64ac736ec5
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
489 lines
17 KiB
C++
489 lines
17 KiB
C++
//===- BitTracker.h ---------------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
|
|
#define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <map>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class BitVector;
|
|
class ConstantInt;
|
|
class MachineRegisterInfo;
|
|
class MachineBasicBlock;
|
|
class MachineFunction;
|
|
class MachineInstr;
|
|
class raw_ostream;
|
|
class TargetRegisterClass;
|
|
class TargetRegisterInfo;
|
|
|
|
struct BitTracker {
|
|
struct BitRef;
|
|
struct RegisterRef;
|
|
struct BitValue;
|
|
struct BitMask;
|
|
struct RegisterCell;
|
|
struct MachineEvaluator;
|
|
|
|
using BranchTargetList = SetVector<const MachineBasicBlock *>;
|
|
using CellMapType = std::map<unsigned, RegisterCell>;
|
|
|
|
BitTracker(const MachineEvaluator &E, MachineFunction &F);
|
|
~BitTracker();
|
|
|
|
void run();
|
|
void trace(bool On = false) { Trace = On; }
|
|
bool has(unsigned Reg) const;
|
|
const RegisterCell &lookup(unsigned Reg) const;
|
|
RegisterCell get(RegisterRef RR) const;
|
|
void put(RegisterRef RR, const RegisterCell &RC);
|
|
void subst(RegisterRef OldRR, RegisterRef NewRR);
|
|
bool reached(const MachineBasicBlock *B) const;
|
|
void visit(const MachineInstr &MI);
|
|
|
|
void print_cells(raw_ostream &OS) const;
|
|
|
|
private:
|
|
void visitPHI(const MachineInstr &PI);
|
|
void visitNonBranch(const MachineInstr &MI);
|
|
void visitBranchesFrom(const MachineInstr &BI);
|
|
void visitUsesOf(unsigned Reg);
|
|
|
|
using CFGEdge = std::pair<int, int>;
|
|
using EdgeSetType = std::set<CFGEdge>;
|
|
using InstrSetType = std::set<const MachineInstr *>;
|
|
using EdgeQueueType = std::queue<CFGEdge>;
|
|
|
|
// Priority queue of instructions using modified registers, ordered by
|
|
// their relative position in a basic block.
|
|
struct UseQueueType {
|
|
unsigned size() const {
|
|
return Uses.size();
|
|
}
|
|
bool empty() const {
|
|
return size() == 0;
|
|
}
|
|
MachineInstr *front() const {
|
|
return Uses.top();
|
|
}
|
|
void push(MachineInstr *MI) {
|
|
if (Set.insert(MI).second)
|
|
Uses.push(MI);
|
|
}
|
|
void pop() {
|
|
Set.erase(front());
|
|
Uses.pop();
|
|
}
|
|
private:
|
|
struct Cmp {
|
|
bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
|
|
};
|
|
std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
|
|
DenseSet<MachineInstr*> Set; // Set to avoid adding duplicate entries.
|
|
};
|
|
|
|
void reset();
|
|
void runEdgeQueue(BitVector &BlockScanned);
|
|
void runUseQueue();
|
|
|
|
const MachineEvaluator &ME;
|
|
MachineFunction &MF;
|
|
MachineRegisterInfo &MRI;
|
|
CellMapType ⤅
|
|
|
|
EdgeSetType EdgeExec; // Executable flow graph edges.
|
|
InstrSetType InstrExec; // Executable instructions.
|
|
UseQueueType UseQ; // Work queue of register uses.
|
|
EdgeQueueType FlowQ; // Work queue of CFG edges.
|
|
DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
|
|
bool Trace; // Enable tracing for debugging.
|
|
};
|
|
|
|
// Abstraction of a reference to bit at position Pos from a register Reg.
|
|
struct BitTracker::BitRef {
|
|
BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
|
|
|
|
bool operator== (const BitRef &BR) const {
|
|
// If Reg is 0, disregard Pos.
|
|
return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
|
|
}
|
|
|
|
unsigned Reg;
|
|
uint16_t Pos;
|
|
};
|
|
|
|
// Abstraction of a register reference in MachineOperand. It contains the
|
|
// register number and the subregister index.
|
|
struct BitTracker::RegisterRef {
|
|
RegisterRef(unsigned R = 0, unsigned S = 0)
|
|
: Reg(R), Sub(S) {}
|
|
RegisterRef(const MachineOperand &MO)
|
|
: Reg(MO.getReg()), Sub(MO.getSubReg()) {}
|
|
|
|
unsigned Reg, Sub;
|
|
};
|
|
|
|
// Value that a single bit can take. This is outside of the context of
|
|
// any register, it is more of an abstraction of the two-element set of
|
|
// possible bit values. One extension here is the "Ref" type, which
|
|
// indicates that this bit takes the same value as the bit described by
|
|
// RefInfo.
