Files
acceptance-tests
data
debian
docs
external
Newtonsoft.Json
api-doc-tools
api-snapshot
aspnetwebstack
bdwgc
binary-reference-assemblies
bockbuild
boringssl
cecil
cecil-legacy
corefx
corert
helix-binaries
ikdasm
ikvm
illinker-test-assets
linker
llvm-project
clang
clang-tools-extra
compiler-rt
eng
libcxx
libcxxabi
libunwind
lld
lldb
llvm
bindings
cmake
docs
examples
include
lib
Analysis
AsmParser
BinaryFormat
Bitcode
CodeGen
DebugInfo
Demangle
ExecutionEngine
FuzzMutate
Fuzzer
IR
IRReader
LTO
LineEditor
Linker
MC
Object
ObjectYAML
Option
Passes
ProfileData
Support
TableGen
Target
AArch64
AMDGPU
ARC
ARM
AVR
BPF
Hexagon
Lanai
MSP430
Mips
NVPTX
Nios2
PowerPC
RISCV
Sparc
SystemZ
WebAssembly
X86
AsmParser
Disassembler
InstPrinter
MCTargetDesc
TargetInfo
Utils
CMakeLists.txt
LLVMBuild.txt
README-FPStack.txt
README-MMX.txt
README-SSE.txt
README-UNIMPLEMENTED.txt
README-X86-64.txt
README.txt
X86.h
X86.td
X86AsmPrinter.cpp
X86AsmPrinter.h
X86CallFrameOptimization.cpp
X86CallLowering.cpp
X86CallLowering.h
X86CallingConv.cpp
X86CallingConv.h
X86CallingConv.td
X86CmovConversion.cpp
X86DomainReassignment.cpp
X86EvexToVex.cpp
X86ExpandPseudo.cpp
X86FastISel.cpp.REMOVED.git-id
X86FixupBWInsts.cpp
X86FixupLEAs.cpp
X86FixupSetCC.cpp
X86FlagsCopyLowering.cpp
X86FloatingPoint.cpp
X86FrameLowering.cpp.REMOVED.git-id
X86FrameLowering.h
X86GenRegisterBankInfo.def
X86ISelDAGToDAG.cpp.REMOVED.git-id
X86ISelLowering.cpp.REMOVED.git-id
X86ISelLowering.h
X86Instr3DNow.td
X86InstrAVX512.td.REMOVED.git-id
X86InstrArithmetic.td
X86InstrBuilder.h
X86InstrCMovSetCC.td
X86InstrCompiler.td
X86InstrControl.td
X86InstrExtension.td
X86InstrFMA.td
X86InstrFMA3Info.cpp
X86InstrFMA3Info.h
X86InstrFPStack.td
X86InstrFormats.td
X86InstrFragmentsSIMD.td
X86InstrInfo.cpp.REMOVED.git-id
X86InstrInfo.h
X86InstrInfo.td.REMOVED.git-id
X86InstrMMX.td
X86InstrMPX.td
X86InstrSGX.td
X86InstrSSE.td.REMOVED.git-id
X86InstrSVM.td
X86InstrShiftRotate.td
X86InstrSystem.td
X86InstrTSX.td
X86InstrVMX.td
X86InstrVecCompiler.td
X86InstrXOP.td
X86InstructionSelector.cpp
X86InterleavedAccess.cpp
X86IntrinsicsInfo.h.REMOVED.git-id
X86LegalizerInfo.cpp
X86LegalizerInfo.h
X86MCInstLower.cpp
X86MachineFunctionInfo.cpp
X86MachineFunctionInfo.h
X86MacroFusion.cpp
X86MacroFusion.h
X86OptimizeLEAs.cpp
X86PadShortFunction.cpp
X86RegisterBankInfo.cpp
X86RegisterBankInfo.h
X86RegisterBanks.td
X86RegisterInfo.cpp
X86RegisterInfo.h
X86RegisterInfo.td
X86RetpolineThunks.cpp
X86SchedBroadwell.td.REMOVED.git-id
X86SchedHaswell.td.REMOVED.git-id
X86SchedSandyBridge.td.REMOVED.git-id
X86SchedSkylakeClient.td.REMOVED.git-id
X86SchedSkylakeServer.td.REMOVED.git-id
X86Schedule.td
X86ScheduleAtom.td
X86ScheduleBtVer2.td
X86ScheduleSLM.td
X86ScheduleZnver1.td
X86SelectionDAGInfo.cpp
X86SelectionDAGInfo.h
X86ShuffleDecodeConstantPool.cpp
X86ShuffleDecodeConstantPool.h
X86Subtarget.cpp
X86Subtarget.h
X86TargetMachine.cpp
X86TargetMachine.h
X86TargetObjectFile.cpp
X86TargetObjectFile.h
X86TargetTransformInfo.cpp.REMOVED.git-id
X86TargetTransformInfo.h
X86VZeroUpper.cpp
X86WinAllocaExpander.cpp
X86WinEHState.cpp
XCore
CMakeLists.txt
LLVMBuild.txt
README.txt
Target.cpp
TargetIntrinsicInfo.cpp
TargetLoweringObjectFile.cpp
TargetMachine.cpp
TargetMachineC.cpp
Testing
ToolDrivers
Transforms
WindowsManifest
XRay
CMakeLists.txt
LLVMBuild.txt
projects
resources
runtimes
scripts
test
tools
unittests
utils
.arcconfig
.clang-format
.clang-tidy
.gitattributes
