Files
acceptance-tests
data
debian
docs
external
Newtonsoft.Json
api-doc-tools
api-snapshot
aspnetwebstack
binary-reference-assemblies
bockbuild
boringssl
cecil
cecil-legacy
corefx
corert
helix-binaries
ikdasm
ikvm
illinker-test-assets
linker
llvm
bindings
cmake
docs
examples
include
lib
Analysis
AliasAnalysis.cpp
AliasAnalysisEvaluator.cpp
AliasAnalysisSummary.cpp
AliasAnalysisSummary.h
AliasSetTracker.cpp
Analysis.cpp
AssumptionCache.cpp
BasicAliasAnalysis.cpp
BlockFrequencyInfo.cpp
BlockFrequencyInfoImpl.cpp
BranchProbabilityInfo.cpp
CFG.cpp
CFGPrinter.cpp
CFLAndersAliasAnalysis.cpp
CFLGraph.h
CFLSteensAliasAnalysis.cpp
CGSCCPassManager.cpp
CMakeLists.txt
CallGraph.cpp
CallGraphSCCPass.cpp
CallPrinter.cpp
CaptureTracking.cpp
CmpInstAnalysis.cpp
CodeMetrics.cpp
ConstantFolding.cpp
CostModel.cpp
Delinearization.cpp
DemandedBits.cpp
DependenceAnalysis.cpp.REMOVED.git-id
DivergenceAnalysis.cpp
DomPrinter.cpp
DominanceFrontier.cpp
EHPersonalities.cpp
GlobalsModRef.cpp
IVUsers.cpp
IndirectCallPromotionAnalysis.cpp
InlineCost.cpp
InstCount.cpp
InstructionSimplify.cpp.REMOVED.git-id
Interval.cpp
IntervalPartition.cpp
IteratedDominanceFrontier.cpp
LLVMBuild.txt
LazyBlockFrequencyInfo.cpp
LazyBranchProbabilityInfo.cpp
LazyCallGraph.cpp
LazyValueInfo.cpp
Lint.cpp
Loads.cpp
LoopAccessAnalysis.cpp
LoopAnalysisManager.cpp
LoopInfo.cpp
LoopPass.cpp
LoopUnrollAnalyzer.cpp
MemDepPrinter.cpp
MemDerefPrinter.cpp
MemoryBuiltins.cpp
MemoryDependenceAnalysis.cpp
MemoryLocation.cpp
MemorySSA.cpp
MemorySSAUpdater.cpp
ModuleDebugInfoPrinter.cpp
ModuleSummaryAnalysis.cpp
ObjCARCAliasAnalysis.cpp
ObjCARCAnalysisUtils.cpp
ObjCARCInstKind.cpp
OptimizationRemarkEmitter.cpp
OrderedBasicBlock.cpp
PHITransAddr.cpp
PostDominators.cpp
ProfileSummaryInfo.cpp
PtrUseVisitor.cpp
README.txt
RegionInfo.cpp
RegionPass.cpp
RegionPrinter.cpp
ScalarEvolution.cpp.REMOVED.git-id
ScalarEvolutionAliasAnalysis.cpp
ScalarEvolutionExpander.cpp
ScalarEvolutionNormalization.cpp
ScopedNoAliasAA.cpp
StratifiedSets.h
TargetLibraryInfo.cpp
TargetTransformInfo.cpp
Trace.cpp
TypeBasedAliasAnalysis.cpp
TypeMetadataUtils.cpp
ValueLattice.cpp
ValueLatticeUtils.cpp
ValueTracking.cpp.REMOVED.git-id
VectorUtils.cpp
AsmParser
BinaryFormat
Bitcode
CodeGen
DebugInfo
Demangle
ExecutionEngine
FuzzMutate
Fuzzer
IR
IRReader
LTO
LineEditor
Linker
MC
Object
ObjectYAML
Option
Passes
ProfileData
Support
TableGen
Target
Testing
ToolDrivers
Transforms
WindowsManifest
XRay
CMakeLists.txt
LLVMBuild.txt
projects
resources
runtimes
scripts
test
tools
unittests
utils
.arcconfig
.clang-format
.clang-tidy
.gitattributes
.gitignore
CMakeLists.txt
CODE_OWNERS.TXT
CREDITS.TXT
LICENSE.TXT
LLVMBuild.txt
README.txt
RELEASE_TESTERS.TXT
configure
llvm.spec.in
nuget-buildtasks
nunit-lite
roslyn-binaries
rx
xunit-binaries
how-to-bump-roslyn-binaries.md
ikvm-native
libgc
llvm
m4
man
mcs
mk
mono
msvc
po
runtime
samples
scripts
support
tools
COPYING.LIB
LICENSE
Makefile.am
Makefile.in
NEWS
README.md
acinclude.m4
aclocal.m4
autogen.sh
code_of_conduct.md
compile
config.guess
config.h.in
config.rpath
config.sub
configure.REMOVED.git-id
configure.ac.REMOVED.git-id
depcomp
install-sh
ltmain.sh.REMOVED.git-id
missing
mkinstalldirs
mono-uninstalled.pc.in
test-driver
winconfig.h
linux-packaging-mono/external/llvm/lib/Analysis/BranchProbabilityInfo.cpp
Xamarin Public Jenkins (auto-signing) 64ac736ec5 Imported Upstream version 6.0.0.172
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
2019-04-12 14:10:50 +00:00

917 lines
31 KiB
C++

//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "branch-prob"
