Xamarin Public Jenkins f3e3aab35a Imported Upstream version 4.3.2.467
Former-commit-id: 9c2cb47f45fa221e661ab616387c9cda183f283d
2016-02-22 11:00:01 -05:00

3224 lines
87 KiB
C#

//
// System.Array.cs
//
// Authors:
// Joe Shaw (joe@ximian.com)
// Martin Baulig (martin@gnome.org)
// Dietmar Maurer (dietmar@ximian.com)
// Gonzalo Paniagua Javier (gonzalo@ximian.com)
// Jeffrey Stedfast (fejj@novell.com)
// Marek Safar (marek.safar@gmail.com)
//
// (C) 2001-2003 Ximian, Inc. http://www.ximian.com
// Copyright (C) 2004-2011 Novell, Inc (http://www.novell.com)
// Copyright (C) 2011 Xamarin Inc (http://www.xamarin.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using System.Collections;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Runtime.ConstrainedExecution;
#if !FULL_AOT_RUNTIME
using System.Reflection.Emit;
#endif
namespace System
{
[Serializable]
[ComVisible (true)]
// FIXME: We are doing way to many double/triple exception checks for the overloaded functions"
public abstract class Array : ICloneable, ICollection, IList, IEnumerable
, IStructuralComparable, IStructuralEquatable
{
// Constructor
private Array ()
{
}
/*
* These methods are used to implement the implicit generic interfaces
* implemented by arrays in NET 2.0.
* Only make those methods generic which really need it, to avoid
* creating useless instantiations.
*/
internal int InternalArray__ICollection_get_Count ()
{
return Length;
}
internal bool InternalArray__ICollection_get_IsReadOnly ()
{
return true;
}
internal IEnumerator<T> InternalArray__IEnumerable_GetEnumerator<T> ()
{
return new InternalEnumerator<T> (this);
}
internal void InternalArray__ICollection_Clear ()
{
throw new NotSupportedException ("Collection is read-only");
}
internal void InternalArray__ICollection_Add<T> (T item)
{
throw new NotSupportedException ("Collection is of a fixed size");
}
internal bool InternalArray__ICollection_Remove<T> (T item)
{
throw new NotSupportedException ("Collection is of a fixed size");
}
internal bool InternalArray__ICollection_Contains<T> (T item)
{
if (this.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
int length = this.Length;
for (int i = 0; i < length; i++) {
T value;
GetGenericValueImpl (i, out value);
if (item == null){
if (value == null) {
return true;
}
continue;
}
if (item.Equals (value)) {
return true;
}
}
return false;
}
internal void InternalArray__ICollection_CopyTo<T> (T[] array, int index)
{
if (array == null)
throw new ArgumentNullException ("array");
// The order of these exception checks may look strange,
// but that's how the microsoft runtime does it.
if (this.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index + this.GetLength (0) > array.GetLowerBound (0) + array.GetLength (0))
throw new ArgumentException ("Destination array was not long " +
"enough. Check destIndex and length, and the array's " +
"lower bounds.");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index < 0)
throw new ArgumentOutOfRangeException (
"index", Locale.GetText ("Value has to be >= 0."));
Copy (this, this.GetLowerBound (0), array, index, this.GetLength (0));
}
internal T InternalArray__IReadOnlyList_get_Item<T> (int index)
{
if (unchecked ((uint) index) >= unchecked ((uint) Length))
throw new ArgumentOutOfRangeException ("index");
T value;
GetGenericValueImpl (index, out value);
return value;
}
internal int InternalArray__IReadOnlyCollection_get_Count ()
{
return Length;
}
internal void InternalArray__Insert<T> (int index, T item)
{
throw new NotSupportedException ("Collection is of a fixed size");
}
internal void InternalArray__RemoveAt (int index)
{
throw new NotSupportedException ("Collection is of a fixed size");
}
internal int InternalArray__IndexOf<T> (T item)
{
if (this.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
int length = this.Length;
for (int i = 0; i < length; i++) {
T value;
GetGenericValueImpl (i, out value);
if (item == null){
if (value == null)
return i + this.GetLowerBound (0);
continue;
}
if (value.Equals (item))
// array index may not be zero-based.