.gitignore
CMakeLists.txt
CODE_OWNERS.TXT
CREDITS.TXT
LICENSE.TXT
LLVMBuild.txt
README.txt
RELEASE_TESTERS.TXT
configure
llvm.spec.in
version.txt.in
nuget
openmp
polly
Directory.Build.props
Directory.Build.targets
NuGet.config
azure-pipelines.yml
build.cmd
build.sh
dir.common.props
global.json
llvm.proj
mxe-Win64.cmake.in
nuget-buildtasks
nunit-lite
roslyn-binaries
rx
xunit-binaries
how-to-bump-roslyn-binaries.md
ikvm-native
llvm
m4
man
mcs
mono
msvc
netcore
po
runtime
samples
scripts
support
tools
COPYING.LIB
LICENSE
Makefile.am
Makefile.in
NEWS
README.md
acinclude.m4
aclocal.m4
autogen.sh
code_of_conduct.md
compile
config.guess
config.h.in
config.rpath
config.sub
configure.REMOVED.git-id
configure.ac.REMOVED.git-id
depcomp
install-sh
ltmain.sh.REMOVED.git-id
missing
mkinstalldirs
mono-uninstalled.pc.in
test-driver
winconfig.h
linux-packaging-mono/external/llvm-project/llvm/lib/Target/X86/X86FixupLEAs.cpp
Xamarin Public Jenkins (auto-signing) 468663ddbb Imported Upstream version 6.10.0.49
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
2020-01-16 16:38:04 +00:00

600 lines
21 KiB
C++

//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that finds instructions that can be
// re-written as LEA instructions in order to reduce pipeline delays.
// When optimizing for size it replaces suitable LEAs with INC or DEC.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace llvm {
void initializeFixupLEAPassPass(PassRegistry &);
}
#define FIXUPLEA_DESC "X86 LEA Fixup"
#define FIXUPLEA_NAME "x86-fixup-LEAs"
#define DEBUG_TYPE FIXUPLEA_NAME
STATISTIC(NumLEAs, "Number of LEA instructions created");
namespace {
class FixupLEAPass : public MachineFunctionPass {
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
/// \brief Loop over all of the instructions in the basic block
/// replacing applicable instructions with LEA instructions,
/// where appropriate.
bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
/// \brief Given a machine register, look for the instruction
/// which writes it in the current basic block. If found,
/// try to replace it with an equivalent LEA instruction.
/// If replacement succeeds, then also process the newly created
/// instruction.
void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief Given a memory access or LEA instruction
/// whose address mode uses a base and/or index register, look for
/// an opportunity to replace the instruction which sets the base or index
/// register with an equivalent LEA instruction.
void processInstruction(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief Given a LEA instruction which is unprofitable
/// on Silvermont try to replace it with an equivalent ADD instruction
void processInstructionForSLM(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief Given a LEA instruction which is unprofitable
/// on SNB+ try to replace it with other instructions.
/// According to Intel's Optimization Reference Manual:
/// " For LEA instructions with three source operands and some specific
/// situations, instruction latency has increased to 3 cycles, and must
/// dispatch via port 1:
/// - LEA that has all three source operands: base, index, and offset
/// - LEA that uses base and index registers where the base is EBP, RBP,
/// or R13
/// - LEA that uses RIP relative addressing mode
/// - LEA that uses 16-bit addressing mode "
/// This function currently handles the first 2 cases only.
MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI,
MachineFunction::iterator MFI);
/// \brief Look for LEAs that add 1 to reg or subtract 1 from reg
/// and convert them to INC or DEC respectively.
bool fixupIncDec(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) const;
/// \brief Determine if an instruction references a machine register
/// and, if so, whether it reads or writes the register.
RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
/// \brief Step backwards through a basic block, looking
/// for an instruction which writes a register within
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// \brief if an instruction can be converted to an
/// equivalent LEA, insert the new instruction into the basic block
/// and return a pointer to it. Otherwise, return zero.
MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const;
public:
static char ID;
StringRef getPassName() const override { return FIXUPLEA_DESC; }
FixupLEAPass() : MachineFunctionPass(ID) {
initializeFixupLEAPassPass(*PassRegistry::getPassRegistry());
}
/// \brief Loop over all of the basic blocks,
/// replacing instructions by equivalent LEA instructions
/// if needed and when possible.
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
MachineFunction *MF;
const X86InstrInfo *TII; // Machine instruction info.
bool OptIncDec;
bool OptLEA;
};
}
char FixupLEAPass::ID = 0;
INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const {
MachineInstr &MI = *MBBI;
switch (MI.getOpcode()) {
case X86::MOV32rr:
case X86::MOV64rr: {
const MachineOperand &Src = MI.getOperand(1);
const MachineOperand &Dest = MI.getOperand(0);
MachineInstr *NewMI =
BuildMI(*MF, MI.getDebugLoc(),
TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
: X86::LEA64r))
.add(Dest)
.add(Src)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0);
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (!MI.getOperand(2).isImm()) {
// convertToThreeAddress will call getImm()
// which requires isImm() to be true
return nullptr;
}
break;
case X86::ADD16rr:
case X86::ADD16rr_DB:
if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) {
// if src1 != src2, then convertToThreeAddress will
// need to create a Virtual register, which we cannot do
// after register allocation.
return nullptr;
}
}
return TII->convertToThreeAddress(MFI, MI, nullptr);
}
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
if (skipFunction(Func.getFunction()))
return false;
MF = &Func;
const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize();
OptLEA = ST.LEAusesAG() || ST.slowLEA() || ST.slow3OpsLEA();
if (!OptLEA && !OptIncDec)
return false;
TII = ST.getInstrInfo();
DEBUG(dbgs() << "Start X86FixupLEAs\n";);
// Process all basic blocks.
for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
processBasicBlock(Func, I);
DEBUG(dbgs() << "End X86FixupLEAs\n";);
return true;
}
FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
RegUsageState RegUsage = RU_NotUsed;
MachineInstr &MI = *I;
for (unsigned int i = 0; i < MI.getNumOperands(); ++i) {
MachineOperand &opnd = MI.getOperand(i);
if (opnd.isReg() && opnd.getReg() == p.getReg()) {
if (opnd.isDef())
return RU_Write;
RegUsage = RU_Read;
}
}
return RegUsage;
}
/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
if (I == MFI->begin()) {
if (MFI->isPredecessor(&*MFI)) {
I = --MFI->end();
return true;
} else
return false;
}
--I;
return true;
}
MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
int InstrDistance = 1;
MachineBasicBlock::iterator CurInst;
static const int INSTR_DISTANCE_THRESHOLD = 5;
CurInst = I;
bool Found;
Found = getPreviousInstr(CurInst, MFI);
while (Found && I != CurInst) {
if (CurInst->isCall() || CurInst->isInlineAsm())
break;
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
break; // too far back to make a difference
if (usesRegister(p, CurInst) == RU_Write) {
return CurInst;
}
InstrDistance += TII->getInstrLatency(
MF->getSubtarget().getInstrItineraryData(), *CurInst);
Found = getPreviousInstr(CurInst, MFI);
}
return MachineBasicBlock::iterator();
}
static inline bool isLEA(const int Opcode) {
return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
}
static inline bool isInefficientLEAReg(unsigned int Reg) {
return Reg == X86::EBP || Reg == X86::RBP || Reg == X86::R13;
}
static inline bool isRegOperand(const MachineOperand &Op) {
return Op.isReg() && Op.getReg() != X86::NoRegister;
}
/// hasIneffecientLEARegs - LEA that uses base and index registers