static cl::opt<bool> PrintBranchProb(
"print-bpi", cl::init(false), cl::Hidden,
cl::desc("Print the branch probability info."));
cl::opt<std::string> PrintBranchProbFuncName(
"print-bpi-func-name", cl::Hidden,
cl::desc("The option to specify the name of the function "
"whose branch probability info is printed."));
INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
"Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
"Branch Probability Analysis", false, true)
char BranchProbabilityInfoWrapperPass::ID = 0;
// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
// ...
// |
// V
// BB1<-+
// | |
// | | (Weight = 124)
// V |
// BB2--+
// |
// | (Weight = 4)
// V
// BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
/// \brief Unreachable-terminating branch taken probability.
///
/// This is the probability for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
/// All reachable probability will equally share the remaining part.
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
/// \brief Weight for a branch taken going into a cold block.
///
/// This is the weight for a branch taken toward a block marked
/// cold. A block is marked cold if it's postdominated by a
/// block containing a call to a cold function. Cold functions
/// are those marked with attribute 'cold'.
static const uint32_t CC_TAKEN_WEIGHT = 4;
/// \brief Weight for a branch not-taken into a cold block.
///
/// This is the weight for a branch not taken toward a block marked
/// cold.
static const uint32_t CC_NONTAKEN_WEIGHT = 64;
static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
static const uint32_t FPH_TAKEN_WEIGHT = 20;
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
/// \brief Invoke-terminating normal branch taken weight
///
/// This is the weight for branching to the normal destination of an invoke
/// instruction. We expect this to happen most of the time. Set the weight to an
/// absurdly high value so that nested loops subsume it.
static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
/// \brief Invoke-terminating normal branch not-taken weight.
///
/// This is the weight for branching to the unwind destination of an invoke
/// instruction. This is essentially never taken.
static const uint32_t IH_NONTAKEN_WEIGHT = 1;
/// \brief Add \p BB to PostDominatedByUnreachable set if applicable.
void
BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
if (isa<UnreachableInst>(TI) ||
// If this block is terminated by a call to
// @llvm.experimental.deoptimize then treat it like an unreachable since
// the @llvm.experimental.deoptimize call is expected to practically
// never execute.
BB->getTerminatingDeoptimizeCall())
PostDominatedByUnreachable.insert(BB);
return;
}
// If the terminator is an InvokeInst, check only the normal destination block
// as the unwind edge of InvokeInst is also very unlikely taken.
if (auto *II = dyn_cast<InvokeInst>(TI)) {
if (PostDominatedByUnreachable.count(II->getNormalDest()))
PostDominatedByUnreachable.insert(BB);
return;
}
for (auto *I : successors(BB))
// If any of successor is not post dominated then BB is also not.
if (!PostDominatedByUnreachable.count(I))
return;
PostDominatedByUnreachable.insert(BB);
}
/// \brief Add \p BB to PostDominatedByColdCall set if applicable.
void
BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
assert(!PostDominatedByColdCall.count(BB));
const TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0)
return;
// If all of successor are post dominated then BB is also done.
