Xamarin Public Jenkins (auto-signing) 468663ddbb Imported Upstream version 6.10.0.49
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
2020-01-16 16:38:04 +00:00

2047 lines
76 KiB
C

/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
* Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
#if defined(__MINGW32__) && !defined(__MINGW_EXCPT_DEFINE_PSDK) \
&& defined(__i386__) /* cannot use macros from gcconfig.h */
/* Otherwise EXCEPTION_REGISTRATION type declaration from winnt.h */
/* might be used. That declaration has "handler" callback with NTAPI */
/* attribute. The proper type (with "handler" field compatible with */
/* GC mark_ex_handler) is declared in excpt.h. The given macro is */
/* defined before any system header include. */
# define __MINGW_EXCPT_DEFINE_PSDK 1
#endif
#include "private/gc_pmark.h"
#include <stdio.h>
#if defined(MSWIN32) && defined(__GNUC__)
# include <excpt.h>
#endif
/* Make arguments appear live to compiler. Put here to minimize the */
/* risk of inlining. Used to minimize junk left in registers. */
GC_ATTR_NOINLINE
void GC_noop6(word arg1 GC_ATTR_UNUSED, word arg2 GC_ATTR_UNUSED,
word arg3 GC_ATTR_UNUSED, word arg4 GC_ATTR_UNUSED,
word arg5 GC_ATTR_UNUSED, word arg6 GC_ATTR_UNUSED)
{
/* Avoid GC_noop6 calls to be optimized away. */
# ifdef AO_CLEAR
AO_compiler_barrier(); /* to serve as a special side-effect */
# else
GC_noop1(0);
# endif
}
volatile word GC_noop_sink;
/* Single argument version, robust against whole program analysis. */
GC_ATTR_NO_SANITIZE_THREAD
GC_API void GC_CALL GC_noop1(word x)
{
GC_noop_sink = x;
}
/* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
GC_INNER unsigned GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
/* Initialize GC_obj_kinds properly and standard free lists properly. */
/* This must be done statically since they may be accessed before */
/* GC_init is called. */
/* It's done here, since we need to deal with mark descriptors. */
GC_INNER struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
/* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
/* 0 | */ GC_DS_LENGTH, FALSE, FALSE
/*, */ OK_DISCLAIM_INITZ },
/* NORMAL */ { &GC_objfreelist[0], 0,
/* 0 | */ GC_DS_LENGTH,
/* adjusted in GC_init for EXTRA_BYTES */
TRUE /* add length to descr */, TRUE
/*, */ OK_DISCLAIM_INITZ },
/* UNCOLLECTABLE */
{ &GC_uobjfreelist[0], 0,
/* 0 | */ GC_DS_LENGTH, TRUE /* add length to descr */, TRUE
/*, */ OK_DISCLAIM_INITZ },
# ifdef GC_ATOMIC_UNCOLLECTABLE
{ &GC_auobjfreelist[0], 0,
/* 0 | */ GC_DS_LENGTH, FALSE /* add length to descr */, FALSE
/*, */ OK_DISCLAIM_INITZ },
# endif
};
GC_INNER unsigned GC_n_kinds = GC_N_KINDS_INITIAL_VALUE;
# ifndef INITIAL_MARK_STACK_SIZE
# define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
/* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
/* multiple of HBLKSIZE. */
/* The incremental collector actually likes a larger */
/* size, since it wants to push all marked dirty */
/* objects before marking anything new. Currently we */
/* let it grow dynamically. */
# endif
#if !defined(GC_DISABLE_INCREMENTAL)
STATIC word GC_n_rescuing_pages = 0;
/* Number of dirty pages we marked from */
/* excludes ptrfree pages, etc. */
/* Used for logging only. */
#endif
GC_INNER size_t GC_mark_stack_size = 0;
#ifdef PARALLEL_MARK
STATIC volatile AO_t GC_first_nonempty = 0;
/* Lowest entry on mark stack */
/* that may be nonempty. */
/* Updated only by initiating */
/* thread. */
#endif
GC_INNER mark_state_t GC_mark_state = MS_NONE;
GC_INNER GC_bool GC_mark_stack_too_small = FALSE;
static struct hblk * scan_ptr;
STATIC GC_bool GC_objects_are_marked = FALSE;
/* Are there collectible marked objects in the heap? */
/* Is a collection in progress? Note that this can return true in the */
/* nonincremental case, if a collection has been abandoned and the */
/* mark state is now MS_INVALID. */
GC_INNER GC_bool GC_collection_in_progress(void)
{
return(GC_mark_state != MS_NONE);
}
/* clear all mark bits in the header */
GC_INNER void GC_clear_hdr_marks(hdr *hhdr)
{
size_t last_bit;
# ifdef AO_HAVE_load
/* Atomic access is used to avoid racing with GC_realloc. */
last_bit = FINAL_MARK_BIT((size_t)AO_load((volatile AO_t *)&hhdr->hb_sz));
# else
/* No race as GC_realloc holds the lock while updating hb_sz. */
last_bit = FINAL_MARK_BIT((size_t)hhdr->hb_sz);
# endif
BZERO(hhdr -> hb_marks, sizeof(hhdr->hb_marks));
set_mark_bit_from_hdr(hhdr, last_bit);
hhdr -> hb_n_marks = 0;
}
/* Set all mark bits in the header. Used for uncollectible blocks. */
GC_INNER void GC_set_hdr_marks(hdr *hhdr)
{
unsigned i;
size_t sz = (size_t)hhdr->hb_sz;
unsigned n_marks = (unsigned)FINAL_MARK_BIT(sz);
# ifdef USE_MARK_BYTES
for (i = 0; i <= n_marks; i += (unsigned)MARK_BIT_OFFSET(sz)) {
hhdr -> hb_marks[i] = 1;
}
# else
for (i = 0; i < divWORDSZ(n_marks + WORDSZ); ++i) {
hhdr -> hb_marks[i] = ONES;
}
# endif
# ifdef MARK_BIT_PER_OBJ
hhdr -> hb_n_marks = n_marks;
# else
hhdr -> hb_n_marks = HBLK_OBJS(sz);
# endif
}
/*
* Clear all mark bits associated with block h.
*/
static void clear_marks_for_block(struct hblk *h, word dummy GC_ATTR_UNUSED)
{
hdr * hhdr = HDR(h);
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
/* Mark bit for these is cleared only once the object is */
/* explicitly deallocated. This either frees the block, or */
/* the bit is cleared once the object is on the free list. */
GC_clear_hdr_marks(hhdr);
}
/* Slow but general routines for setting/clearing/asking about mark bits */
GC_API void GC_CALL GC_set_mark_bit(const void *p)
{
struct hblk *h = HBLKPTR(p);
hdr * hhdr = HDR(h);
word bit_no = MARK_BIT_NO((ptr_t)p - (ptr_t)h, hhdr -> hb_sz);
if (!mark_bit_from_hdr(hhdr, bit_no)) {
set_mark_bit_from_hdr(hhdr, bit_no);
++hhdr -> hb_n_marks;
}
}
GC_API void GC_CALL GC_clear_mark_bit(const void *p)
{
struct hblk *h = HBLKPTR(p);
hdr * hhdr = HDR(h);
word bit_no = MARK_BIT_NO((ptr_t)p - (ptr_t)h, hhdr -> hb_sz);
if (mark_bit_from_hdr(hhdr, bit_no)) {
size_t n_marks = hhdr -> hb_n_marks;
GC_ASSERT(n_marks != 0);
clear_mark_bit_from_hdr(hhdr, bit_no);
n_marks--;
# ifdef PARALLEL_MARK
if (n_marks != 0 || !GC_parallel)
hhdr -> hb_n_marks = n_marks;
/* Don't decrement to zero. The counts are approximate due to */
/* concurrency issues, but we need to ensure that a count of */
/* zero implies an empty block. */
# else
hhdr -> hb_n_marks = n_marks;
# endif
}
}
GC_API int GC_CALL GC_is_marked(const void *p)
{
struct hblk *h = HBLKPTR(p);
hdr * hhdr = HDR(h);
word bit_no = MARK_BIT_NO((ptr_t)p - (ptr_t)h, hhdr -> hb_sz);
return (int)mark_bit_from_hdr(hhdr, bit_no); /* 0 or 1 */
}
/*
* Clear mark bits in all allocated heap blocks. This invalidates
* the marker invariant, and sets GC_mark_state to reflect this.
* (This implicitly starts marking to reestablish the invariant.)