/// where the base is EBP, RBP, or R13
static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
const MachineOperand &Index) {
return Base.isReg() && isInefficientLEAReg(Base.getReg()) &&
isRegOperand(Index);
}
static inline bool hasLEAOffset(const MachineOperand &Offset) {
return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
}
// LEA instruction that has all three operands: offset, base and index
static inline bool isThreeOperandsLEA(const MachineOperand &Base,
const MachineOperand &Index,
const MachineOperand &Offset) {
return isRegOperand(Base) && isRegOperand(Index) && hasLEAOffset(Offset);
}
static inline int getADDrrFromLEA(int LEAOpcode) {
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
return X86::ADD16rr;
case X86::LEA32r:
return X86::ADD32rr;
case X86::LEA64_32r:
case X86::LEA64r:
return X86::ADD64rr;
}
}
static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) {
bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri;
case X86::LEA32r:
case X86::LEA64_32r:
return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
case X86::LEA64r:
return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
}
}
/// isLEASimpleIncOrDec - Does this LEA have one these forms:
/// lea %reg, 1(%reg)
/// lea %reg, -1(%reg)
static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) {
unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg();
unsigned DstReg = LEA.getOperand(0).getReg();
unsigned AddrDispOp = 1 + X86::AddrDisp;
return SrcReg == DstReg &&
LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
LEA.getOperand(AddrDispOp).isImm() &&
(LEA.getOperand(AddrDispOp).getImm() == 1 ||
LEA.getOperand(AddrDispOp).getImm() == -1);
}
bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) const {
MachineInstr &MI = *I;
int Opcode = MI.getOpcode();
if (!isLEA(Opcode))
return false;
if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
int NewOpcode;
bool isINC = MI.getOperand(4).getImm() == 1;
switch (Opcode) {
case X86::LEA16r:
NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
break;
case X86::LEA32r:
case X86::LEA64_32r:
NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
break;
case X86::LEA64r:
NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
break;
}
MachineInstr *NewMI =
BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode))
.add(MI.getOperand(0))
.add(MI.getOperand(1));
MFI->erase(I);
I = static_cast<MachineBasicBlock::iterator>(NewMI);
return true;
}
return false;
}
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
// Process a load, store, or LEA instruction.
MachineInstr &MI = *I;
const MCInstrDesc &Desc = MI.getDesc();
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
if (AddrOffset >= 0) {
AddrOffset += X86II::getOperandBias(Desc);
MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
if (p.isReg() && p.getReg() != X86::ESP) {
seekLEAFixup(p, I, MFI);
}
MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
if (q.isReg() && q.getReg() != X86::ESP) {
seekLEAFixup(q, I, MFI);
}
}
}
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
if (MBI != MachineBasicBlock::iterator()) {
MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
if (NewMI) {
++NumLEAs;
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
// now to replace with an equivalent LEA...
DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
MFI->erase(MBI);
MachineBasicBlock::iterator J =
static_cast<MachineBasicBlock::iterator>(NewMI);
processInstruction(J, MFI);
}
}
}
void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
MachineInstr &MI = *I;
const int Opcode = MI.getOpcode();
if (!isLEA(Opcode))
return;
if (MI.getOperand(5).getReg() != 0 || !MI.getOperand(4).isImm() ||
!TII->isSafeToClobberEFLAGS(*MFI, I))
return;
const unsigned DstR = MI.getOperand(0).getReg();
const unsigned SrcR1 = MI.getOperand(1).getReg();
const unsigned SrcR2 = MI.getOperand(3).getReg();
if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
return;
if (MI.getOperand(2).getImm() > 1)
return;
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
DEBUG(dbgs() << "FixLEA: Replaced by: ";);
MachineInstr *NewMI = nullptr;
// Make ADD instruction for two registers writing to LEA's destination
if (SrcR1 != 0 && SrcR2 != 0) {
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
const MachineOperand &Src = MI.getOperand(SrcR1 == DstR ? 3 : 1);
NewMI =
BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
DEBUG(NewMI->dump(););
}
// Make ADD instruction for immediate
