|
KF_TRACE(100, ("T#%d Before Deletion of top-level TaskQ at %p:\n",
|
|
global_tid, queue));
|
|
KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
|
|
|
|
#ifdef KMP_DEBUG
|
|
/* the root queue entry */
|
|
KMP_DEBUG_ASSERT((queue->tq.tq_parent == NULL) &&
|
|
(queue->tq_next_child == NULL));
|
|
|
|
/* children must all be gone by now because of barrier above */
|
|
KMP_DEBUG_ASSERT(queue->tq_first_child == NULL);
|
|
|
|
for (i = 0; i < nproc; i++) {
|
|
KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0);
|
|
}
|
|
|
|
for (i = 0, thunk = queue->tq_free_thunks; thunk != NULL;
|
|
i++, thunk = thunk->th.th_next_free)
|
|
;
|
|
|
|
KMP_DEBUG_ASSERT(i ==
|
|
queue->tq_nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH));
|
|
|
|
for (i = 0; i < nproc; i++) {
|
|
KMP_DEBUG_ASSERT(!tq->tq_curr_thunk[i]);
|
|
}
|
|
#endif
|
|
/* unlink the root queue entry */
|
|
tq->tq_root = NULL;
|
|
|
|
/* release storage for root queue entry */
|
|
KF_TRACE(50, ("After Deletion of top-level TaskQ at %p on (%d):\n", queue,
|
|
global_tid));
|
|
|
|
queue->tq_flags |= TQF_DEALLOCATED;
|
|
__kmp_free_taskq(tq, queue, in_parallel, global_tid);
|
|
|
|
KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid));
|
|
|
|
/* release the workers now that the data structures are up to date */
|
|
__kmp_end_split_barrier(bs_plain_barrier, global_tid);
|
|
}
|
|
|
|
th = __kmp_threads[global_tid];
|
|
|
|
/* Reset ORDERED SECTION to parallel version */
|
|
th->th.th_dispatch->th_deo_fcn = 0;
|
|
|
|
/* Reset ORDERED SECTION to parallel version */
|
|
th->th.th_dispatch->th_dxo_fcn = 0;
|
|
} else {
|
|
/* in serial execution context, dequeue the last task */
|
|
/* and execute it, if there were any tasks encountered */
|
|
|
|
if (queue->tq_nfull > 0) {
|
|
KMP_DEBUG_ASSERT(queue->tq_nfull == 1);
|
|
|
|
thunk = __kmp_dequeue_task(global_tid, queue, in_parallel);
|
|
|
|
if (queue->tq_flags & TQF_IS_LAST_TASK) {
|
|
/* TQF_IS_LASTPRIVATE, one thing in queue, __kmpc_end_taskq_task() */
|
|
/* has been run so this is last task, run with TQF_IS_LAST_TASK so */
|
|
/* instrumentation does copy-out. */
|
|
|
|
/* no need for test_then_or call since already locked */
|
|
thunk->th_flags |= TQF_IS_LAST_TASK;
|
|
}
|
|
|
|
KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid,
|
|
thunk, queue));
|
|
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
|
|
}
|
|
|
|
// destroy the unattached serial queue now that there is no more work to do
|
|
KF_TRACE(100, ("Before Deletion of Serialized TaskQ at %p on (%d):\n",
|
|
queue, global_tid));
|
|
KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
|
|
|
|
#ifdef KMP_DEBUG
|
|
i = 0;
|
|
for (thunk = queue->tq_free_thunks; thunk != NULL;
|
|
thunk = thunk->th.th_next_free)
|
|
++i;
|
|
KMP_DEBUG_ASSERT(i == queue->tq_nslots + 1);
|
|
#endif
|
|
/* release storage for unattached serial queue */
|
|
KF_TRACE(50,
|
|
("Serialized TaskQ at %p deleted on (%d).\n", queue, global_tid));
|
|
|
|
queue->tq_flags |= TQF_DEALLOCATED;
|
|
__kmp_free_taskq(tq, queue, in_parallel, global_tid);
|
|
}
|
|
|
|
KE_TRACE(10, ("__kmpc_end_taskq return (%d)\n", global_tid));
|
|
}
|
|
|
|
/* Enqueues a task for thunk previously created by __kmpc_task_buffer. */
|
|
/* Returns nonzero if just filled up queue */
|
|
|
|
kmp_int32 __kmpc_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk) {
|
|
kmp_int32 ret;
|
|
kmpc_task_queue_t *queue;
|
|
int in_parallel;
|
|
kmp_taskq_t *tq;
|
|
|
|
KE_TRACE(10, ("__kmpc_task called (%d)\n", global_tid));
|
|
|
|
KMP_DEBUG_ASSERT(!(thunk->th_flags &
|
|
TQF_TASKQ_TASK)); /* thunk->th_task is a regular task */
|
|
|
|
tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
|
|
queue = thunk->th.th_shareds->sv_queue;
|
|
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
|
|
|
|
if (in_parallel && (thunk->th_flags & TQF_IS_ORDERED))
|
|
thunk->th_tasknum = ++queue->tq_tasknum_queuing;
|
|
|
|
/* For serial execution dequeue the preceding task and execute it, if one
|
|
* exists */
|
|
/* This cannot be the last task. That one is handled in __kmpc_end_taskq */
|
|
|
|