*/
GC_INNER void GC_clear_marks(void)
{
GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
GC_objects_are_marked = FALSE;
GC_mark_state = MS_INVALID;
scan_ptr = 0;
}
/* Initiate a garbage collection. Initiates a full collection if the */
/* mark state is invalid. */
GC_INNER void GC_initiate_gc(void)
{
GC_ASSERT(I_HOLD_LOCK());
# ifndef GC_DISABLE_INCREMENTAL
if (GC_incremental) {
# ifdef CHECKSUMS
GC_read_dirty(FALSE);
# else
GC_read_dirty(GC_mark_state == MS_INVALID);
# endif
}
# endif
# ifdef CHECKSUMS
if (GC_incremental) GC_check_dirty();
# endif
# if !defined(GC_DISABLE_INCREMENTAL)
GC_n_rescuing_pages = 0;
# endif
if (GC_mark_state == MS_NONE) {
GC_mark_state = MS_PUSH_RESCUERS;
} else if (GC_mark_state != MS_INVALID) {
ABORT("Unexpected state");
} /* else this is really a full collection, and mark */
/* bits are invalid. */
scan_ptr = 0;
}
#ifdef PARALLEL_MARK
STATIC void GC_do_parallel_mark(void); /* initiate parallel marking. */
#endif /* PARALLEL_MARK */
#ifdef GC_DISABLE_INCREMENTAL
# define GC_push_next_marked_dirty(h) GC_push_next_marked(h)
#else
STATIC struct hblk * GC_push_next_marked_dirty(struct hblk *h);
/* Invoke GC_push_marked on next dirty block above h. */
/* Return a pointer just past the end of this block. */
#endif /* !GC_DISABLE_INCREMENTAL */
STATIC struct hblk * GC_push_next_marked(struct hblk *h);
/* Ditto, but also mark from clean pages. */
STATIC struct hblk * GC_push_next_marked_uncollectable(struct hblk *h);
/* Ditto, but mark only from uncollectible pages. */
static void alloc_mark_stack(size_t);
/* Perform a small amount of marking. */
/* We try to touch roughly a page of memory. */
/* Return TRUE if we just finished a mark phase. */
/* Cold_gc_frame is an address inside a GC frame that */
/* remains valid until all marking is complete. */
/* A zero value indicates that it's OK to miss some */
/* register values. */
/* We hold the allocation lock. In the case of */
/* incremental collection, the world may not be stopped.*/
#ifdef WRAP_MARK_SOME
/* For win32, this is called after we establish a structured */
/* exception handler, in case Windows unmaps one of our root */
/* segments. See below. In either case, we acquire the */
/* allocator lock long before we get here. */
STATIC GC_bool GC_mark_some_inner(ptr_t cold_gc_frame)
#else
GC_INNER GC_bool GC_mark_some(ptr_t cold_gc_frame)
#endif
{
switch(GC_mark_state) {
case MS_NONE:
break;
case MS_PUSH_RESCUERS:
if ((word)GC_mark_stack_top
>= (word)(GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2)) {
/* Go ahead and mark, even though that might cause us to */
/* see more marked dirty objects later on. Avoid this */
/* in the future. */
GC_mark_stack_too_small = TRUE;
MARK_FROM_MARK_STACK();
break;
} else {
scan_ptr = GC_push_next_marked_dirty(scan_ptr);
if (scan_ptr == 0) {
# if !defined(GC_DISABLE_INCREMENTAL)
GC_COND_LOG_PRINTF("Marked from %lu dirty pages\n",
(unsigned long)GC_n_rescuing_pages);
# endif
GC_push_roots(FALSE, cold_gc_frame);
GC_objects_are_marked = TRUE;
if (GC_mark_state != MS_INVALID) {
GC_mark_state = MS_ROOTS_PUSHED;
}
}
}
break;
case MS_PUSH_UNCOLLECTABLE:
if ((word)GC_mark_stack_top
>= (word)(GC_mark_stack + GC_mark_stack_size/4)) {
# ifdef PARALLEL_MARK
/* Avoid this, since we don't parallelize the marker */
/* here. */
if (GC_parallel) GC_mark_stack_too_small = TRUE;
# endif
MARK_FROM_MARK_STACK();
break;
} else {
scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
if (scan_ptr == 0) {
GC_push_roots(TRUE, cold_gc_frame);
GC_objects_are_marked = TRUE;
if (GC_mark_state != MS_INVALID) {
GC_mark_state = MS_ROOTS_PUSHED;
}
}
}
break;
case MS_ROOTS_PUSHED:
# ifdef PARALLEL_MARK
/* In the incremental GC case, this currently doesn't */
/* quite do the right thing, since it runs to */
/* completion. On the other hand, starting a */
/* parallel marker is expensive, so perhaps it is */
/* the right thing? */
/* Eventually, incremental marking should run */
/* asynchronously in multiple threads, without grabbing */
/* the allocation lock. */
if (GC_parallel) {
GC_do_parallel_mark();
GC_ASSERT((word)GC_mark_stack_top < (word)GC_first_nonempty);
GC_mark_stack_top = GC_mark_stack - 1;
if (GC_mark_stack_too_small) {
alloc_mark_stack(2*GC_mark_stack_size);
}
if (GC_mark_state == MS_ROOTS_PUSHED) {
GC_mark_state = MS_NONE;
return(TRUE);
}
break;
}
# endif
if ((word)GC_mark_stack_top >= (word)GC_mark_stack) {
MARK_FROM_MARK_STACK();
break;
} else {
GC_mark_state = MS_NONE;
if (GC_mark_stack_too_small) {
alloc_mark_stack(2*GC_mark_stack_size);
}
return(TRUE);
}
case MS_INVALID:
case MS_PARTIALLY_INVALID:
if (!GC_objects_are_marked) {
GC_mark_state = MS_PUSH_UNCOLLECTABLE;
break;
}
if ((word)GC_mark_stack_top >= (word)GC_mark_stack) {
MARK_FROM_MARK_STACK();
break;
}
if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
/* About to start a heap scan for marked objects. */
/* Mark stack is empty. OK to reallocate. */
if (GC_mark_stack_too_small) {
alloc_mark_stack(2*GC_mark_stack_size);
}
GC_mark_state = MS_PARTIALLY_INVALID;
}
scan_ptr = GC_push_next_marked(scan_ptr);
if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
GC_push_roots(TRUE, cold_gc_frame);
GC_objects_are_marked = TRUE;
if (GC_mark_state != MS_INVALID) {
GC_mark_state = MS_ROOTS_PUSHED;
}
}
break;
default:
ABORT("GC_mark_some: bad state");
}
return(FALSE);
}
#ifdef WRAP_MARK_SOME
# if (defined(MSWIN32) || defined(MSWINCE)) && defined(__GNUC__)
typedef struct {
EXCEPTION_REGISTRATION ex_reg;
void *alt_path;
} ext_ex_regn;
static EXCEPTION_DISPOSITION mark_ex_handler(
struct _EXCEPTION_RECORD *ex_rec,
void *est_frame,
struct _CONTEXT *context,
void *disp_ctxt GC_ATTR_UNUSED)
{
if (ex_rec->ExceptionCode == STATUS_ACCESS_VIOLATION) {
ext_ex_regn *xer = (ext_ex_regn *)est_frame;
/* Unwind from the inner function assuming the standard */
/* function prologue. */
/* Assumes code has not been compiled with */
/* -fomit-frame-pointer. */
context->Esp = context->Ebp;
context->Ebp = *((DWORD *)context->Esp);
context->Esp = context->Esp - 8;
/* Resume execution at the "real" handler within the */
/* wrapper function. */
context->Eip = (DWORD )(xer->alt_path);
return ExceptionContinueExecution;
} else {
return ExceptionContinueSearch;
}
}
# endif /* __GNUC__ && MSWIN32 */
GC_INNER GC_bool GC_mark_some(ptr_t cold_gc_frame)
{
GC_bool ret_val;
# if defined(MSWIN32) || defined(MSWINCE)
# ifndef __GNUC__
/* Windows 98 appears to asynchronously create and remove */
/* writable memory mappings, for reasons we haven't yet */
/* understood. Since we look for writable regions to */
/* determine the root set, we may try to mark from an */
/* address range that disappeared since we started the */
/* collection. Thus we have to recover from faults here. */
/* This code does not appear to be necessary for Windows */
/* 95/NT/2000+. Note that this code should never generate */
/* an incremental GC write fault. */
/* This code seems to be necessary for WinCE (at least in */
/* the case we'd decide to add MEM_PRIVATE sections to */
/* data roots in GC_register_dynamic_libraries()). */
/* It's conceivable that this is the same issue with */
/* terminating threads that we see with Linux and */
/* USE_PROC_FOR_LIBRARIES. */
#ifndef NO_CRT
__try {
#endif
ret_val = GC_mark_some_inner(cold_gc_frame);
#ifndef NO_CRT
} __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
goto handle_ex;
}
#endif
# if defined(GC_WIN32_THREADS) && !defined(GC_PTHREADS)
/* With DllMain-based thread tracking, a thread may have */
/* started while we were marking. This is logically equivalent */
/* to the exception case; our results are invalid and we have */
/* to start over. This cannot be prevented since we can't */
/* block in DllMain. */
if (GC_started_thread_while_stopped()) goto handle_ex;
# endif
rm_handler:
return ret_val;
# else /* __GNUC__ */
/* Manually install an exception handler since GCC does */