// use lower bound
return i + this.GetLowerBound (0);
}
unchecked {
// lower bound may be MinValue
return this.GetLowerBound (0) - 1;
}
}
internal T InternalArray__get_Item<T> (int index)
{
if (unchecked ((uint) index) >= unchecked ((uint) Length))
throw new ArgumentOutOfRangeException ("index");
T value;
GetGenericValueImpl (index, out value);
return value;
}
internal void InternalArray__set_Item<T> (int index, T item)
{
if (unchecked ((uint) index) >= unchecked ((uint) Length))
throw new ArgumentOutOfRangeException ("index");
object[] oarray = this as object [];
if (oarray != null) {
oarray [index] = (object)item;
return;
}
SetGenericValueImpl (index, ref item);
}
// CAUTION! No bounds checking!
[MethodImplAttribute (MethodImplOptions.InternalCall)]
internal extern void GetGenericValueImpl<T> (int pos, out T value);
// CAUTION! No bounds checking!
[MethodImplAttribute (MethodImplOptions.InternalCall)]
internal extern void SetGenericValueImpl<T> (int pos, ref T value);
internal struct InternalEnumerator<T> : IEnumerator<T>
{
const int NOT_STARTED = -2;
// this MUST be -1, because we depend on it in move next.
// we just decr the size, so, 0 - 1 == FINISHED
const int FINISHED = -1;
Array array;
int idx;
internal InternalEnumerator (Array array)
{
this.array = array;
idx = NOT_STARTED;
}
public void Dispose ()
{
idx = NOT_STARTED;
}
public bool MoveNext ()
{
if (idx == NOT_STARTED)
idx = array.Length;
return idx != FINISHED && -- idx != FINISHED;
}
public T Current {
get {
if (idx == NOT_STARTED)
throw new InvalidOperationException ("Enumeration has not started. Call MoveNext");
if (idx == FINISHED)
throw new InvalidOperationException ("Enumeration already finished");
return array.InternalArray__get_Item<T> (array.Length - 1 - idx);
}
}
void IEnumerator.Reset ()
{
idx = NOT_STARTED;
}
object IEnumerator.Current {
get {
return Current;
}
}
}
// Properties
public int Length {
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
get {
int length = this.GetLength (0);
for (int i = 1; i < this.Rank; i++) {
length *= this.GetLength (i);
}
return length;
}
}
[ComVisible (false)]
public long LongLength {
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
get { return Length; }
}
public int Rank {
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
get {
return this.GetRank ();
}
}
// IList interface
object IList.this [int index] {
get {
if (unchecked ((uint) index) >= unchecked ((uint) Length))
throw new IndexOutOfRangeException ("index");
if (this.Rank > 1)
throw new ArgumentException (Locale.GetText ("Only single dimension arrays are supported."));
return GetValueImpl (index);
}
set {
if (unchecked ((uint) index) >= unchecked ((uint) Length))
throw new IndexOutOfRangeException ("index");
if (this.Rank > 1)
throw new ArgumentException (Locale.GetText ("Only single dimension arrays are supported."));
SetValueImpl (value, index);
}
}
int IList.Add (object value)
{
throw new NotSupportedException ();
}
void IList.Clear ()
{
Array.Clear (this, this.GetLowerBound (0), this.Length);
}
bool IList.Contains (object value)
{
if (this.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
int length = this.Length;
for (int i = 0; i < length; i++) {
if (Object.Equals (this.GetValueImpl (i), value))
return true;
}
return false;
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
int IList.IndexOf (object value)
{
if (this.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
int length = this.Length;
for (int i = 0; i < length; i++) {
if (Object.Equals (this.GetValueImpl (i), value))
// array index may not be zero-based.