if (MI.getOperand(4).getImm() != 0) {
const MCInstrDesc &ADDri =
TII->get(getADDriFromLEA(Opcode, MI.getOperand(4)));
const MachineOperand &SrcR = MI.getOperand(SrcR1 == DstR ? 1 : 3);
NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR)
.add(SrcR)
.addImm(MI.getOperand(4).getImm());
DEBUG(NewMI->dump(););
}
if (NewMI) {
MFI->erase(I);
I = NewMI;
}
}
MachineInstr *
FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI,
MachineFunction::iterator MFI) {
const int LEAOpcode = MI.getOpcode();
if (!isLEA(LEAOpcode))
return nullptr;
const MachineOperand &Dst = MI.getOperand(0);
const MachineOperand &Base = MI.getOperand(1);
const MachineOperand &Scale = MI.getOperand(2);
const MachineOperand &Index = MI.getOperand(3);
const MachineOperand &Offset = MI.getOperand(4);
const MachineOperand &Segment = MI.getOperand(5);
if (!(isThreeOperandsLEA(Base, Index, Offset) ||
hasInefficientLEABaseReg(Base, Index)) ||
!TII->isSafeToClobberEFLAGS(*MFI, MI) ||
Segment.getReg() != X86::NoRegister)
return nullptr;
unsigned int DstR = Dst.getReg();
unsigned int BaseR = Base.getReg();
unsigned int IndexR = Index.getReg();
unsigned SSDstR =
(LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR;
bool IsScale1 = Scale.getImm() == 1;
bool IsInefficientBase = isInefficientLEAReg(BaseR);
bool IsInefficientIndex = isInefficientLEAReg(IndexR);
// Skip these cases since it takes more than 2 instructions
// to replace the LEA instruction.
if (IsInefficientBase && SSDstR == BaseR && !IsScale1)
return nullptr;
if (LEAOpcode == X86::LEA64_32r && IsInefficientBase &&
(IsInefficientIndex || !IsScale1))
return nullptr;
const DebugLoc DL = MI.getDebugLoc();
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode));
const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset));
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
DEBUG(dbgs() << "FixLEA: Replaced by: ";);
// First try to replace LEA with one or two (for the 3-op LEA case)
// add instructions:
// 1.lea (%base,%index,1), %base => add %index,%base
// 2.lea (%base,%index,1), %index => add %base,%index
if (IsScale1 && (DstR == BaseR || DstR == IndexR)) {
const MachineOperand &Src = DstR == BaseR ? Index : Base;
MachineInstr *NewMI =
BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src);
DEBUG(NewMI->dump(););
// Create ADD instruction for the Offset in case of 3-Ops LEA.
if (hasLEAOffset(Offset)) {
NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
DEBUG(NewMI->dump(););
}
return NewMI;
}
// If the base is inefficient try switching the index and base operands,
// otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
// lea offset(%base,%index,scale),%dst =>
// lea (%base,%index,scale); add offset,%dst
if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
.add(Dst)
.add(IsInefficientBase ? Index : Base)
.add(Scale)
.add(IsInefficientBase ? Base : Index)
.addImm(0)
.add(Segment);
DEBUG(NewMI->dump(););
// Create ADD instruction for the Offset in case of 3-Ops LEA.
if (hasLEAOffset(Offset)) {
NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
DEBUG(NewMI->dump(););
}
return NewMI;
}
// Handle the rest of the cases with inefficient base register:
assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!");
assert(IsInefficientBase && "efficient base should be handled already!");
// lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
if (IsScale1 && !hasLEAOffset(Offset)) {
TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, Base.isKill());
DEBUG(MI.getPrevNode()->dump(););
MachineInstr *NewMI =
BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index);
DEBUG(NewMI->dump(););
return NewMI;
}
// lea offset(%base,%index,scale), %dst =>
// lea offset( ,%index,scale), %dst; add %base,%dst
MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
.add(Dst)
.addReg(0)
.add(Scale)
.add(Index)
.add(Offset)
.add(Segment);
DEBUG(NewMI->dump(););
NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base);
DEBUG(NewMI->dump(););
return NewMI;
}
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
MachineFunction::iterator MFI) {
for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
if (OptIncDec)
if (fixupIncDec(I, MFI))
continue;
if (OptLEA) {
if (MF.getSubtarget<X86Subtarget>().isSLM())
processInstructionForSLM(I, MFI);
else {
if (MF.getSubtarget<X86Subtarget>().slow3OpsLEA()) {
if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) {
MFI->erase(I);
I = NewMI;
}
} else
processInstruction(I, MFI);
}
}
}
return false;
}