/* not yet support Structured Exception Handling (SEH) on */
/* Win32. */
ext_ex_regn er;
# if GC_GNUC_PREREQ(4, 7) || GC_CLANG_PREREQ(3, 3)
# pragma GCC diagnostic push
/* Suppress "taking the address of label is non-standard" warning. */
# if defined(__clang__) || GC_GNUC_PREREQ(6, 4)
# pragma GCC diagnostic ignored "-Wpedantic"
# else
/* GCC before ~4.8 does not accept "-Wpedantic" quietly. */
# pragma GCC diagnostic ignored "-pedantic"
# endif
er.alt_path = &&handle_ex;
# pragma GCC diagnostic pop
# else /* pragma diagnostic is not supported */
er.alt_path = &&handle_ex;
# endif
er.ex_reg.handler = mark_ex_handler;
__asm__ __volatile__ ("movl %%fs:0, %0" : "=r" (er.ex_reg.prev));
__asm__ __volatile__ ("movl %0, %%fs:0" : : "r" (&er));
ret_val = GC_mark_some_inner(cold_gc_frame);
/* Prevent GCC from considering the following code unreachable */
/* and thus eliminating it. */
if (er.alt_path == 0)
goto handle_ex;
# if defined(GC_WIN32_THREADS) && !defined(GC_PTHREADS)
if (GC_started_thread_while_stopped())
goto handle_ex;
# endif
rm_handler:
/* Uninstall the exception handler */
__asm__ __volatile__ ("mov %0, %%fs:0" : : "r" (er.ex_reg.prev));
return ret_val;
# endif /* __GNUC__ */
# else /* !MSWIN32 */
/* Here we are handling the case in which /proc is used for root */
/* finding, and we have threads. We may find a stack for a */
/* thread that is in the process of exiting, and disappears */
/* while we are marking it. This seems extremely difficult to */
/* avoid otherwise. */
if (GC_incremental) {
WARN("Incremental GC incompatible with /proc roots\n", 0);
/* I'm not sure if this could still work ... */
}
GC_setup_temporary_fault_handler();
if(SETJMP(GC_jmp_buf) != 0) goto handle_ex;
ret_val = GC_mark_some_inner(cold_gc_frame);
rm_handler:
GC_reset_fault_handler();
return ret_val;
# endif /* !MSWIN32 */
handle_ex:
/* Exception handler starts here for all cases. */
{
static word warned_gc_no;
/* Warn about it at most once per collection. */
if (warned_gc_no != GC_gc_no) {
warned_gc_no = GC_gc_no;
WARN("Caught ACCESS_VIOLATION in marker;"
" memory mapping disappeared\n", 0);
}
}
/* We have bad roots on the stack. Discard mark stack. */
/* Rescan from marked objects. Redetermine roots. */
# ifdef REGISTER_LIBRARIES_EARLY
START_WORLD();
GC_cond_register_dynamic_libraries();
STOP_WORLD();
# endif
GC_invalidate_mark_state();
scan_ptr = 0;
ret_val = FALSE;
goto rm_handler; /* Back to platform-specific code. */
}
#endif /* WRAP_MARK_SOME */
GC_INNER void GC_invalidate_mark_state(void)
{
GC_mark_state = MS_INVALID;
GC_mark_stack_top = GC_mark_stack-1;
}
GC_INNER mse * GC_signal_mark_stack_overflow(mse *msp)
{
GC_mark_state = MS_INVALID;
# ifdef PARALLEL_MARK
/* We are using a local_mark_stack in parallel mode, so */
/* do not signal the global mark stack to be resized. */
/* That will be done if required in GC_return_mark_stack. */
if (!GC_parallel)
GC_mark_stack_too_small = TRUE;
# else
GC_mark_stack_too_small = TRUE;
# endif
GC_COND_LOG_PRINTF("Mark stack overflow; current size = %lu entries\n",
(unsigned long)GC_mark_stack_size);
return(msp - GC_MARK_STACK_DISCARDS);
}
/*
* Mark objects pointed to by the regions described by
* mark stack entries between mark_stack and mark_stack_top,
* inclusive. Assumes the upper limit of a mark stack entry
* is never 0. A mark stack entry never has size 0.
* We try to traverse on the order of a hblk of memory before we return.
* Caller is responsible for calling this until the mark stack is empty.
* Note that this is the most performance critical routine in the
* collector. Hence it contains all sorts of ugly hacks to speed
* things up. In particular, we avoid procedure calls on the common
* path, we take advantage of peculiarities of the mark descriptor
* encoding, we optionally maintain a cache for the block address to
* header mapping, we prefetch when an object is "grayed", etc.
*/
GC_ATTR_NO_SANITIZE_ADDR GC_ATTR_NO_SANITIZE_MEMORY GC_ATTR_NO_SANITIZE_THREAD
GC_INNER mse * GC_mark_from(mse *mark_stack_top, mse *mark_stack,
mse *mark_stack_limit)
{
signed_word credit = HBLKSIZE; /* Remaining credit for marking work */
ptr_t current_p; /* Pointer to current candidate ptr. */
word current; /* Candidate pointer. */
ptr_t limit = 0; /* (Incl) limit of current candidate range. */
word descr;
ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
DECLARE_HDR_CACHE;
# define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
GC_objects_are_marked = TRUE;
INIT_HDR_CACHE;
# ifdef OS2 /* Use untweaked version to circumvent compiler problem */
while ((word)mark_stack_top >= (word)mark_stack && credit >= 0)
# else
while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit) >= 0)
# endif
{
current_p = mark_stack_top -> mse_start;
descr = mark_stack_top -> mse_descr.w;
retry:
/* current_p and descr describe the current object. */
/* *mark_stack_top is vacant. */
/* The following is 0 only for small objects described by a simple */
/* length descriptor. For many applications this is the common */
/* case, so we try to detect it quickly. */
if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
word tag = descr & GC_DS_TAGS;
GC_STATIC_ASSERT(GC_DS_TAGS == 0x3);
switch(tag) {
case GC_DS_LENGTH:
/* Large length. */
/* Process part of the range to avoid pushing too much on the */
/* stack. */
GC_ASSERT(descr < (word)GC_greatest_plausible_heap_addr
- (word)GC_least_plausible_heap_addr
|| (word)(current_p + descr)
<= (word)GC_least_plausible_heap_addr
|| (word)current_p >= (word)GC_greatest_plausible_heap_addr);
# ifdef PARALLEL_MARK
# define SHARE_BYTES 2048
if (descr > SHARE_BYTES && GC_parallel
&& (word)mark_stack_top < (word)(mark_stack_limit - 1)) {
word new_size = (descr/2) & ~(word)(sizeof(word)-1);
mark_stack_top -> mse_start = current_p;
mark_stack_top -> mse_descr.w = new_size + sizeof(word);
/* makes sure we handle */
/* misaligned pointers. */
mark_stack_top++;
# ifdef ENABLE_TRACE
if ((word)GC_trace_addr >= (word)current_p
&& (word)GC_trace_addr < (word)(current_p + descr)) {
GC_log_printf("GC #%u: large section; start %p, len %lu,"
" splitting (parallel) at %p\n",
(unsigned)GC_gc_no, (void *)current_p,
(unsigned long)descr,
(void *)(current_p + new_size));
}
# endif
current_p += new_size;
descr -= new_size;
goto retry;
}
# endif /* PARALLEL_MARK */
mark_stack_top -> mse_start =
limit = current_p + WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
mark_stack_top -> mse_descr.w =
descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
# ifdef ENABLE_TRACE
if ((word)GC_trace_addr >= (word)current_p
&& (word)GC_trace_addr < (word)(current_p + descr)) {
GC_log_printf("GC #%u: large section; start %p, len %lu,"
" splitting at %p\n",
(unsigned)GC_gc_no, (void *)current_p,
(unsigned long)descr, (void *)limit);
}
# endif
/* Make sure that pointers overlapping the two ranges are */
/* considered. */
limit += sizeof(word) - ALIGNMENT;
break;
case GC_DS_BITMAP:
mark_stack_top--;
# ifdef ENABLE_TRACE
if ((word)GC_trace_addr >= (word)current_p
&& (word)GC_trace_addr < (word)(current_p
+ WORDS_TO_BYTES(WORDSZ-2))) {
GC_log_printf("GC #%u: tracing from %p bitmap descr %lu\n",
(unsigned)GC_gc_no, (void *)current_p,
(unsigned long)descr);
}
# endif /* ENABLE_TRACE */
descr &= ~GC_DS_TAGS;
credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
while (descr != 0) {
if ((descr & SIGNB) != 0) {
current = *(word *)current_p;
FIXUP_POINTER(current);
if (current >= (word)least_ha && current < (word)greatest_ha) {
PREFETCH((ptr_t)current);
# ifdef ENABLE_TRACE
if (GC_trace_addr == current_p) {
GC_log_printf("GC #%u: considering(3) %p -> %p\n",
(unsigned)GC_gc_no, (void *)current_p,
(void *)current);
}
# endif /* ENABLE_TRACE */
PUSH_CONTENTS((ptr_t)current, mark_stack_top,
mark_stack_limit, current_p);
}
}
descr <<= 1;
current_p += sizeof(word);
}
continue;
case GC_DS_PROC:
mark_stack_top--;
# ifdef ENABLE_TRACE
if ((word)GC_trace_addr >= (word)current_p