if (!in_parallel && queue->tq_nfull > 0) {
|
|
kmpc_thunk_t *prev_thunk;
|
|
|
|
KMP_DEBUG_ASSERT(queue->tq_nfull == 1);
|
|
|
|
prev_thunk = __kmp_dequeue_task(global_tid, queue, in_parallel);
|
|
|
|
KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid,
|
|
prev_thunk, queue));
|
|
|
|
__kmp_execute_task_from_queue(tq, loc, global_tid, prev_thunk, in_parallel);
|
|
}
|
|
|
|
/* The instrumentation sequence is: __kmpc_task_buffer(), initialize private
|
|
variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the
|
|
task queue is not full and allocates a thunk (which is then passed to
|
|
__kmpc_task()). So, the enqueue below should never fail due to a full
|
|
queue. */
|
|
|
|
KF_TRACE(100, ("After enqueueing this Task on (%d):\n", global_tid));
|
|
KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid));
|
|
|
|
ret = __kmp_enqueue_task(tq, global_tid, queue, thunk, in_parallel);
|
|
|
|
KF_TRACE(100, ("Task Queue looks like this on (%d):\n", global_tid));
|
|
KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
|
|
|
|
KE_TRACE(10, ("__kmpc_task return (%d)\n", global_tid));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* enqueues a taskq_task for thunk previously created by __kmpc_taskq */
|
|
/* this should never be called unless in a parallel context */
|
|
|
|
void __kmpc_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk,
|
|
kmp_int32 status) {
|
|
kmpc_task_queue_t *queue;
|
|
kmp_taskq_t *tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
|
|
int tid = __kmp_tid_from_gtid(global_tid);
|
|
|
|
KE_TRACE(10, ("__kmpc_taskq_task called (%d)\n", global_tid));
|
|
KF_TRACE(100, ("TaskQ Task argument thunk on (%d):\n", global_tid));
|
|
KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid));
|
|
|
|
queue = thunk->th.th_shareds->sv_queue;
|
|
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_pop_workshare(global_tid, ct_taskq, loc);
|
|
|
|
/* thunk->th_task is the taskq_task */
|
|
KMP_DEBUG_ASSERT(thunk->th_flags & TQF_TASKQ_TASK);
|
|
|
|
/* not supposed to call __kmpc_taskq_task if it's already enqueued */
|
|
KMP_DEBUG_ASSERT(queue->tq_taskq_slot == NULL);
|
|
|
|
/* dequeue taskq thunk from curr_thunk stack */
|
|
tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
|
|
thunk->th_encl_thunk = NULL;
|
|
|
|
KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
|
|
|
|
thunk->th_status = status;
|
|
|
|
// Flush thunk->th_status before taskq_task enqueued to avoid race condition
|
|
KMP_MB();
|
|
|
|
/* enqueue taskq_task in thunk into special slot in queue */
|
|
/* GEH - probably don't need to lock taskq slot since only one */
|
|
/* thread enqueues & already a lock set at dequeue point */
|
|
|
|
queue->tq_taskq_slot = thunk;
|
|
|
|
KE_TRACE(10, ("__kmpc_taskq_task return (%d)\n", global_tid));
|
|
}
|
|
|
|
/* ends a taskq_task; done generating tasks */
|
|
|
|
void __kmpc_end_taskq_task(ident_t *loc, kmp_int32 global_tid,
|
|
kmpc_thunk_t *thunk) {
|
|
kmp_taskq_t *tq;
|
|
kmpc_task_queue_t *queue;
|
|
int in_parallel;
|
|
int tid;
|
|
|
|
KE_TRACE(10, ("__kmpc_end_taskq_task called (%d)\n", global_tid));
|
|
|
|
tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
|
|
queue = thunk->th.th_shareds->sv_queue;
|
|
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
|
|
tid = __kmp_tid_from_gtid(global_tid);
|
|
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_pop_workshare(global_tid, ct_taskq, loc);
|
|
|
|
if (in_parallel) {
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
KMP_TEST_THEN_OR32(RCAST(volatile kmp_uint32 *, &queue->tq_flags),
|
|
TQF_ALL_TASKS_QUEUED);
|
|
#else
|
|
{
|
|
__kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
|
|
|
|
// Make sure data structures are in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
queue->tq_flags |= TQF_ALL_TASKS_QUEUED;
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (thunk->th_flags & TQF_IS_LASTPRIVATE) {
|
|
/* Normally, __kmp_find_task_in_queue() refuses to schedule the last task in
|
|
the queue if TQF_IS_LASTPRIVATE so we can positively identify that last
|
|
task and run it with its TQF_IS_LAST_TASK bit turned on in th_flags.