if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
return PostDominatedByColdCall.count(SuccBB);
})) {
PostDominatedByColdCall.insert(BB);
return;
}
// If the terminator is an InvokeInst, check only the normal destination
// block as the unwind edge of InvokeInst is also very unlikely taken.
if (auto *II = dyn_cast<InvokeInst>(TI))
if (PostDominatedByColdCall.count(II->getNormalDest())) {
PostDominatedByColdCall.insert(BB);
return;
}
// Otherwise, if the block itself contains a cold function, add it to the
// set of blocks post-dominated by a cold call.
for (auto &I : *BB)
if (const CallInst *CI = dyn_cast<CallInst>(&I))
if (CI->hasFnAttr(Attribute::Cold)) {
PostDominatedByColdCall.insert(BB);
return;
}
}
/// \brief Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
// Return false here so that edge weights for InvokeInst could be decided
// in calcInvokeHeuristics().
if (isa<InvokeInst>(TI))
return false;
SmallVector<unsigned, 4> UnreachableEdges;
SmallVector<unsigned, 4> ReachableEdges;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
if (PostDominatedByUnreachable.count(*I))
UnreachableEdges.push_back(I.getSuccessorIndex());
else
ReachableEdges.push_back(I.getSuccessorIndex());
// Skip probabilities if all were reachable.
if (UnreachableEdges.empty())
return false;
if (ReachableEdges.empty()) {
BranchProbability Prob(1, UnreachableEdges.size());
for (unsigned SuccIdx : UnreachableEdges)
setEdgeProbability(BB, SuccIdx, Prob);
return true;
}
auto UnreachableProb = UR_TAKEN_PROB;
auto ReachableProb =
(BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
ReachableEdges.size();
for (unsigned SuccIdx : UnreachableEdges)
setEdgeProbability(BB, SuccIdx, UnreachableProb);
for (unsigned SuccIdx : ReachableEdges)
setEdgeProbability(BB, SuccIdx, ReachableProb);
return true;
}
// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing. Examine metadata against unreachable
// heuristic. The probability of the edge coming to unreachable block is
// set to min of metadata and unreachable heuristic.
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
return false;
MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
if (!WeightsNode)
return false;
// Check that the number of successors is manageable.
assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
// Ensure there are weights for all of the successors. Note that the first
// operand to the metadata node is a name, not a weight.
if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
return false;
// Build up the final weights that will be used in a temporary buffer.
// Compute the sum of all weights to later decide whether they need to
// be scaled to fit in 32 bits.
uint64_t WeightSum = 0;
SmallVector<uint32_t, 2> Weights;
SmallVector<unsigned, 2> UnreachableIdxs;
SmallVector<unsigned, 2> ReachableIdxs;
Weights.reserve(TI->getNumSuccessors());
for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
ConstantInt *Weight =
mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
if (!Weight)
return false;
assert(Weight->getValue().getActiveBits() <= 32 &&
"Too many bits for uint32_t");
Weights.push_back(Weight->getZExtValue());
WeightSum += Weights.back();
if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
UnreachableIdxs.push_back(i - 1);
else
ReachableIdxs.push_back(i - 1);
}
assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
// If the sum of weights does not fit in 32 bits, scale every weight down
// accordingly.
uint64_t ScalingFactor =
(WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
if (ScalingFactor > 1) {
WeightSum = 0;
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
Weights[i] /= ScalingFactor;
WeightSum += Weights[i];
}
}
assert(WeightSum <= UINT32_MAX &&
"Expected weights to scale down to 32 bits");
if (WeightSum == 0 || ReachableIdxs.size() == 0) {
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Weights[i] = 1;
WeightSum = TI->getNumSuccessors();
}
// Set the probability.
SmallVector<BranchProbability, 2> BP;
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
// Examine the metadata against unreachable heuristic.
// If the unreachable heuristic is more strong then we use it for this edge.
if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
auto ToDistribute = BranchProbability::getZero();
auto UnreachableProb = UR_TAKEN_PROB;
for (auto i : UnreachableIdxs)
if (UnreachableProb < BP[i]) {
ToDistribute += BP[i] - UnreachableProb;
BP[i] = UnreachableProb;
}
// If we modified the probability of some edges then we must distribute
// the difference between reachable blocks.
if (ToDistribute > BranchProbability::getZero()) {
BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
for (auto i : ReachableIdxs)
BP[i] += PerEdge;
}
}
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
setEdgeProbability(BB, i, BP[i]);
return true;
}
/// \brief Calculate edge weights for edges leading to cold blocks.