&& GC_base(current_p) != 0
&& GC_base(current_p) == GC_base(GC_trace_addr)) {
GC_log_printf("GC #%u: tracing from %p, proc descr %lu\n",
(unsigned)GC_gc_no, (void *)current_p,
(unsigned long)descr);
}
# endif /* ENABLE_TRACE */
credit -= GC_PROC_BYTES;
mark_stack_top = (*PROC(descr))((word *)current_p, mark_stack_top,
mark_stack_limit, ENV(descr));
continue;
case GC_DS_PER_OBJECT:
if ((signed_word)descr >= 0) {
/* Descriptor is in the object. */
descr = *(word *)(current_p + descr - GC_DS_PER_OBJECT);
} else {
/* Descriptor is in type descriptor pointed to by first */
/* word in object. */
ptr_t type_descr = *(ptr_t *)current_p;
/* type_descr is either a valid pointer to the descriptor */
/* structure, or this object was on a free list. */
/* If it was anything but the last object on the free list, */
/* we will misinterpret the next object on the free list as */
/* the type descriptor, and get a 0 GC descriptor, which */
/* is ideal. Unfortunately, we need to check for the last */
/* object case explicitly. */
if (EXPECT(0 == type_descr, FALSE)) {
mark_stack_top--;
continue;
}
descr = *(word *)(type_descr
- ((signed_word)descr + (GC_INDIR_PER_OBJ_BIAS
- GC_DS_PER_OBJECT)));
}
if (0 == descr) {
/* Can happen either because we generated a 0 descriptor */
/* or we saw a pointer to a free object. */
mark_stack_top--;
continue;
}
goto retry;
}
} else /* Small object with length descriptor */ {
mark_stack_top--;
# ifndef SMALL_CONFIG
if (descr < sizeof(word))
continue;
# endif
# ifdef ENABLE_TRACE
if ((word)GC_trace_addr >= (word)current_p
&& (word)GC_trace_addr < (word)(current_p + descr)) {
GC_log_printf("GC #%u: small object; start %p, len %lu\n",
(unsigned)GC_gc_no, (void *)current_p,
(unsigned long)descr);
}
# endif
limit = current_p + (word)descr;
}
/* The simple case in which we're scanning a range. */
GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
credit -= limit - current_p;
limit -= sizeof(word);
{
# define PREF_DIST 4
# ifndef SMALL_CONFIG
word deferred;
/* Try to prefetch the next pointer to be examined ASAP. */
/* Empirically, this also seems to help slightly without */
/* prefetches, at least on linux/X86. Presumably this loop */
/* ends up with less register pressure, and gcc thus ends up */
/* generating slightly better code. Overall gcc code quality */
/* for this loop is still not great. */
for(;;) {
PREFETCH(limit - PREF_DIST*CACHE_LINE_SIZE);
GC_ASSERT((word)limit >= (word)current_p);
deferred = *(word *)limit;
FIXUP_POINTER(deferred);
limit -= ALIGNMENT;
if (deferred >= (word)least_ha && deferred < (word)greatest_ha) {
PREFETCH((ptr_t)deferred);
break;
}
if ((word)current_p > (word)limit) goto next_object;
/* Unroll once, so we don't do too many of the prefetches */
/* based on limit. */
deferred = *(word *)limit;
FIXUP_POINTER(deferred);
limit -= ALIGNMENT;
if (deferred >= (word)least_ha && deferred < (word)greatest_ha) {
PREFETCH((ptr_t)deferred);
break;
}
if ((word)current_p > (word)limit) goto next_object;
}
# endif
while ((word)current_p <= (word)limit) {
/* Empirically, unrolling this loop doesn't help a lot. */
/* Since PUSH_CONTENTS expands to a lot of code, */
/* we don't. */
current = *(word *)current_p;
FIXUP_POINTER(current);
PREFETCH(current_p + PREF_DIST*CACHE_LINE_SIZE);
if (current >= (word)least_ha && current < (word)greatest_ha) {
/* Prefetch the contents of the object we just pushed. It's */
/* likely we will need them soon. */
PREFETCH((ptr_t)current);
# ifdef ENABLE_TRACE
if (GC_trace_addr == current_p) {
GC_log_printf("GC #%u: considering(1) %p -> %p\n",
(unsigned)GC_gc_no, (void *)current_p,
(void *)current);
}
# endif /* ENABLE_TRACE */
PUSH_CONTENTS((ptr_t)current, mark_stack_top,
mark_stack_limit, current_p);
}
current_p += ALIGNMENT;
}
# ifndef SMALL_CONFIG
/* We still need to mark the entry we previously prefetched. */
/* We already know that it passes the preliminary pointer */
/* validity test. */
# ifdef ENABLE_TRACE
if (GC_trace_addr == current_p) {
GC_log_printf("GC #%u: considering(2) %p -> %p\n",
(unsigned)GC_gc_no, (void *)current_p,
(void *)deferred);
}
# endif /* ENABLE_TRACE */
PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
mark_stack_limit, current_p);
next_object:;
# endif
}
}
return mark_stack_top;
}
#ifdef PARALLEL_MARK
STATIC GC_bool GC_help_wanted = FALSE; /* Protected by mark lock */
STATIC unsigned GC_helper_count = 0; /* Number of running helpers. */
/* Protected by mark lock */
STATIC unsigned GC_active_count = 0; /* Number of active helpers. */
/* Protected by mark lock */
/* May increase and decrease */
/* within each mark cycle. But */
/* once it returns to 0, it */
/* stays zero for the cycle. */
GC_INNER word GC_mark_no = 0;
static mse *main_local_mark_stack;
#ifdef LINT2
# define LOCAL_MARK_STACK_SIZE (HBLKSIZE / 8)
#else
# define LOCAL_MARK_STACK_SIZE HBLKSIZE
/* Under normal circumstances, this is big enough to guarantee */
/* we don't overflow half of it in a single call to */
/* GC_mark_from. */
#endif
/* Wait all markers to finish initialization (i.e. store */
/* marker_[b]sp, marker_mach_threads, GC_marker_Id). */
GC_INNER void GC_wait_for_markers_init(void)
{
signed_word count;
if (GC_markers_m1 == 0)
return;
/* Allocate the local mark stack for the thread that holds GC lock. */
# ifndef CAN_HANDLE_FORK
GC_ASSERT(NULL == main_local_mark_stack);
# else
if (NULL == main_local_mark_stack)
# endif
{
size_t bytes_to_get =
ROUNDUP_PAGESIZE_IF_MMAP(LOCAL_MARK_STACK_SIZE * sizeof(mse));
main_local_mark_stack = (mse *)GET_MEM(bytes_to_get);
if (NULL == main_local_mark_stack)
ABORT("Insufficient memory for main local_mark_stack");
GC_add_to_our_memory((ptr_t)main_local_mark_stack, bytes_to_get);
}
/* Reuse marker lock and builders count to synchronize */
/* marker threads startup. */
GC_acquire_mark_lock();
GC_fl_builder_count += GC_markers_m1;
count = GC_fl_builder_count;
GC_release_mark_lock();
if (count != 0) {
GC_ASSERT(count > 0);
GC_wait_for_reclaim();
}
}
/* Steal mark stack entries starting at mse low into mark stack local */
/* until we either steal mse high, or we have max entries. */
/* Return a pointer to the top of the local mark stack. */
/* *next is replaced by a pointer to the next unscanned mark stack */
/* entry. */
STATIC mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
unsigned max, mse **next)
{
mse *p;
mse *top = local - 1;
unsigned i = 0;
GC_ASSERT((word)high >= (word)(low - 1)
&& (word)(high - low + 1) <= GC_mark_stack_size);
for (p = low; (word)p <= (word)high && i <= max; ++p) {
word descr = (word)AO_load(&p->mse_descr.ao);
if (descr != 0) {
/* Must be ordered after read of descr: */
AO_store_release_write(&p->mse_descr.ao, 0);
/* More than one thread may get this entry, but that's only */
/* a minor performance problem. */
++top;
top -> mse_descr.w = descr;
top -> mse_start = p -> mse_start;
GC_ASSERT((descr & GC_DS_TAGS) != GC_DS_LENGTH
|| descr < (word)GC_greatest_plausible_heap_addr
- (word)GC_least_plausible_heap_addr
|| (word)(p->mse_start + descr)
<= (word)GC_least_plausible_heap_addr
|| (word)p->mse_start
>= (word)GC_greatest_plausible_heap_addr);
/* If this is a big object, count it as */
/* size/256 + 1 objects. */
++i;
if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (int)(descr >> 8);
}
}
*next = p;
return top;
}
/* Copy back a local mark stack. */
/* low and high are inclusive bounds. */
STATIC void GC_return_mark_stack(mse * low, mse * high)
{
mse * my_top;
mse * my_start;
size_t stack_size;
if ((word)high < (word)low) return;
stack_size = high - low + 1;
GC_acquire_mark_lock();
my_top = GC_mark_stack_top; /* Concurrent modification impossible. */
my_start = my_top + 1;
if ((word)(my_start - GC_mark_stack + stack_size)
> (word)GC_mark_stack_size) {
GC_COND_LOG_PRINTF("No room to copy back mark stack\n");
GC_mark_state = MS_INVALID;
GC_mark_stack_too_small = TRUE;