|
|
When __kmpc_end_taskq_task() is called we are done generating all the
|
|
tasks, so we know the last one in the queue is the lastprivate task.
|
|
Mark the queue as having gotten to this state via tq_flags &
|
|
TQF_IS_LAST_TASK; when that task actually executes mark it via th_flags &
|
|
TQF_IS_LAST_TASK (this th_flags bit signals the instrumented code to do
|
|
copy-outs after execution). */
|
|
if (!in_parallel) {
|
|
/* No synchronization needed for serial context */
|
|
queue->tq_flags |= TQF_IS_LAST_TASK;
|
|
} else {
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
KMP_TEST_THEN_OR32(RCAST(volatile kmp_uint32 *, &queue->tq_flags),
|
|
TQF_IS_LAST_TASK);
|
|
#else
|
|
{
|
|
__kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
|
|
|
|
// Make sure data structures in consistent state before querying them
|
|
// Seems to work without this for digital/alpha, needed for IBM/RS6000
|
|
KMP_MB();
|
|
|
|
queue->tq_flags |= TQF_IS_LAST_TASK;
|
|
__kmp_release_lock(&queue->tq_queue_lck, global_tid);
|
|
}
|
|
#endif
|
|
/* to prevent race condition where last task is dequeued but */
|
|
/* flag isn't visible yet (not sure about this) */
|
|
KMP_MB();
|
|
}
|
|
}
|
|
|
|
/* dequeue taskq thunk from curr_thunk stack */
|
|
if (in_parallel) {
|
|
tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
|
|
thunk->th_encl_thunk = NULL;
|
|
|
|
KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
|
|
}
|
|
|
|
KE_TRACE(10, ("__kmpc_end_taskq_task return (%d)\n", global_tid));
|
|
}
|
|
|
|
/* returns thunk for a regular task based on taskq_thunk */
|
|
/* (__kmpc_taskq_task does the analogous thing for a TQF_TASKQ_TASK) */
|
|
|
|
kmpc_thunk_t *__kmpc_task_buffer(ident_t *loc, kmp_int32 global_tid,
|
|
kmpc_thunk_t *taskq_thunk, kmpc_task_t task) {
|
|
kmp_taskq_t *tq;
|
|
kmpc_task_queue_t *queue;
|
|
kmpc_thunk_t *new_thunk;
|
|
int in_parallel;
|
|
|
|
KE_TRACE(10, ("__kmpc_task_buffer called (%d)\n", global_tid));
|
|
|
|
KMP_DEBUG_ASSERT(
|
|
taskq_thunk->th_flags &
|
|
TQF_TASKQ_TASK); /* taskq_thunk->th_task is the taskq_task */
|
|
|
|
tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
|
|
queue = taskq_thunk->th.th_shareds->sv_queue;
|
|
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
|
|
|
|
/* The instrumentation sequence is: __kmpc_task_buffer(), initialize private
|
|
variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the
|
|
task queue is not full and allocates a thunk (which is then passed to
|
|
__kmpc_task()). So, we can pre-allocate a thunk here assuming it will be
|
|
the next to be enqueued in __kmpc_task(). */
|
|
|
|
new_thunk = __kmp_alloc_thunk(queue, in_parallel, global_tid);
|
|
new_thunk->th.th_shareds =
|
|
CCAST(kmpc_shared_vars_t *, queue->tq_shareds[0].ai_data);
|
|
new_thunk->th_encl_thunk = NULL;
|
|
new_thunk->th_task = task;
|
|
|
|
/* GEH - shouldn't need to lock the read of tq_flags here */
|
|
new_thunk->th_flags = queue->tq_flags & TQF_INTERFACE_FLAGS;
|
|
|
|
new_thunk->th_status = 0;
|
|
|
|
KMP_DEBUG_ASSERT(!(new_thunk->th_flags & TQF_TASKQ_TASK));
|
|
|
|
KF_TRACE(100, ("Creating Regular Task on (%d):\n", global_tid));
|
|
KF_DUMP(100, __kmp_dump_thunk(tq, new_thunk, global_tid));
|
|
|
|
KE_TRACE(10, ("__kmpc_task_buffer return (%d)\n", global_tid));
|
|
|
|
return new_thunk;
|
|
}
|