///
/// A cold block is one post-dominated by a block with a call to a
/// cold function. Those edges are unlikely to be taken, so we give
/// them relatively low weight.
///
/// Return true if we could compute the weights for cold edges.
/// Return false, otherwise.
bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
// Return false here so that edge weights for InvokeInst could be decided
// in calcInvokeHeuristics().
if (isa<InvokeInst>(TI))
return false;
// Determine which successors are post-dominated by a cold block.
SmallVector<unsigned, 4> ColdEdges;
SmallVector<unsigned, 4> NormalEdges;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
if (PostDominatedByColdCall.count(*I))
ColdEdges.push_back(I.getSuccessorIndex());
else
NormalEdges.push_back(I.getSuccessorIndex());
// Skip probabilities if no cold edges.
if (ColdEdges.empty())
return false;
if (NormalEdges.empty()) {
BranchProbability Prob(1, ColdEdges.size());
for (unsigned SuccIdx : ColdEdges)
setEdgeProbability(BB, SuccIdx, Prob);
return true;
}
auto ColdProb = BranchProbability::getBranchProbability(
CC_TAKEN_WEIGHT,
(CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
auto NormalProb = BranchProbability::getBranchProbability(
CC_NONTAKEN_WEIGHT,
(CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
for (unsigned SuccIdx : ColdEdges)
setEdgeProbability(BB, SuccIdx, ColdProb);
for (unsigned SuccIdx : NormalEdges)
setEdgeProbability(BB, SuccIdx, NormalProb);
return true;
}
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI || !CI->isEquality())
return false;
Value *LHS = CI->getOperand(0);
if (!LHS->getType()->isPointerTy())
return false;
assert(CI->getOperand(1)->getType()->isPointerTy());
// p != 0 -> isProb = true
// p == 0 -> isProb = false
// p != q -> isProb = true
// p == q -> isProb = false;
unsigned TakenIdx = 0, NonTakenIdx = 1;
bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(PH_TAKEN_WEIGHT,
PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
return true;
}
static int getSCCNum(const BasicBlock *BB,
const BranchProbabilityInfo::SccInfo &SccI) {
auto SccIt = SccI.SccNums.find(BB);
if (SccIt == SccI.SccNums.end())
return -1;
return SccIt->second;
}
// Consider any block that is an entry point to the SCC as a header.
static bool isSCCHeader(const BasicBlock *BB, int SccNum,
BranchProbabilityInfo::SccInfo &SccI) {
assert(getSCCNum(BB, SccI) == SccNum);
// Lazily compute the set of headers for a given SCC and cache the results
// in the SccHeaderMap.
if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
SccI.SccHeaders.resize(SccNum + 1);
auto &HeaderMap = SccI.SccHeaders[SccNum];
bool Inserted;
BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
if (Inserted) {
bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
[&](const BasicBlock *Pred) {
return getSCCNum(Pred, SccI) != SccNum;
});
HeaderMapIt->second = IsHeader;
return IsHeader;
} else
return HeaderMapIt->second;
}
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
const LoopInfo &LI,
SccInfo &SccI) {
int SccNum;
Loop *L = LI.getLoopFor(BB);
if (!L) {
SccNum = getSCCNum(BB, SccI);
if (SccNum < 0)
return false;
}
SmallVector<unsigned, 8> BackEdges;
SmallVector<unsigned, 8> ExitingEdges;
SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
// Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
// irreducible loops.
if (L) {
if (!L->contains(*I))
ExitingEdges.push_back(I.getSuccessorIndex());
else if (L->getHeader() == *I)
BackEdges.push_back(I.getSuccessorIndex());
else
InEdges.push_back(I.getSuccessorIndex());
} else {
if (getSCCNum(*I, SccI) != SccNum)
ExitingEdges.push_back(I.getSuccessorIndex());
else if (isSCCHeader(*I, SccNum, SccI))
BackEdges.push_back(I.getSuccessorIndex());
else
InEdges.push_back(I.getSuccessorIndex());
}
}
if (BackEdges.empty() && ExitingEdges.empty())
return false;
// Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
// normalize them so that they sum up to one.