/* We drop the local mark stack. We'll fix things later. */
} else {
BCOPY(low, my_start, stack_size * sizeof(mse));
GC_ASSERT((mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top))
== my_top);
AO_store_release_write((volatile AO_t *)(&GC_mark_stack_top),
(AO_t)(my_top + stack_size));
/* Ensures visibility of previously written stack contents. */
}
GC_release_mark_lock();
GC_notify_all_marker();
}
#ifndef N_LOCAL_ITERS
# define N_LOCAL_ITERS 1
#endif
/* This function is only called when the local */
/* and the main mark stacks are both empty. */
static GC_bool has_inactive_helpers(void)
{
GC_bool res;
GC_acquire_mark_lock();
res = GC_active_count < GC_helper_count;
GC_release_mark_lock();
return res;
}
/* Mark from the local mark stack. */
/* On return, the local mark stack is empty. */
/* But this may be achieved by copying the */
/* local mark stack back into the global one. */
/* We do not hold the mark lock. */
STATIC void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
{
unsigned n;
for (;;) {
for (n = 0; n < N_LOCAL_ITERS; ++n) {
local_top = GC_mark_from(local_top, local_mark_stack,
local_mark_stack + LOCAL_MARK_STACK_SIZE);
if ((word)local_top < (word)local_mark_stack) return;
if ((word)(local_top - local_mark_stack)
>= LOCAL_MARK_STACK_SIZE / 2) {
GC_return_mark_stack(local_mark_stack, local_top);
return;
}
}
if ((word)AO_load((volatile AO_t *)&GC_mark_stack_top)
< (word)AO_load(&GC_first_nonempty)
&& (word)local_top > (word)(local_mark_stack + 1)
&& has_inactive_helpers()) {
/* Try to share the load, since the main stack is empty, */
/* and helper threads are waiting for a refill. */
/* The entries near the bottom of the stack are likely */
/* to require more work. Thus we return those, even though */
/* it's harder. */
mse * new_bottom = local_mark_stack
+ (local_top - local_mark_stack)/2;
GC_ASSERT((word)new_bottom > (word)local_mark_stack
&& (word)new_bottom < (word)local_top);
GC_return_mark_stack(local_mark_stack, new_bottom - 1);
memmove(local_mark_stack, new_bottom,
(local_top - new_bottom + 1) * sizeof(mse));
local_top -= (new_bottom - local_mark_stack);
}
}
}
#ifndef ENTRIES_TO_GET
# define ENTRIES_TO_GET 5
#endif
/* Mark using the local mark stack until the global mark stack is empty */
/* and there are no active workers. Update GC_first_nonempty to reflect */
/* progress. Caller holds the mark lock. */
/* Caller has already incremented GC_helper_count. We decrement it, */
/* and maintain GC_active_count. */
STATIC void GC_mark_local(mse *local_mark_stack, int id)
{
mse * my_first_nonempty;
GC_active_count++;
my_first_nonempty = (mse *)AO_load(&GC_first_nonempty);
GC_ASSERT((word)GC_mark_stack <= (word)my_first_nonempty);
GC_ASSERT((word)my_first_nonempty
<= (word)AO_load((volatile AO_t *)&GC_mark_stack_top) + sizeof(mse));
GC_VERBOSE_LOG_PRINTF("Starting mark helper %d\n", id);
GC_release_mark_lock();
for (;;) {
size_t n_on_stack;
unsigned n_to_get;
mse * my_top;
mse * local_top;
mse * global_first_nonempty = (mse *)AO_load(&GC_first_nonempty);
GC_ASSERT((word)my_first_nonempty >= (word)GC_mark_stack &&
(word)my_first_nonempty <=
(word)AO_load((volatile AO_t *)&GC_mark_stack_top)
+ sizeof(mse));
GC_ASSERT((word)global_first_nonempty >= (word)GC_mark_stack);
if ((word)my_first_nonempty < (word)global_first_nonempty) {
my_first_nonempty = global_first_nonempty;
} else if ((word)global_first_nonempty < (word)my_first_nonempty) {
(void)AO_compare_and_swap(&GC_first_nonempty,
(AO_t)global_first_nonempty,
(AO_t)my_first_nonempty);
/* If this fails, we just go ahead, without updating */
/* GC_first_nonempty. */
}
/* Perhaps we should also update GC_first_nonempty, if it */
/* is less. But that would require using atomic updates. */
my_top = (mse *)AO_load_acquire((volatile AO_t *)(&GC_mark_stack_top));
if ((word)my_top < (word)my_first_nonempty) {
GC_acquire_mark_lock();
my_top = GC_mark_stack_top;
/* Asynchronous modification impossible here, */
/* since we hold mark lock. */
n_on_stack = my_top - my_first_nonempty + 1;
if (0 == n_on_stack) {
GC_active_count--;
GC_ASSERT(GC_active_count <= GC_helper_count);
/* Other markers may redeposit objects */
/* on the stack. */
if (0 == GC_active_count) GC_notify_all_marker();
while (GC_active_count > 0
&& (word)AO_load(&GC_first_nonempty)
> (word)GC_mark_stack_top) {
/* We will be notified if either GC_active_count */
/* reaches zero, or if more objects are pushed on */
/* the global mark stack. */
GC_wait_marker();
}
if (GC_active_count == 0
&& (word)AO_load(&GC_first_nonempty)
> (word)GC_mark_stack_top) {
GC_bool need_to_notify = FALSE;
/* The above conditions can't be falsified while we */
/* hold the mark lock, since neither */
/* GC_active_count nor GC_mark_stack_top can */
/* change. GC_first_nonempty can only be */
/* incremented asynchronously. Thus we know that */
/* both conditions actually held simultaneously. */
GC_helper_count--;
if (0 == GC_helper_count) need_to_notify = TRUE;
GC_VERBOSE_LOG_PRINTF("Finished mark helper %d\n", id);
if (need_to_notify) GC_notify_all_marker();
return;
}
/* else there's something on the stack again, or */
/* another helper may push something. */
GC_active_count++;
GC_ASSERT(GC_active_count > 0);
GC_release_mark_lock();
continue;
} else {
GC_release_mark_lock();
}
} else {
n_on_stack = my_top - my_first_nonempty + 1;
}
n_to_get = ENTRIES_TO_GET;
if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
local_mark_stack, n_to_get,
&my_first_nonempty);
GC_ASSERT((word)my_first_nonempty >= (word)GC_mark_stack &&
(word)my_first_nonempty <=
(word)AO_load((volatile AO_t *)&GC_mark_stack_top)
+ sizeof(mse));
GC_do_local_mark(local_mark_stack, local_top);
}
}
/* Perform Parallel mark. */
/* We hold the GC lock, not the mark lock. */
/* Currently runs until the mark stack is */
/* empty. */
STATIC void GC_do_parallel_mark(void)
{
GC_acquire_mark_lock();
GC_ASSERT(I_HOLD_LOCK());
/* This could be a GC_ASSERT, but it seems safer to keep it on */
/* all the time, especially since it's cheap. */
if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
ABORT("Tried to start parallel mark in bad state");
GC_VERBOSE_LOG_PRINTF("Starting marking for mark phase number %lu\n",
(unsigned long)GC_mark_no);
GC_first_nonempty = (AO_t)GC_mark_stack;
GC_active_count = 0;
GC_helper_count = 1;
GC_help_wanted = TRUE;
GC_notify_all_marker();
/* Wake up potential helpers. */
GC_mark_local(main_local_mark_stack, 0);
GC_help_wanted = FALSE;
/* Done; clean up. */
while (GC_helper_count > 0) {
GC_wait_marker();
}
/* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
GC_VERBOSE_LOG_PRINTF("Finished marking for mark phase number %lu\n",
(unsigned long)GC_mark_no);
GC_mark_no++;
GC_release_mark_lock();
GC_notify_all_marker();
}
/* Try to help out the marker, if it's running. */
/* We do not hold the GC lock, but the requestor does. */
/* And we hold the mark lock. */
GC_INNER void GC_help_marker(word my_mark_no)
{
# define my_id my_id_mse.mse_descr.w
mse my_id_mse; /* align local_mark_stack explicitly */
mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
/* Note: local_mark_stack is quite big (up to 128 KiB). */
GC_ASSERT(GC_parallel);
while (GC_mark_no < my_mark_no
|| (!GC_help_wanted && GC_mark_no == my_mark_no)) {
GC_wait_marker();
}
my_id = GC_helper_count;
if (GC_mark_no != my_mark_no || my_id > (unsigned)GC_markers_m1) {
/* Second test is useful only if original threads can also */
/* act as helpers. Under Linux they can't. */
return;
}
GC_helper_count = (unsigned)my_id + 1;
GC_mark_local(local_mark_stack, (int)my_id);
/* GC_mark_local decrements GC_helper_count. */
# undef my_id
}
#endif /* PARALLEL_MARK */
GC_INNER void GC_scratch_recycle_inner(void *ptr, size_t bytes)
{
if (ptr != NULL) {
size_t page_offset = (word)ptr & (GC_page_size - 1);
size_t displ = 0;
size_t recycled_bytes;
GC_ASSERT(bytes != 0);
GC_ASSERT(GC_page_size != 0);
/* TODO: Assert correct memory flags if GWW_VDB */