|
|
struct BitTracker::BitValue {
|
|
enum ValueType {
|
|
Top, // Bit not yet defined.
|
|
Zero, // Bit = 0.
|
|
One, // Bit = 1.
|
|
Ref // Bit value same as the one described in RefI.
|
|
// Conceptually, there is no explicit "bottom" value: the lattice's
|
|
// bottom will be expressed as a "ref to itself", which, in the context
|
|
// of registers, could be read as "this value of this bit is defined by
|
|
// this bit".
|
|
// The ordering is:
|
|
// x <= Top,
|
|
// Self <= x, where "Self" is "ref to itself".
|
|
// This makes the value lattice different for each virtual register
|
|
// (even for each bit in the same virtual register), since the "bottom"
|
|
// for one register will be a simple "ref" for another register.
|
|
// Since we do not store the "Self" bit and register number, the meet
|
|
// operation will need to take it as a parameter.
|
|
//
|
|
// In practice there is a special case for values that are not associa-
|
|
// ted with any specific virtual register. An example would be a value
|
|
// corresponding to a bit of a physical register, or an intermediate
|
|
// value obtained in some computation (such as instruction evaluation).
|
|
// Such cases are identical to the usual Ref type, but the register
|
|
// number is 0. In such case the Pos field of the reference is ignored.
|
|
//
|
|
// What is worthy of notice is that in value V (that is a "ref"), as long
|
|
// as the RefI.Reg is not 0, it may actually be the same register as the
|
|
// one in which V will be contained. If the RefI.Pos refers to the posi-
|
|
// tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
|
|
// otherwise V is taken to be identical to the referenced bit of the
|
|
// same register.
|
|
// If RefI.Reg is 0, however, such a reference to the same register is
|
|
// not possible. Any value V that is a "ref", and whose RefI.Reg is 0
|
|
// is treated as "bottom".
|
|
};
|
|
ValueType Type;
|
|
BitRef RefI;
|
|
|
|
BitValue(ValueType T = Top) : Type(T) {}
|
|
BitValue(bool B) : Type(B ? One : Zero) {}
|
|
BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
|
|
|
|
bool operator== (const BitValue &V) const {
|
|
if (Type != V.Type)
|
|
return false;
|
|
if (Type == Ref && !(RefI == V.RefI))
|
|
return false;
|
|
return true;
|
|
}
|
|
bool operator!= (const BitValue &V) const {
|
|
return !operator==(V);
|
|
}
|
|
|
|
bool is(unsigned T) const {
|
|
assert(T == 0 || T == 1);
|
|
return T == 0 ? Type == Zero
|
|
: (T == 1 ? Type == One : false);
|
|
}
|
|
|
|
// The "meet" operation is the "." operation in a semilattice (L, ., T, B):
|
|
// (1) x.x = x
|
|
// (2) x.y = y.x
|
|
// (3) x.(y.z) = (x.y).z
|
|
// (4) x.T = x (i.e. T = "top")
|
|
// (5) x.B = B (i.e. B = "bottom")
|
|
//
|
|
// This "meet" function will update the value of the "*this" object with
|
|
// the newly calculated one, and return "true" if the value of *this has
|
|
// changed, and "false" otherwise.
|
|
// To prove that it satisfies the conditions (1)-(5), it is sufficient
|
|
// to show that a relation
|
|
// x <= y <=> x.y = x
|
|
// defines a partial order (i.e. that "meet" is same as "infimum").
|
|
bool meet(const BitValue &V, const BitRef &Self) {
|
|
// First, check the cases where there is nothing to be done.
|
|
if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
|
|
return false;
|
|
if (V.Type == Top) // This.meet(Top) = This
|
|
return false;
|
|
if (*this == V) // This.meet(This) = This
|
|
return false;
|
|
|
|
// At this point, we know that the value of "this" will change.
|
|
// If it is Top, it will become the same as V, otherwise it will
|
|
// become "bottom" (i.e. Self).
|
|
if (Type == Top) {
|
|
Type = V.Type;
|
|
RefI = V.RefI; // This may be irrelevant, but copy anyway.
|
|
return true;
|
|
}
|
|
// Become "bottom".
|
|
Type = Ref;
|
|
RefI = Self;
|
|
return true;
|
|
}
|
|
|
|
// Create a reference to the bit value V.