BranchProbability Probs[] = {BranchProbability::getZero(),
BranchProbability::getZero(),
BranchProbability::getZero()};
unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
(InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
(ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
if (!BackEdges.empty())
Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
if (!InEdges.empty())
Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
if (!ExitingEdges.empty())
Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom);
if (uint32_t numBackEdges = BackEdges.size()) {
auto Prob = Probs[0] / numBackEdges;
for (unsigned SuccIdx : BackEdges)
setEdgeProbability(BB, SuccIdx, Prob);
}
if (uint32_t numInEdges = InEdges.size()) {
auto Prob = Probs[1] / numInEdges;
for (unsigned SuccIdx : InEdges)
setEdgeProbability(BB, SuccIdx, Prob);
}
if (uint32_t numExitingEdges = ExitingEdges.size()) {
auto Prob = Probs[2] / numExitingEdges;
for (unsigned SuccIdx : ExitingEdges)
setEdgeProbability(BB, SuccIdx, Prob);
}
return true;
}
bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
const TargetLibraryInfo *TLI) {
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI)
return false;
Value *RHS = CI->getOperand(1);
ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
if (!CV)
return false;
// If the LHS is the result of AND'ing a value with a single bit bitmask,
// we don't have information about probabilities.
if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
if (LHS->getOpcode() == Instruction::And)
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
if (AndRHS->getValue().isPowerOf2())
return false;
// Check if the LHS is the return value of a library function
LibFunc Func = NumLibFuncs;
if (TLI)
if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
if (Function *CalledFn = Call->getCalledFunction())
TLI->getLibFunc(*CalledFn, Func);
bool isProb;
if (Func == LibFunc_strcasecmp ||
Func == LibFunc_strcmp ||
Func == LibFunc_strncasecmp ||
Func == LibFunc_strncmp ||
Func == LibFunc_memcmp) {
// strcmp and similar functions return zero, negative, or positive, if the
// first string is equal, less, or greater than the second. We consider it
// likely that the strings are not equal, so a comparison with zero is
// probably false, but also a comparison with any other number is also
// probably false given that what exactly is returned for nonzero values is
// not specified. Any kind of comparison other than equality we know
// nothing about.
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
isProb = false;
break;
case CmpInst::ICMP_NE:
isProb = true;
break;
default:
return false;
}
} else if (CV->isZero()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != 0 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SLT:
// X < 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_SGT:
// X > 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
// InstCombine canonicalizes X <= 0 into X < 1.
// X <= 0 -> Unlikely
isProb = false;
} else if (CV->isMinusOne()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == -1 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != -1 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SGT:
// InstCombine canonicalizes X >= 0 into X > -1.
// X >= 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
return true;
}
bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
if (!FCmp)
return false;
bool isProb;
if (FCmp->isEquality()) {
// f1 == f2 -> Unlikely
// f1 != f2 -> Likely
isProb = !FCmp->isTrueWhenEqual();
} else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
// !isnan -> Likely
isProb = true;
} else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
// isnan -> Unlikely
isProb = false;
} else {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
return true;
}
bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
if (!II)
return false;
BranchProbability TakenProb(IH_TAKEN_WEIGHT,
IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
return true;
}
void BranchProbabilityInfo::releaseMemory() {
Probs.clear();
}
void BranchProbabilityInfo::print(raw_ostream &OS) const {
OS << "---- Branch Probabilities ----\n";
// We print the probabilities from the last function the analysis ran over,
// or the function it is currently running over.
assert(LastF && "Cannot print prior to running over a function");
for (const auto &BI : *LastF) {
for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
++SI) {
printEdgeProbability(OS << " ", &BI, *SI);
}
}
}
bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
// Hot probability is at least 4/5 = 80%
// FIXME: Compare against a static "hot" BranchProbability.