// use lower bound
return i + this.GetLowerBound (0);
}
unchecked {
// lower bound may be MinValue
return this.GetLowerBound (0) - 1;
}
}
void IList.Insert (int index, object value)
{
throw new NotSupportedException ();
}
void IList.Remove (object value)
{
throw new NotSupportedException ();
}
void IList.RemoveAt (int index)
{
throw new NotSupportedException ();
}
// InternalCall Methods
[MethodImplAttribute (MethodImplOptions.InternalCall)]
extern int GetRank ();
[MethodImplAttribute (MethodImplOptions.InternalCall)]
public extern int GetLength (int dimension);
[ComVisible (false)]
public long GetLongLength (int dimension)
{
return GetLength (dimension);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
[MethodImplAttribute (MethodImplOptions.InternalCall)]
public extern int GetLowerBound (int dimension);
[MethodImplAttribute (MethodImplOptions.InternalCall)]
public extern object GetValue (params int[] indices);
[MethodImplAttribute (MethodImplOptions.InternalCall)]
public extern void SetValue (object value, params int[] indices);
// CAUTION! No bounds checking!
[MethodImplAttribute (MethodImplOptions.InternalCall)]
internal extern object GetValueImpl (int pos);
// CAUTION! No bounds checking!
[MethodImplAttribute (MethodImplOptions.InternalCall)]
internal extern void SetValueImpl (object value, int pos);
[MethodImplAttribute (MethodImplOptions.InternalCall)]
internal extern static bool FastCopy (Array source, int source_idx, Array dest, int dest_idx, int length);
[MethodImplAttribute (MethodImplOptions.InternalCall)]
internal extern static Array CreateInstanceImpl (Type elementType, int[] lengths, int[] bounds);
// Properties
int ICollection.Count {
get {
return Length;
}
}
public bool IsSynchronized {
get {
return false;
}
}
public object SyncRoot {
get {
return this;
}
}
public bool IsFixedSize {
get {
return true;
}
}
public bool IsReadOnly {
get {
return false;
}
}
public IEnumerator GetEnumerator ()
{
return new SimpleEnumerator (this);
}
int IStructuralComparable.CompareTo (object other, IComparer comparer)
{
if (other == null)
return 1;
Array arr = other as Array;
if (arr == null)
throw new ArgumentException ("Not an array", "other");
int len = GetLength (0);
if (len != arr.GetLength (0))
throw new ArgumentException ("Not of the same length", "other");
if (Rank > 1)
throw new ArgumentException ("Array must be single dimensional");
if (arr.Rank > 1)
throw new ArgumentException ("Array must be single dimensional", "other");
for (int i = 0; i < len; ++i) {
object a = GetValue (i);
object b = arr.GetValue (i);
int r = comparer.Compare (a, b);
if (r != 0)
return r;
}
return 0;
}
bool IStructuralEquatable.Equals (object other, IEqualityComparer comparer)
{
Array o = other as Array;
if (o == null || o.Length != Length)
return false;
if (Object.ReferenceEquals (other, this))
return true;
for (int i = 0; i < Length; i++) {
object this_item = this.GetValue (i);
object other_item = o.GetValue (i);
if (!comparer.Equals (this_item, other_item))
return false;
}
return true;
}
int IStructuralEquatable.GetHashCode (IEqualityComparer comparer)
{
if (comparer == null)
throw new ArgumentNullException ("comparer");
int hash = 0;
for (int i = 0; i < Length; i++)
hash = ((hash << 7) + hash) ^ comparer.GetHashCode (GetValueImpl (i));
return hash;
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
public int GetUpperBound (int dimension)
{
return GetLowerBound (dimension) + GetLength (dimension) - 1;
}
public object GetValue (int index)
{
if (Rank != 1)
throw new ArgumentException (Locale.GetText ("Array was not a one-dimensional array."));
if (index < GetLowerBound (0) || index > GetUpperBound (0))
throw new IndexOutOfRangeException (Locale.GetText (
"Index has to be between upper and lower bound of the array."));
return GetValueImpl (index - GetLowerBound (0));
}
public object GetValue (int index1, int index2)
{
int[] ind = {index1, index2};
return GetValue (ind);
}
public object GetValue (int index1, int index2, int index3)
{
int[] ind = {index1, index2, index3};
return GetValue (ind);
}
[ComVisible (false)]
public object GetValue (long index)
{
if (index < 0 || index > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
return GetValue ((int) index);
}
[ComVisible (false)]