|
|
static BitValue ref(const BitValue &V);
|
|
// Create a "self".
|
|
static BitValue self(const BitRef &Self = BitRef());
|
|
|
|
bool num() const {
|
|
return Type == Zero || Type == One;
|
|
}
|
|
|
|
operator bool() const {
|
|
assert(Type == Zero || Type == One);
|
|
return Type == One;
|
|
}
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
|
|
};
|
|
|
|
// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
|
|
inline BitTracker::BitValue
|
|
BitTracker::BitValue::ref(const BitValue &V) {
|
|
if (V.Type != Ref)
|
|
return BitValue(V.Type);
|
|
if (V.RefI.Reg != 0)
|
|
return BitValue(V.RefI.Reg, V.RefI.Pos);
|
|
return self();
|
|
}
|
|
|
|
inline BitTracker::BitValue
|
|
BitTracker::BitValue::self(const BitRef &Self) {
|
|
return BitValue(Self.Reg, Self.Pos);
|
|
}
|
|
|
|
// A sequence of bits starting from index B up to and including index E.
|
|
// If E < B, the mask represents two sections: [0..E] and [B..W) where
|
|
// W is the width of the register.
|
|
struct BitTracker::BitMask {
|
|
BitMask() = default;
|
|
BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
|
|
|
|
uint16_t first() const { return B; }
|
|
uint16_t last() const { return E; }
|
|
|
|
private:
|
|
uint16_t B = 0;
|
|
uint16_t E = 0;
|
|
};
|
|
|
|
// Representation of a register: a list of BitValues.
|
|
struct BitTracker::RegisterCell {
|
|
RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
|
|
|
|
uint16_t width() const {
|
|
return Bits.size();
|
|
}
|
|
|
|
const BitValue &operator[](uint16_t BitN) const {
|
|
assert(BitN < Bits.size());
|
|
return Bits[BitN];
|
|
}
|
|
BitValue &operator[](uint16_t BitN) {
|
|
assert(BitN < Bits.size());
|
|
return Bits[BitN];
|
|
}
|
|
|
|
bool meet(const RegisterCell &RC, unsigned SelfR);
|
|
RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
|
|
RegisterCell extract(const BitMask &M) const; // Returns a new cell.
|
|
RegisterCell &rol(uint16_t Sh); // Rotate left.
|
|
RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
|
|
RegisterCell &cat(const RegisterCell &RC); // Concatenate.
|
|
uint16_t cl(bool B) const;
|
|
uint16_t ct(bool B) const;
|
|
|
|
bool operator== (const RegisterCell &RC) const;
|
|
bool operator!= (const RegisterCell &RC) const {
|
|
return !operator==(RC);
|
|
}
|
|
|
|
// Replace the ref-to-reg-0 bit values with the given register.
|
|
RegisterCell ®ify(unsigned R);
|
|
|
|
// Generate a "ref" cell for the corresponding register. In the resulting
|
|
// cell each bit will be described as being the same as the corresponding
|
|
// bit in register Reg (i.e. the cell is "defined" by register Reg).
|
|
static RegisterCell self(unsigned Reg, uint16_t Width);
|
|
// Generate a "top" cell of given size.
|
|
static RegisterCell top(uint16_t Width);
|
|
// Generate a cell that is a "ref" to another cell.
|
|
static RegisterCell ref(const RegisterCell &C);
|
|
|
|
private:
|
|
// The DefaultBitN is here only to avoid frequent reallocation of the
|
|
// memory in the vector.
|
|
static const unsigned DefaultBitN = 32;
|
|
using BitValueList = SmallVector<BitValue, DefaultBitN>;
|
|
BitValueList Bits;
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
|
|
};
|
|
|
|
inline bool BitTracker::has(unsigned Reg) const {
|
|
return Map.find(Reg) != Map.end();
|
|
}
|
|
|
|
inline const BitTracker::RegisterCell&
|
|
BitTracker::lookup(unsigned Reg) const {
|
|
CellMapType::const_iterator F = Map.find(Reg);
|
|
assert(F != Map.end());
|
|
return F->second;
|
|
}
|
|
|
|
inline BitTracker::RegisterCell
|
|
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
|
|
RegisterCell RC(Width);
|
|
for (uint16_t i = 0; i < Width; ++i)
|
|
RC.Bits[i] = BitValue::self(BitRef(Reg, i));
|
|
return RC;
|
|
}
|
|
|
|
inline BitTracker::RegisterCell
|
|
BitTracker::RegisterCell::top(uint16_t Width) {
|
|
RegisterCell RC(Width);
|
|
for (uint16_t i = 0; i < Width; ++i)
|
|
RC.Bits[i] = BitValue(BitValue::Top);
|
|
return RC;
|
|
}
|
|
|
|
inline BitTracker::RegisterCell
|
|
BitTracker::RegisterCell::ref(const RegisterCell &C) {
|
|
uint16_t W = C.width();
|
|
RegisterCell RC(W);
|
|
for (unsigned i = 0; i < W; ++i)
|
|
RC[i] = BitValue::ref(C[i]);
|
|
return RC;
|
|
}
|
|
|
|
// A class to evaluate target's instructions and update the cell maps.