return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
}
const BasicBlock *
BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
auto MaxProb = BranchProbability::getZero();
const BasicBlock *MaxSucc = nullptr;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
const BasicBlock *Succ = *I;
auto Prob = getEdgeProbability(BB, Succ);
if (Prob > MaxProb) {
MaxProb = Prob;
MaxSucc = Succ;
}
}
// Hot probability is at least 4/5 = 80%
if (MaxProb > BranchProbability(4, 5))
return MaxSucc;
return nullptr;
}
/// Get the raw edge probability for the edge. If can't find it, return a
/// default probability 1/N where N is the number of successors. Here an edge is
/// specified using PredBlock and an
/// index to the successors.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
unsigned IndexInSuccessors) const {
auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
if (I != Probs.end())
return I->second;
return {1,
static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))};
}
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
succ_const_iterator Dst) const {
return getEdgeProbability(Src, Dst.getSuccessorIndex());
}
/// Get the raw edge probability calculated for the block pair. This returns the
/// sum of all raw edge probabilities from Src to Dst.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
const BasicBlock *Dst) const {
auto Prob = BranchProbability::getZero();
bool FoundProb = false;
for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
if (*I == Dst) {
auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
if (MapI != Probs.end()) {
FoundProb = true;
Prob += MapI->second;
}
}
uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
return FoundProb ? Prob : BranchProbability(1, succ_num);
}
/// Set the edge probability for a given edge specified by PredBlock and an
/// index to the successors.
void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
unsigned IndexInSuccessors,
BranchProbability Prob) {
Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
Handles.insert(BasicBlockCallbackVH(Src, this));
DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors
<< " successor probability to " << Prob << "\n");
}
raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
const BasicBlock *Src,
const BasicBlock *Dst) const {
const BranchProbability Prob = getEdgeProbability(Src, Dst);
OS << "edge " << Src->getName() << " -> " << Dst->getName()
<< " probability is " << Prob
<< (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
return OS;
}
void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
auto Key = I->first;
if (Key.first == BB)
Probs.erase(Key);
}
}
void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
const TargetLibraryInfo *TLI) {
DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
<< " ----\n\n");
LastF = &F; // Store the last function we ran on for printing.
assert(PostDominatedByUnreachable.empty());
assert(PostDominatedByColdCall.empty());
// Record SCC numbers of blocks in the CFG to identify irreducible loops.
// FIXME: We could only calculate this if the CFG is known to be irreducible
// (perhaps cache this info in LoopInfo if we can easily calculate it there?).
int SccNum = 0;
SccInfo SccI;
for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
++It, ++SccNum) {
// Ignore single-block SCCs since they either aren't loops or LoopInfo will
// catch them.
const std::vector<const BasicBlock *> &Scc = *It;
if (Scc.size() == 1)
continue;
DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
for (auto *BB : Scc) {
DEBUG(dbgs() << " " << BB->getName());
SccI.SccNums[BB] = SccNum;
}
DEBUG(dbgs() << "\n");
}
// Walk the basic blocks in post-order so that we can build up state about
// the successors of a block iteratively.
for (auto BB : post_order(&F.getEntryBlock())) {
DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
updatePostDominatedByUnreachable(BB);
updatePostDominatedByColdCall(BB);
// If there is no at least two successors, no sense to set probability.
if (BB->getTerminator()->getNumSuccessors() < 2)
continue;
if (calcMetadataWeights(BB))
continue;
if (calcUnreachableHeuristics(BB))
continue;
if (calcColdCallHeuristics(BB))
continue;
if (calcLoopBranchHeuristics(BB, LI, SccI))
continue;
if (calcPointerHeuristics(BB))
continue;
if (calcZeroHeuristics(BB, TLI))
continue;
if (calcFloatingPointHeuristics(BB))
continue;
calcInvokeHeuristics(BB);
}
PostDominatedByUnreachable.clear();
PostDominatedByColdCall.clear();
if (PrintBranchProb &&
(PrintBranchProbFuncName.empty() ||
F.getName().equals(PrintBranchProbFuncName))) {
print(dbgs());
}
}
void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
AnalysisUsage &AU) const {
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.setPreservesAll();
}
bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
BPI.calculate(F, LI, &TLI);
return false;
}
void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
const Module *) const {
BPI.print(OS);
}
AnalysisKey BranchProbabilityAnalysis::Key;
BranchProbabilityInfo
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
BranchProbabilityInfo BPI;
BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
return BPI;
}
PreservedAnalyses
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
OS << "Printing analysis results of BPI for function "
<< "'" << F.getName() << "':"
<< "\n";
AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}