public object GetValue (long index1, long index2)
{
if (index1 < 0 || index1 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index1", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
if (index2 < 0 || index2 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index2", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
return GetValue ((int) index1, (int) index2);
}
[ComVisible (false)]
public object GetValue (long index1, long index2, long index3)
{
if (index1 < 0 || index1 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index1", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
if (index2 < 0 || index2 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index2", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
if (index3 < 0 || index3 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index3", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
return GetValue ((int) index1, (int) index2, (int) index3);
}
[ComVisible (false)]
public void SetValue (object value, long index)
{
if (index < 0 || index > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
SetValue (value, (int) index);
}
[ComVisible (false)]
public void SetValue (object value, long index1, long index2)
{
if (index1 < 0 || index1 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index1", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
if (index2 < 0 || index2 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index2", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
int[] ind = {(int) index1, (int) index2};
SetValue (value, ind);
}
[ComVisible (false)]
public void SetValue (object value, long index1, long index2, long index3)
{
if (index1 < 0 || index1 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index1", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
if (index2 < 0 || index2 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index2", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
if (index3 < 0 || index3 > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index3", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
int[] ind = {(int) index1, (int) index2, (int) index3};
SetValue (value, ind);
}
public void SetValue (object value, int index)
{
if (Rank != 1)
throw new ArgumentException (Locale.GetText ("Array was not a one-dimensional array."));
if (index < GetLowerBound (0) || index > GetUpperBound (0))
throw new IndexOutOfRangeException (Locale.GetText (
"Index has to be >= lower bound and <= upper bound of the array."));
SetValueImpl (value, index - GetLowerBound (0));
}
public void SetValue (object value, int index1, int index2)
{
int[] ind = {index1, index2};
SetValue (value, ind);
}
public void SetValue (object value, int index1, int index2, int index3)
{
int[] ind = {index1, index2, index3};
SetValue (value, ind);
}
internal static Array UnsafeCreateInstance (Type elementType, int length)
{
return CreateInstance (elementType, length);
}
internal static Array UnsafeCreateInstance(Type elementType, int[] lengths, int[] lowerBounds)
{
return CreateInstance(elementType, lengths, lowerBounds);
}
internal static Array UnsafeCreateInstance (Type elementType, int length1, int length2)
{
return CreateInstance (elementType, length1, length2);
}
internal static Array UnsafeCreateInstance (Type elementType, params int[] lengths)
{
return CreateInstance(elementType, lengths);
}
public static Array CreateInstance (Type elementType, int length)
{
int[] lengths = {length};
return CreateInstance (elementType, lengths);
}
public static Array CreateInstance (Type elementType, int length1, int length2)
{
int[] lengths = {length1, length2};
return CreateInstance (elementType, lengths);
}
public static Array CreateInstance (Type elementType, int length1, int length2, int length3)
{
int[] lengths = {length1, length2, length3};
return CreateInstance (elementType, lengths);
}
public static Array CreateInstance (Type elementType, params int[] lengths)
{
if (elementType == null)
throw new ArgumentNullException ("elementType");
if (lengths == null)
throw new ArgumentNullException ("lengths");
if (lengths.Length > 255)
throw new TypeLoadException ();
int[] bounds = null;
elementType = elementType.UnderlyingSystemType as RuntimeType;
if (elementType == null)