if (page_offset != 0)
displ = GC_page_size - page_offset;
recycled_bytes = (bytes - displ) & ~(GC_page_size - 1);
GC_COND_LOG_PRINTF("Recycle %lu/%lu scratch-allocated bytes at %p\n",
(unsigned long)recycled_bytes, (unsigned long)bytes,
ptr);
if (recycled_bytes > 0)
GC_add_to_heap((struct hblk *)((word)ptr + displ), recycled_bytes);
}
}
/* Allocate or reallocate space for mark stack of size n entries. */
/* May silently fail. */
static void alloc_mark_stack(size_t n)
{
mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
# ifdef GWW_VDB
/* Don't recycle a stack segment obtained with the wrong flags. */
/* Win32 GetWriteWatch requires the right kind of memory. */
static GC_bool GC_incremental_at_stack_alloc = FALSE;
GC_bool recycle_old = (!GC_incremental || GC_incremental_at_stack_alloc);
GC_incremental_at_stack_alloc = GC_incremental;
# else
# define recycle_old TRUE
# endif
GC_mark_stack_too_small = FALSE;
if (GC_mark_stack != NULL) {
if (new_stack != 0) {
if (recycle_old) {
/* Recycle old space */
GC_scratch_recycle_inner(GC_mark_stack,
GC_mark_stack_size * sizeof(struct GC_ms_entry));
}
GC_mark_stack = new_stack;
GC_mark_stack_size = n;
/* FIXME: Do we need some way to reset GC_mark_stack_size? */
GC_mark_stack_limit = new_stack + n;
GC_COND_LOG_PRINTF("Grew mark stack to %lu frames\n",
(unsigned long)GC_mark_stack_size);
} else {
WARN("Failed to grow mark stack to %" WARN_PRIdPTR " frames\n", n);
}
} else {
if (new_stack == 0) {
GC_err_printf("No space for mark stack\n");
EXIT();
}
GC_mark_stack = new_stack;
GC_mark_stack_size = n;
GC_mark_stack_limit = new_stack + n;
}
GC_mark_stack_top = GC_mark_stack-1;
}
GC_INNER void GC_mark_init(void)
{
alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
}
/*
* Push all locations between b and t onto the mark stack.
* b is the first location to be checked. t is one past the last
* location to be checked.
* Should only be used if there is no possibility of mark stack
* overflow.
*/
GC_API void GC_CALL GC_push_all(void *bottom, void *top)
{
word length;
bottom = (void *)(((word)bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
top = (void *)((word)top & ~(ALIGNMENT-1));
if ((word)bottom >= (word)top) return;
GC_mark_stack_top++;
if ((word)GC_mark_stack_top >= (word)GC_mark_stack_limit) {
ABORT("Unexpected mark stack overflow");
}
length = (word)top - (word)bottom;
# if GC_DS_TAGS > ALIGNMENT - 1
length += GC_DS_TAGS;
length &= ~GC_DS_TAGS;
# endif
GC_mark_stack_top -> mse_start = (ptr_t)bottom;
GC_mark_stack_top -> mse_descr.w = length;
}
#ifndef GC_DISABLE_INCREMENTAL
/* Analogous to the above, but push only those pages h with */
/* dirty_fn(h) != 0. We use GC_push_all to actually push the block. */
/* Used both to selectively push dirty pages, or to push a block in */
/* piecemeal fashion, to allow for more marking concurrency. */
/* Will not overflow mark stack if GC_push_all pushes a small fixed */
/* number of entries. (This is invoked only if GC_push_all pushes */
/* a single entry, or if it marks each object before pushing it, thus */
/* ensuring progress in the event of a stack overflow.) */
STATIC void GC_push_selected(ptr_t bottom, ptr_t top,
GC_bool (*dirty_fn)(struct hblk *))
{
struct hblk * h;
bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
if ((word)bottom >= (word)top) return;
h = HBLKPTR(bottom + HBLKSIZE);
if ((word)top <= (word)h) {
if ((*dirty_fn)(h-1)) {
GC_push_all(bottom, top);
}
return;
}
if ((*dirty_fn)(h-1)) {
GC_push_all(bottom, h);
}
while ((word)(h+1) <= (word)top) {
if ((*dirty_fn)(h)) {
if ((word)(GC_mark_stack_top - GC_mark_stack)
> 3 * GC_mark_stack_size / 4) {
/* Danger of mark stack overflow */
GC_push_all(h, top);
return;
} else {
GC_push_all(h, h + 1);
}
}
h++;
}
if ((ptr_t)h != top && (*dirty_fn)(h)) {
GC_push_all(h, top);
}
if ((word)GC_mark_stack_top >= (word)GC_mark_stack_limit) {
ABORT("Unexpected mark stack overflow");
}
}
GC_API void GC_CALL GC_push_conditional(void *bottom, void *top, int all)
{
if (!all) {
GC_push_selected((ptr_t)bottom, (ptr_t)top, GC_page_was_dirty);
} else {
# ifdef PROC_VDB
if (GC_incremental) {
/* Pages that were never dirtied cannot contain pointers. */
GC_push_selected((ptr_t)bottom, (ptr_t)top, GC_page_was_ever_dirty);
} else
# endif
/* else */ {
GC_push_all(bottom, top);
}
}
}
#else
GC_API void GC_CALL GC_push_conditional(void *bottom, void *top,
int all GC_ATTR_UNUSED)
{
GC_push_all(bottom, top);
}
#endif /* GC_DISABLE_INCREMENTAL */
#if defined(MSWIN32) || defined(MSWINCE)
void __cdecl GC_push_one(word p)
#else
void GC_push_one(word p)
#endif
{
GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
}
GC_API struct GC_ms_entry * GC_CALL GC_mark_and_push(void *obj,
mse *mark_stack_ptr,
mse *mark_stack_limit,
void ** src GC_ATTR_UNUSED)
{
hdr * hhdr;
PREFETCH(obj);
GET_HDR(obj, hhdr);
if ((EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr), FALSE)
&& (!GC_all_interior_pointers
|| NULL == (hhdr = GC_find_header((ptr_t)GC_base(obj)))))
|| EXPECT(HBLK_IS_FREE(hhdr), FALSE)) {
GC_ADD_TO_BLACK_LIST_NORMAL(obj, (ptr_t)src);
return mark_stack_ptr;
}
PUSH_CONTENTS_HDR(obj, mark_stack_ptr /* modified */, mark_stack_limit,
(ptr_t)src, hhdr, TRUE);
return mark_stack_ptr;
}
/* Mark and push (i.e. gray) a single object p onto the main */
/* mark stack. Consider p to be valid if it is an interior */
/* pointer. */
/* The object p has passed a preliminary pointer validity */
/* test, but we do not definitely know whether it is valid. */
/* Mark bits are NOT atomically updated. Thus this must be the */
/* only thread setting them. */
# if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
GC_INNER void GC_mark_and_push_stack(ptr_t p, ptr_t source)
# else
GC_INNER void GC_mark_and_push_stack(ptr_t p)
# define source ((ptr_t)0)
# endif
{
hdr * hhdr;
ptr_t r = p;
PREFETCH(p);
GET_HDR(p, hhdr);
if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr), FALSE)
&& (NULL == hhdr
|| (r = (ptr_t)GC_base(p)) == NULL
|| (hhdr = HDR(r)) == NULL)) {
GC_ADD_TO_BLACK_LIST_STACK(p, source);
return;
}
if (EXPECT(HBLK_IS_FREE(hhdr), FALSE)) {
GC_ADD_TO_BLACK_LIST_NORMAL(p, source);
return;
}
# ifdef THREADS
/* Pointer is on the stack. We may have dirtied the object */
/* it points to, but have not called GC_dirty yet. */
GC_dirty(p); /* entire object */
# endif
PUSH_CONTENTS_HDR(r, GC_mark_stack_top, GC_mark_stack_limit,
source, hhdr, FALSE);
/* We silently ignore pointers to near the end of a block, */
/* which is very mildly suboptimal. */
/* FIXME: We should probably add a header word to address */
/* this. */
}
# undef source
#ifdef TRACE_BUF
# ifndef TRACE_ENTRIES
# define TRACE_ENTRIES 1000
# endif
struct trace_entry {
char * kind;
word gc_no;
word bytes_allocd;
word arg1;
word arg2;
} GC_trace_buf[TRACE_ENTRIES];
int GC_trace_buf_ptr = 0;
void GC_add_trace_entry(char *kind, word arg1, word arg2)
{
GC_trace_buf[GC_trace_buf_ptr].kind = kind;
GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
GC_trace_buf[GC_trace_buf_ptr].bytes_allocd = GC_bytes_allocd;
GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
GC_trace_buf_ptr++;
if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
}
GC_API void GC_CALL GC_print_trace_inner(word gc_no)
{
int i;
for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
struct trace_entry *p;
if (i < 0) i = TRACE_ENTRIES-1;
p = GC_trace_buf + i;
if (p -> gc_no < gc_no || p -> kind == 0) {
return;
}
GC_printf("Trace:%s (gc:%u, bytes:%lu) 0x%lX, 0x%lX\n",
p -> kind, (unsigned)p -> gc_no,
(unsigned long)p -> bytes_allocd,
(long)p->arg1 ^ 0x80000000L, (long)p->arg2 ^ 0x80000000L);
}
GC_printf("Trace incomplete\n");
}
GC_API void GC_CALL GC_print_trace(word gc_no)
{
DCL_LOCK_STATE;
LOCK();
GC_print_trace_inner(gc_no);
UNLOCK();
}
#endif /* TRACE_BUF */
/*
* A version of GC_push_all that treats all interior pointers as valid
* and scans the entire region immediately, in case the contents
* change.