|
|
// This is used internally by the bit tracker. A target that wants to
|
|
// utilize this should implement the evaluation functions (noted below)
|
|
// in a subclass of this class.
|
|
struct BitTracker::MachineEvaluator {
|
|
MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
|
|
: TRI(T), MRI(M) {}
|
|
virtual ~MachineEvaluator() = default;
|
|
|
|
uint16_t getRegBitWidth(const RegisterRef &RR) const;
|
|
|
|
RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
|
|
void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
|
|
|
|
// A result of any operation should use refs to the source cells, not
|
|
// the cells directly. This function is a convenience wrapper to quickly
|
|
// generate a ref for a cell corresponding to a register reference.
|
|
RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
|
|
RegisterCell RC = getCell(RR, M);
|
|
return RegisterCell::ref(RC);
|
|
}
|
|
|
|
// Helper functions.
|
|
// Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
|
|
bool isInt(const RegisterCell &A) const;
|
|
// Convert cell to an immediate value.
|
|
uint64_t toInt(const RegisterCell &A) const;
|
|
|
|
// Generate cell from an immediate value.
|
|
RegisterCell eIMM(int64_t V, uint16_t W) const;
|
|
RegisterCell eIMM(const ConstantInt *CI) const;
|
|
|
|
// Arithmetic.
|
|
RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
|
|
// Shifts.
|
|
RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
|
|
RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
|
|
RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
|
|
|
|
// Logical.
|
|
RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
RegisterCell eNOT(const RegisterCell &A1) const;
|
|
|
|
// Set bit, clear bit.
|
|
RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
|
|
RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
|
|
|
|
// Count leading/trailing bits (zeros/ones).
|
|
RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
|
|
RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
|
|
|
|
// Sign/zero extension.
|
|
RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
|
|
RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
|
|
|
|
// Extract/insert
|
|
// XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
|
|
// INS R,S,b: take R and replace bits starting from b with S.
|
|
RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
|
|
RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
|
|
uint16_t AtN) const;
|
|
|
|
// User-provided functions for individual targets:
|
|
|
|
// Return a sub-register mask that indicates which bits in Reg belong
|
|
// to the subregister Sub. These bits are assumed to be contiguous in
|
|
// the super-register, and have the same ordering in the sub-register
|
|
// as in the super-register. It is valid to call this function with
|
|
// Sub == 0, in this case, the function should return a mask that spans
|
|
// the entire register Reg (which is what the default implementation
|
|
// does).
|
|
virtual BitMask mask(unsigned Reg, unsigned Sub) const;
|
|
// Indicate whether a given register class should be tracked.
|
|
virtual bool track(const TargetRegisterClass *RC) const { return true; }
|
|
// Evaluate a non-branching machine instruction, given the cell map with
|
|
// the input values. Place the results in the Outputs map. Return "true"
|
|
// if evaluation succeeded, "false" otherwise.
|
|
virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
|
|
CellMapType &Outputs) const;
|
|
// Evaluate a branch, given the cell map with the input values. Fill out
|
|
// a list of all possible branch targets and indicate (through a flag)
|
|
// whether the branch could fall-through. Return "true" if this information
|
|
// has been successfully computed, "false" otherwise.
|
|
virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
|
|
BranchTargetList &Targets, bool &FallsThru) const = 0;
|
|
// Given a register class RC, return a register class that should be assumed
|
|
// when a register from class RC is used with a subregister of index Idx.
|
|
virtual const TargetRegisterClass&
|
|
composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
|
|
if (Idx == 0)
|
|
return RC;
|
|
llvm_unreachable("Unimplemented composeWithSubRegIndex");
|
|
}
|
|
// Return the size in bits of the physical register Reg.
|
|
virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;
|
|
|
|
const TargetRegisterInfo &TRI;
|
|
MachineRegisterInfo &MRI;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
|