64ac736ec5
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
251 lines
8.4 KiB
C++
251 lines
8.4 KiB
C++
//===- HexagonCFGOptimizer.cpp - CFG optimizations ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Hexagon.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon_cfg"
|
|
|
|
namespace llvm {
|
|
|
|
FunctionPass *createHexagonCFGOptimizer();
|
|
void initializeHexagonCFGOptimizerPass(PassRegistry&);
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
class HexagonCFGOptimizer : public MachineFunctionPass {
|
|
private:
|
|
void InvertAndChangeJumpTarget(MachineInstr &, MachineBasicBlock *);
|
|
bool isOnFallThroughPath(MachineBasicBlock *MBB);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
HexagonCFGOptimizer() : MachineFunctionPass(ID) {
|
|
initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "Hexagon CFG Optimizer"; }
|
|
bool runOnMachineFunction(MachineFunction &Fn) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char HexagonCFGOptimizer::ID = 0;
|
|
|
|
static bool IsConditionalBranch(int Opc) {
|
|
switch (Opc) {
|
|
case Hexagon::J2_jumpt:
|
|
case Hexagon::J2_jumptpt:
|
|
case Hexagon::J2_jumpf:
|
|
case Hexagon::J2_jumpfpt:
|
|
case Hexagon::J2_jumptnew:
|
|
case Hexagon::J2_jumpfnew:
|
|
case Hexagon::J2_jumptnewpt:
|
|
case Hexagon::J2_jumpfnewpt:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool IsUnconditionalJump(int Opc) {
|
|
return (Opc == Hexagon::J2_jump);
|
|
}
|
|
|
|
void HexagonCFGOptimizer::InvertAndChangeJumpTarget(
|
|
MachineInstr &MI, MachineBasicBlock *NewTarget) {
|
|
const TargetInstrInfo *TII =
|
|
MI.getParent()->getParent()->getSubtarget().getInstrInfo();
|
|
int NewOpcode = 0;
|
|
switch (MI.getOpcode()) {
|
|
case Hexagon::J2_jumpt:
|
|
NewOpcode = Hexagon::J2_jumpf;
|
|
break;
|
|
case Hexagon::J2_jumpf:
|
|
NewOpcode = Hexagon::J2_jumpt;
|
|
break;
|
|
case Hexagon::J2_jumptnewpt:
|
|
NewOpcode = Hexagon::J2_jumpfnewpt;
|
|
break;
|
|
case Hexagon::J2_jumpfnewpt:
|
|
NewOpcode = Hexagon::J2_jumptnewpt;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Cannot handle this case");
|
|
}
|
|
|
|
MI.setDesc(TII->get(NewOpcode));
|
|
MI.getOperand(1).setMBB(NewTarget);
|
|
}
|
|
|
|
bool HexagonCFGOptimizer::isOnFallThroughPath(MachineBasicBlock *MBB) {
|
|
if (MBB->canFallThrough())
|
|
return true;
|
|
for (MachineBasicBlock *PB : MBB->predecessors())
|
|
if (PB->isLayoutSuccessor(MBB) && PB->canFallThrough())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
|
|
if (skipFunction(Fn.getFunction()))
|
|
return false;
|
|
|
|
// Loop over all of the basic blocks.
|
|
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
|
|
MBBb != MBBe; ++MBBb) {
|
|
MachineBasicBlock *MBB = &*MBBb;
|
|
|
|
// Traverse the basic block.
|
|
MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
|
|
if (MII != MBB->end()) {
|
|
MachineInstr &MI = *MII;
|
|
int Opc = MI.getOpcode();
|
|
if (IsConditionalBranch(Opc)) {
|
|
// (Case 1) Transform the code if the following condition occurs:
|
|
// BB1: if (p0) jump BB3
|
|
// ...falls-through to BB2 ...
|
|
// BB2: jump BB4
|
|
// ...next block in layout is BB3...
|
|
// BB3: ...
|
|
//
|
|
// Transform this to:
|
|
// BB1: if (!p0) jump BB4
|
|
// Remove BB2
|
|
// BB3: ...
|
|
//
|
|
// (Case 2) A variation occurs when BB3 contains a JMP to BB4:
|
|
// BB1: if (p0) jump BB3
|
|
// ...falls-through to BB2 ...
|
|
// BB2: jump BB4
|
|
// ...other basic blocks ...