*/
GC_ATTR_NO_SANITIZE_ADDR GC_ATTR_NO_SANITIZE_MEMORY GC_ATTR_NO_SANITIZE_THREAD
GC_API void GC_CALL GC_push_all_eager(void *bottom, void *top)
{
word * b = (word *)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
word * t = (word *)(((word) top) & ~(ALIGNMENT-1));
REGISTER word *p;
REGISTER word *lim;
REGISTER ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
REGISTER ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
if (top == 0) return;
/* check all pointers in range and push if they appear */
/* to be valid. */
lim = t - 1 /* longword */;
for (p = b; (word)p <= (word)lim;
p = (word *)(((ptr_t)p) + ALIGNMENT)) {
REGISTER word q = *p;
GC_PUSH_ONE_STACK(q, p);
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
}
GC_INNER void GC_push_all_stack(ptr_t bottom, ptr_t top)
{
# if defined(THREADS) && defined(MPROTECT_VDB)
GC_push_all_eager(bottom, top);
# else
# ifndef NEED_FIXUP_POINTER
if (GC_all_interior_pointers) {
GC_push_all(bottom, top);
} else
# endif
/* else */ {
GC_push_all_eager(bottom, top);
}
# endif
}
#if defined(WRAP_MARK_SOME) && defined(PARALLEL_MARK)
/* Similar to GC_push_conditional but scans the whole region immediately. */
GC_ATTR_NO_SANITIZE_ADDR GC_ATTR_NO_SANITIZE_MEMORY
GC_ATTR_NO_SANITIZE_THREAD
GC_INNER void GC_push_conditional_eager(void *bottom, void *top,
GC_bool all)
{
word * b = (word *)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
word * t = (word *)(((word) top) & ~(ALIGNMENT-1));
REGISTER word *p;
REGISTER word *lim;
REGISTER ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
REGISTER ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
if (top == NULL)
return;
(void)all; /* TODO: If !all then scan only dirty pages. */
lim = t - 1;
for (p = b; (word)p <= (word)lim; p = (word *)((ptr_t)p + ALIGNMENT)) {
REGISTER word q = *p;
GC_PUSH_ONE_HEAP(q, p, GC_mark_stack_top);
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
}
#endif /* WRAP_MARK_SOME && PARALLEL_MARK */
#if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES) && \
defined(MARK_BIT_PER_GRANULE)
# if GC_GRANULE_WORDS == 1
# define USE_PUSH_MARKED_ACCELERATORS
# define PUSH_GRANULE(q) \
do { \
word qcontents = (q)[0]; \
GC_PUSH_ONE_HEAP(qcontents, q, GC_mark_stack_top); \
} while (0)
# elif GC_GRANULE_WORDS == 2
# define USE_PUSH_MARKED_ACCELERATORS
# define PUSH_GRANULE(q) \
do { \
word qcontents = (q)[0]; \
GC_PUSH_ONE_HEAP(qcontents, q, GC_mark_stack_top); \
qcontents = (q)[1]; \
GC_PUSH_ONE_HEAP(qcontents, (q)+1, GC_mark_stack_top); \
} while (0)
# elif GC_GRANULE_WORDS == 4
# define USE_PUSH_MARKED_ACCELERATORS
# define PUSH_GRANULE(q) \
do { \
word qcontents = (q)[0]; \
GC_PUSH_ONE_HEAP(qcontents, q, GC_mark_stack_top); \
qcontents = (q)[1]; \
GC_PUSH_ONE_HEAP(qcontents, (q)+1, GC_mark_stack_top); \
qcontents = (q)[2]; \
GC_PUSH_ONE_HEAP(qcontents, (q)+2, GC_mark_stack_top); \
qcontents = (q)[3]; \
GC_PUSH_ONE_HEAP(qcontents, (q)+3, GC_mark_stack_top); \
} while (0)
# endif
#endif /* !USE_MARK_BYTES && MARK_BIT_PER_GRANULE */
#ifdef USE_PUSH_MARKED_ACCELERATORS
/* Push all objects reachable from marked objects in the given block */
/* containing objects of size 1 granule. */
STATIC void GC_push_marked1(struct hblk *h, hdr *hhdr)
{
word * mark_word_addr = &(hhdr->hb_marks[0]);
word *p;
word *plim;
/* Allow registers to be used for some frequently accessed */
/* global variables. Otherwise aliasing issues are likely */
/* to prevent that. */
ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
mse * mark_stack_top = GC_mark_stack_top;
mse * mark_stack_limit = GC_mark_stack_limit;
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
# define GC_mark_stack_top mark_stack_top
# define GC_mark_stack_limit mark_stack_limit
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
p = (word *)(h->hb_body);
plim = (word *)(((word)h) + HBLKSIZE);
/* go through all words in block */
while ((word)p < (word)plim) {
word mark_word = *mark_word_addr++;
word *q = p;
while(mark_word != 0) {
if (mark_word & 1) {
PUSH_GRANULE(q);
}
q += GC_GRANULE_WORDS;
mark_word >>= 1;
}
p += WORDSZ*GC_GRANULE_WORDS;
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
# define GC_mark_stack_limit GC_arrays._mark_stack_limit
# define GC_mark_stack_top GC_arrays._mark_stack_top
GC_mark_stack_top = mark_stack_top;
}
#ifndef UNALIGNED_PTRS
/* Push all objects reachable from marked objects in the given block */
/* of size 2 (granules) objects. */
STATIC void GC_push_marked2(struct hblk *h, hdr *hhdr)
{
word * mark_word_addr = &(hhdr->hb_marks[0]);
word *p;
word *plim;
ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
mse * mark_stack_top = GC_mark_stack_top;
mse * mark_stack_limit = GC_mark_stack_limit;
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
# define GC_mark_stack_top mark_stack_top
# define GC_mark_stack_limit mark_stack_limit
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
p = (word *)(h->hb_body);
plim = (word *)(((word)h) + HBLKSIZE);
/* go through all words in block */
while ((word)p < (word)plim) {
word mark_word = *mark_word_addr++;
word *q = p;
while(mark_word != 0) {
if (mark_word & 1) {
PUSH_GRANULE(q);
PUSH_GRANULE(q + GC_GRANULE_WORDS);
}
q += 2 * GC_GRANULE_WORDS;
mark_word >>= 2;
}
p += WORDSZ*GC_GRANULE_WORDS;
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
# define GC_mark_stack_limit GC_arrays._mark_stack_limit
# define GC_mark_stack_top GC_arrays._mark_stack_top
GC_mark_stack_top = mark_stack_top;
}
# if GC_GRANULE_WORDS < 4
/* Push all objects reachable from marked objects in the given block */
/* of size 4 (granules) objects. */
/* There is a risk of mark stack overflow here. But we handle that. */
/* And only unmarked objects get pushed, so it's not very likely. */
STATIC void GC_push_marked4(struct hblk *h, hdr *hhdr)
{
word * mark_word_addr = &(hhdr->hb_marks[0]);
word *p;
word *plim;
ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
mse * mark_stack_top = GC_mark_stack_top;
mse * mark_stack_limit = GC_mark_stack_limit;
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
# define GC_mark_stack_top mark_stack_top
# define GC_mark_stack_limit mark_stack_limit
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
p = (word *)(h->hb_body);
