94b2861243
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
364 lines
12 KiB
C++
364 lines
12 KiB
C++
/* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/ecdsa.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/ec.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/nid.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "../test/scoped_types.h"
|
|
|
|
enum Api {
|
|
kEncodedApi,
|
|
kRawApi,
|
|
};
|
|
|
|
// VerifyECDSASig returns true on success, false on failure.
|
|
static bool VerifyECDSASig(Api api, const uint8_t *digest,
|
|
size_t digest_len, const ECDSA_SIG *ecdsa_sig,
|
|
EC_KEY *eckey, int expected_result) {
|
|
int actual_result;
|
|
|
|
switch (api) {
|
|
case kEncodedApi: {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!ECDSA_SIG_to_bytes(&der, &der_len, ecdsa_sig)) {
|
|
return false;
|
|
}
|
|
ScopedOpenSSLBytes delete_der(der);
|
|
actual_result = ECDSA_verify(0, digest, digest_len, der, der_len, eckey);
|
|
break;
|
|
}
|
|
|
|
case kRawApi:
|
|
actual_result = ECDSA_do_verify(digest, digest_len, ecdsa_sig, eckey);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
return expected_result == actual_result;
|
|
}
|
|
|
|
// TestTamperedSig verifies that signature verification fails when a valid
|
|
// signature is tampered with. |ecdsa_sig| must be a valid signature, which will
|
|
// be modified. TestTamperedSig returns true on success, false on failure.
|
|
static bool TestTamperedSig(FILE *out, Api api, const uint8_t *digest,
|
|
size_t digest_len, ECDSA_SIG *ecdsa_sig,
|
|
EC_KEY *eckey, const BIGNUM *order) {
|
|
// Modify a single byte of the signature: to ensure we don't
|
|
// garble the ASN1 structure, we read the raw signature and
|
|
// modify a byte in one of the bignums directly.
|
|
|
|
// Store the two BIGNUMs in raw_buf.
|
|
size_t r_len = BN_num_bytes(ecdsa_sig->r);
|
|
size_t s_len = BN_num_bytes(ecdsa_sig->s);
|
|
size_t bn_len = BN_num_bytes(order);
|
|
if (r_len > bn_len || s_len > bn_len) {
|
|
return false;
|
|
}
|
|
size_t buf_len = 2 * bn_len;
|
|
std::vector<uint8_t> raw_buf(buf_len);
|
|
// Pad the bignums with leading zeroes.
|
|
if (!BN_bn2bin_padded(raw_buf.data(), bn_len, ecdsa_sig->r) ||
|
|
!BN_bn2bin_padded(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)) {
|
|
return false;
|
|
}
|
|
|
|
// Modify a single byte in the buffer.
|
|
size_t offset = raw_buf[10] % buf_len;
|
|
uint8_t dirt = raw_buf[11] ? raw_buf[11] : 1;
|
|
raw_buf[offset] ^= dirt;
|
|
// Now read the BIGNUMs back in from raw_buf.
|
|
if (BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r) == NULL ||
|
|
BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s) == NULL ||
|
|
!VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 0)) {
|
|
return false;
|
|
}
|
|
|
|
// Sanity check: Undo the modification and verify signature.
|
|
raw_buf[offset] ^= dirt;
|
|
if (BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r) == NULL ||
|
|
BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s) == NULL ||
|
|
!VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 1)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestBuiltin(FILE *out) {
|
|
// Fill digest values with some random data.
|
|
uint8_t digest[20], wrong_digest[20];
|
|
if (!RAND_bytes(digest, 20) || !RAND_bytes(wrong_digest, 20)) {
|
|
fprintf(out, "ERROR: unable to get random data\n");
|
|
return false;
|
|
}
|
|
|
|
static const struct {
|
|
int nid;
|
|
const char *name;
|
|
} kCurves[] = {
|
|
{ NID_secp224r1, "secp224r1" },
|
|
{ NID_X9_62_prime256v1, "secp256r1" },
|
|
{ NID_secp384r1, "secp384r1" },
|
|
{ NID_secp521r1, "secp521r1" },
|
|
{ NID_undef, NULL }
|
|
};
|
|
|
|
// Create and verify ECDSA signatures with every available curve.
|
|
fputs("\ntesting ECDSA_sign(), ECDSA_verify(), ECDSA_do_sign(), and "
|
|
"ECDSA_do_verify() with some internal curves:\n", out);
|
|
|
|
for (size_t n = 0; kCurves[n].nid != NID_undef; n++) {
|
|
fprintf(out, "%s: ", kCurves[n].name);
|
|
|
|
int nid = kCurves[n].nid;
|
|
ScopedEC_GROUP group(EC_GROUP_new_by_curve_name(nid));
|
|
if (!group) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
const BIGNUM *order = EC_GROUP_get0_order(group.get());
|
|
if (BN_num_bits(order) < 160) {
|
|
// Too small to test.
|
|
fprintf(out, " skipped\n");
|
|
continue;
|
|
}
|
|
|
|
// Create a new ECDSA key.