|
|
// BB4:
|
|
// ...not a fall-thru
|
|
// BB3: ...
|
|
// jump BB4
|
|
//
|
|
// Transform this to:
|
|
// BB1: if (!p0) jump BB4
|
|
// Remove BB2
|
|
// BB3: ...
|
|
// BB4: ...
|
|
unsigned NumSuccs = MBB->succ_size();
|
|
MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
|
|
MachineBasicBlock* FirstSucc = *SI;
|
|
MachineBasicBlock* SecondSucc = *(++SI);
|
|
MachineBasicBlock* LayoutSucc = nullptr;
|
|
MachineBasicBlock* JumpAroundTarget = nullptr;
|
|
|
|
if (MBB->isLayoutSuccessor(FirstSucc)) {
|
|
LayoutSucc = FirstSucc;
|
|
JumpAroundTarget = SecondSucc;
|
|
} else if (MBB->isLayoutSuccessor(SecondSucc)) {
|
|
LayoutSucc = SecondSucc;
|
|
JumpAroundTarget = FirstSucc;
|
|
} else {
|
|
// Odd case...cannot handle.
|
|
}
|
|
|
|
// The target of the unconditional branch must be JumpAroundTarget.
|
|
// TODO: If not, we should not invert the unconditional branch.
|
|
MachineBasicBlock* CondBranchTarget = nullptr;
|
|
if (MI.getOpcode() == Hexagon::J2_jumpt ||
|
|
MI.getOpcode() == Hexagon::J2_jumpf) {
|
|
CondBranchTarget = MI.getOperand(1).getMBB();
|
|
}
|
|
|
|
if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
|
|
continue;
|
|
}
|
|
|
|
if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
|
|
// Ensure that BB2 has one instruction -- an unconditional jump.
|
|
if ((LayoutSucc->size() == 1) &&
|
|
IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
|
|
assert(JumpAroundTarget && "jump target is needed to process second basic block");
|
|
MachineBasicBlock* UncondTarget =
|
|
LayoutSucc->front().getOperand(0).getMBB();
|
|
// Check if the layout successor of BB2 is BB3.
|
|
bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
|
|
bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
|
|
!JumpAroundTarget->empty() &&
|
|
IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
|
|
JumpAroundTarget->pred_size() == 1 &&
|
|
JumpAroundTarget->succ_size() == 1;
|
|
|
|
if (case1 || case2) {
|
|
InvertAndChangeJumpTarget(MI, UncondTarget);
|
|
MBB->replaceSuccessor(JumpAroundTarget, UncondTarget);
|
|
|
|
// Remove the unconditional branch in LayoutSucc.
|
|
LayoutSucc->erase(LayoutSucc->begin());
|
|
LayoutSucc->replaceSuccessor(UncondTarget, JumpAroundTarget);
|
|
|
|
// This code performs the conversion for case 2, which moves
|
|
// the block to the fall-thru case (BB3 in the code above).
|
|
if (case2 && !case1) {
|
|
JumpAroundTarget->moveAfter(LayoutSucc);
|
|
// only move a block if it doesn't have a fall-thru. otherwise
|
|
// the CFG will be incorrect.
|
|
if (!isOnFallThroughPath(UncondTarget))
|
|
UncondTarget->moveAfter(JumpAroundTarget);
|
|
}
|
|
|
|
// Correct live-in information. Is used by post-RA scheduler
|
|
// The live-in to LayoutSucc is now all values live-in to
|
|
// JumpAroundTarget.
|
|
std::vector<MachineBasicBlock::RegisterMaskPair> OrigLiveIn(
|
|
LayoutSucc->livein_begin(), LayoutSucc->livein_end());
|
|
std::vector<MachineBasicBlock::RegisterMaskPair> NewLiveIn(
|
|
JumpAroundTarget->livein_begin(),
|
|
JumpAroundTarget->livein_end());
|
|
for (const auto &OrigLI : OrigLiveIn)
|
|
LayoutSucc->removeLiveIn(OrigLI.PhysReg);
|
|
for (const auto &NewLI : NewLiveIn)
|
|
LayoutSucc->addLiveIn(NewLI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
INITIALIZE_PASS(HexagonCFGOptimizer, "hexagon-cfg", "Hexagon CFG Optimizer",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createHexagonCFGOptimizer() {
|
|
return new HexagonCFGOptimizer();
|
|
}
|