plim = (word *)(((word)h) + HBLKSIZE);
/* go through all words in block */
while ((word)p < (word)plim) {
word mark_word = *mark_word_addr++;
word *q = p;
while(mark_word != 0) {
if (mark_word & 1) {
PUSH_GRANULE(q);
PUSH_GRANULE(q + GC_GRANULE_WORDS);
PUSH_GRANULE(q + 2*GC_GRANULE_WORDS);
PUSH_GRANULE(q + 3*GC_GRANULE_WORDS);
}
q += 4 * GC_GRANULE_WORDS;
mark_word >>= 4;
}
p += WORDSZ*GC_GRANULE_WORDS;
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
# define GC_mark_stack_limit GC_arrays._mark_stack_limit
# define GC_mark_stack_top GC_arrays._mark_stack_top
GC_mark_stack_top = mark_stack_top;
}
#endif /* GC_GRANULE_WORDS < 4 */
#endif /* UNALIGNED_PTRS */
#endif /* USE_PUSH_MARKED_ACCELERATORS */
/* Push all objects reachable from marked objects in the given block */
STATIC void GC_push_marked(struct hblk *h, hdr *hhdr)
{
word sz = hhdr -> hb_sz;
word descr = hhdr -> hb_descr;
ptr_t p;
word bit_no;
ptr_t lim;
mse * GC_mark_stack_top_reg;
mse * mark_stack_limit = GC_mark_stack_limit;
/* Some quick shortcuts: */
if ((/* 0 | */ GC_DS_LENGTH) == descr) return;
if (GC_block_empty(hhdr)/* nothing marked */) return;
# if !defined(GC_DISABLE_INCREMENTAL)
GC_n_rescuing_pages++;
# endif
GC_objects_are_marked = TRUE;
if (sz > MAXOBJBYTES) {
lim = h -> hb_body;
} else {
lim = (ptr_t)((word)(h + 1)->hb_body - sz);
}
switch(BYTES_TO_GRANULES(sz)) {
# if defined(USE_PUSH_MARKED_ACCELERATORS)
case 1:
GC_push_marked1(h, hhdr);
break;
# if !defined(UNALIGNED_PTRS)
case 2:
GC_push_marked2(h, hhdr);
break;
# if GC_GRANULE_WORDS < 4
case 4:
GC_push_marked4(h, hhdr);
break;
# endif
# endif
# endif
default:
GC_mark_stack_top_reg = GC_mark_stack_top;
for (p = h -> hb_body, bit_no = 0; (word)p <= (word)lim;
p += sz, bit_no += MARK_BIT_OFFSET(sz)) {
if (mark_bit_from_hdr(hhdr, bit_no)) {
/* Mark from fields inside the object */
PUSH_OBJ(p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
}
}
GC_mark_stack_top = GC_mark_stack_top_reg;
}
}
#ifdef ENABLE_DISCLAIM
/* Unconditionally mark from all objects which have not been reclaimed. */
/* This is useful in order to retain pointers which are reachable from */
/* the disclaim notifiers. */
/* */
/* To determine whether an object has been reclaimed, we require that */
/* any live object has a non-zero as one of the two lowest bits of the */
/* first word. On the other hand, a reclaimed object is a members of */
/* free-lists, and thus contains a word-aligned next-pointer as the */
/* first word. */
STATIC void GC_push_unconditionally(struct hblk *h, hdr *hhdr)
{
word sz = hhdr -> hb_sz;
word descr = hhdr -> hb_descr;
ptr_t p;
ptr_t lim;
mse * GC_mark_stack_top_reg;
mse * mark_stack_limit = GC_mark_stack_limit;
if ((/* 0 | */ GC_DS_LENGTH) == descr)
return;
# if !defined(GC_DISABLE_INCREMENTAL)
GC_n_rescuing_pages++;
# endif
GC_objects_are_marked = TRUE;
if (sz > MAXOBJBYTES)
lim = h -> hb_body;
else
lim = (ptr_t)((word)(h + 1)->hb_body - sz);
GC_mark_stack_top_reg = GC_mark_stack_top;
for (p = h -> hb_body; (word)p <= (word)lim; p += sz)
if ((*(word *)p & 0x3) != 0)
PUSH_OBJ(p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
GC_mark_stack_top = GC_mark_stack_top_reg;
}
#endif /* ENABLE_DISCLAIM */
#ifndef GC_DISABLE_INCREMENTAL
/* Test whether any page in the given block is dirty. */
STATIC GC_bool GC_block_was_dirty(struct hblk *h, hdr *hhdr)
{
word sz = hhdr -> hb_sz;
if (sz <= MAXOBJBYTES) {
return(GC_page_was_dirty(h));
} else {
ptr_t p = (ptr_t)h;
while ((word)p < (word)h + sz) {
if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
p += HBLKSIZE;
}
return(FALSE);
}
}
#endif /* GC_DISABLE_INCREMENTAL */
/* Similar to GC_push_marked, but skip over unallocated blocks */
/* and return address of next plausible block. */
STATIC struct hblk * GC_push_next_marked(struct hblk *h)
{
hdr * hhdr = HDR(h);
if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr) || HBLK_IS_FREE(hhdr), FALSE)) {
h = GC_next_used_block(h);
if (h == 0) return(0);
hhdr = GC_find_header((ptr_t)h);
} else {
# ifdef LINT2
if (NULL == h) ABORT("Bad HDR() definition");
# endif
}
GC_push_marked(h, hhdr);
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}
#ifndef GC_DISABLE_INCREMENTAL
/* Identical to above, but mark only from dirty pages */
STATIC struct hblk * GC_push_next_marked_dirty(struct hblk *h)
{
hdr * hhdr = HDR(h);
if (!GC_incremental) ABORT("Dirty bits not set up");
for (;;) {
if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr)
|| HBLK_IS_FREE(hhdr), FALSE)) {
h = GC_next_used_block(h);
if (h == 0) return(0);
hhdr = GC_find_header((ptr_t)h);
} else {
# ifdef LINT2
if (NULL == h) ABORT("Bad HDR() definition");
# endif
}
if (GC_block_was_dirty(h, hhdr))
break;
h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
hhdr = HDR(h);
}
# ifdef ENABLE_DISCLAIM
if ((hhdr -> hb_flags & MARK_UNCONDITIONALLY) != 0) {
GC_push_unconditionally(h, hhdr);
/* Then we may ask, why not also add the MARK_UNCONDITIONALLY */
/* case to GC_push_next_marked, which is also applied to */
/* uncollectible blocks? But it seems to me that the function */
/* does not need to scan uncollectible (and unconditionally */
/* marked) blocks since those are already handled in the */
/* MS_PUSH_UNCOLLECTABLE phase. */
} else
# endif
/* else */ {
GC_push_marked(h, hhdr);
}
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}
#endif /* !GC_DISABLE_INCREMENTAL */
/* Similar to above, but for uncollectible pages. Needed since we */
/* do not clear marks for such pages, even for full collections. */
STATIC struct hblk * GC_push_next_marked_uncollectable(struct hblk *h)
{
hdr * hhdr = HDR(h);
for (;;) {
if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr)
|| HBLK_IS_FREE(hhdr), FALSE)) {
h = GC_next_used_block(h);
if (h == 0) return(0);
hhdr = GC_find_header((ptr_t)h);
} else {
# ifdef LINT2
if (NULL == h) ABORT("Bad HDR() definition");
# endif
}
if (hhdr -> hb_obj_kind == UNCOLLECTABLE) {
GC_push_marked(h, hhdr);
break;
}
# ifdef ENABLE_DISCLAIM
if ((hhdr -> hb_flags & MARK_UNCONDITIONALLY) != 0) {
GC_push_unconditionally(h, hhdr);
break;
}
# endif
h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
hhdr = HDR(h);
}
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}