|
|
ScopedEC_KEY eckey(EC_KEY_new());
|
|
if (!eckey || !EC_KEY_set_group(eckey.get(), group.get()) ||
|
|
!EC_KEY_generate_key(eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
// Create a second key.
|
|
ScopedEC_KEY wrong_eckey(EC_KEY_new());
|
|
if (!wrong_eckey || !EC_KEY_set_group(wrong_eckey.get(), group.get()) ||
|
|
!EC_KEY_generate_key(wrong_eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
|
|
// Check the key.
|
|
if (!EC_KEY_check_key(eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
|
|
// Test ASN.1-encoded signatures.
|
|
// Create a signature.
|
|
unsigned sig_len = ECDSA_size(eckey.get());
|
|
std::vector<uint8_t> signature(sig_len);
|
|
if (!ECDSA_sign(0, digest, 20, signature.data(), &sig_len, eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
signature.resize(sig_len);
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify the signature.
|
|
if (!ECDSA_verify(0, digest, 20, signature.data(), signature.size(),
|
|
eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify the signature with the wrong key.
|
|
if (ECDSA_verify(0, digest, 20, signature.data(), signature.size(),
|
|
wrong_eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify the signature using the wrong digest.
|
|
if (ECDSA_verify(0, wrong_digest, 20, signature.data(), signature.size(),
|
|
eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify a truncated signature.
|
|
if (ECDSA_verify(0, digest, 20, signature.data(), signature.size() - 1,
|
|
eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify a tampered signature.
|
|
ScopedECDSA_SIG ecdsa_sig(ECDSA_SIG_from_bytes(
|
|
signature.data(), signature.size()));
|
|
if (!ecdsa_sig ||
|
|
!TestTamperedSig(out, kEncodedApi, digest, 20, ecdsa_sig.get(),
|
|
eckey.get(), order)) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
|
|
// Test ECDSA_SIG signing and verification.
|
|
// Create a signature.
|
|
ecdsa_sig.reset(ECDSA_do_sign(digest, 20, eckey.get()));
|
|
if (!ecdsa_sig) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify the signature using the correct key.
|
|
if (!ECDSA_do_verify(digest, 20, ecdsa_sig.get(), eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify the signature with the wrong key.
|
|
if (ECDSA_do_verify(digest, 20, ecdsa_sig.get(), wrong_eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify the signature using the wrong digest.
|
|
if (ECDSA_do_verify(wrong_digest, 20, ecdsa_sig.get(), eckey.get())) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
// Verify a tampered signature.
|
|
if (!TestTamperedSig(out, kRawApi, digest, 20, ecdsa_sig.get(), eckey.get(),
|
|
order)) {
|
|
fprintf(out, " failed\n");
|
|
return false;
|
|
}
|
|
fprintf(out, ".");
|
|
fflush(out);
|
|
|
|
fprintf(out, " ok\n");
|
|
// Clear bogus errors.
|
|
ERR_clear_error();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestECDSA_SIG_max_len(size_t order_len) {
|
|
/* Create the largest possible |ECDSA_SIG| of the given constraints. */
|
|
ScopedECDSA_SIG sig(ECDSA_SIG_new());
|
|
if (!sig) {
|
|
return false;
|
|
}
|
|
std::vector<uint8_t> bytes(order_len, 0xff);
|
|
if (!BN_bin2bn(bytes.data(), bytes.size(), sig->r) ||
|
|
!BN_bin2bn(bytes.data(), bytes.size(), sig->s)) {
|
|
return false;
|
|
}
|
|
/* Serialize it. */
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!ECDSA_SIG_to_bytes(&der, &der_len, sig.get())) {
|
|
return false;
|
|
}
|
|
ScopedOpenSSLBytes delete_der(der);
|
|
|
|
size_t max_len = ECDSA_SIG_max_len(order_len);
|
|
if (max_len != der_len) {
|
|
fprintf(stderr, "ECDSA_SIG_max_len(%u) returned %u, wanted %u\n",
|
|
static_cast<unsigned>(order_len), static_cast<unsigned>(max_len),
|
|
static_cast<unsigned>(der_len));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static size_t BitsToBytes(size_t bits) {
|
|
return (bits / 8) + (7 + (bits % 8)) / 8;
|
|
}
|
|
|
|
int main(void) {
|
|
CRYPTO_library_init();
|
|
|
|
if (!TestBuiltin(stdout) ||
|
|
!TestECDSA_SIG_max_len(BitsToBytes(224)) ||
|
|
!TestECDSA_SIG_max_len(BitsToBytes(256)) ||
|
|
!TestECDSA_SIG_max_len(BitsToBytes(384)) ||
|
|
!TestECDSA_SIG_max_len(BitsToBytes(521)) ||
|
|
!TestECDSA_SIG_max_len(BitsToBytes(10000))) {
|
|
printf("\nECDSA test failed\n");
|
|
ERR_print_errors_fp(stdout);
|
|
return 1;
|
|
}
|
|
|
|
printf("\nPASS\n");
|
|
return 0;
|
|
}
|