throw new ArgumentException ("Type must be a type provided by the runtime.", "elementType");
if (elementType.Equals (typeof (void)))
throw new NotSupportedException ("Array type can not be void");
if (elementType.ContainsGenericParameters)
throw new NotSupportedException ("Array type can not be an open generic type");
#if !FULL_AOT_RUNTIME
if ((elementType is TypeBuilder) && !(elementType as TypeBuilder).IsCreated ())
throw new NotSupportedException ("Can't create an array of the unfinished type '" + elementType + "'.");
#endif
return CreateInstanceImpl (elementType, lengths, bounds);
}
public static Array CreateInstance (Type elementType, int[] lengths, int [] lowerBounds)
{
if (elementType == null)
throw new ArgumentNullException ("elementType");
if (lengths == null)
throw new ArgumentNullException ("lengths");
if (lowerBounds == null)
throw new ArgumentNullException ("lowerBounds");
elementType = elementType.UnderlyingSystemType as RuntimeType;
if (elementType == null)
throw new ArgumentException ("Type must be a type provided by the runtime.", "elementType");
if (elementType.Equals (typeof (void)))
throw new NotSupportedException ("Array type can not be void");
if (elementType.ContainsGenericParameters)
throw new NotSupportedException ("Array type can not be an open generic type");
if (lengths.Length < 1)
throw new ArgumentException (Locale.GetText ("Arrays must contain >= 1 elements."));
if (lengths.Length != lowerBounds.Length)
throw new ArgumentException (Locale.GetText ("Arrays must be of same size."));
for (int j = 0; j < lowerBounds.Length; j ++) {
if (lengths [j] < 0)
throw new ArgumentOutOfRangeException ("lengths", Locale.GetText (
"Each value has to be >= 0."));
if ((long)lowerBounds [j] + (long)lengths [j] > (long)Int32.MaxValue)
throw new ArgumentOutOfRangeException ("lengths", Locale.GetText (
"Length + bound must not exceed Int32.MaxValue."));
}
if (lengths.Length > 255)
throw new TypeLoadException ();
return CreateInstanceImpl (elementType, lengths, lowerBounds);
}
static int [] GetIntArray (long [] values)
{
int len = values.Length;
int [] ints = new int [len];
for (int i = 0; i < len; i++) {
long current = values [i];
if (current < 0 || current > (long) Int32.MaxValue)
throw new ArgumentOutOfRangeException ("values", Locale.GetText (
"Each value has to be >= 0 and <= Int32.MaxValue."));
ints [i] = (int) current;
}
return ints;
}
public static Array CreateInstance (Type elementType, params long [] lengths)
{
if (lengths == null)
throw new ArgumentNullException ("lengths");
return CreateInstance (elementType, GetIntArray (lengths));
}
[ComVisible (false)]
public object GetValue (params long [] indices)
{
if (indices == null)
throw new ArgumentNullException ("indices");
return GetValue (GetIntArray (indices));
}
[ComVisible (false)]
public void SetValue (object value, params long [] indices)
{
if (indices == null)
throw new ArgumentNullException ("indices");
SetValue (value, GetIntArray (indices));
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch (Array array, object value)
{
return BinarySearch (array, value, null);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch (Array array, object value, IComparer comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (array.Length == 0)
return -1;
return DoBinarySearch (array, array.GetLowerBound (0), array.GetLength (0), value, comparer);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch (Array array, int index, int length, object value)
{
return BinarySearch (array, index, length, value, null);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch (Array array, int index, int length, object value, IComparer comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index < array.GetLowerBound (0))
throw new ArgumentOutOfRangeException ("index", Locale.GetText (
"index is less than the lower bound of array."));
if (length < 0)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value has to be >= 0."));
// re-ordered to avoid possible integer overflow
if (index > array.GetLowerBound (0) + array.GetLength (0) - length)
throw new ArgumentException (Locale.GetText (
"index and length do not specify a valid range in array."));
if (array.Length == 0)
return -1;
return DoBinarySearch (array, index, length, value, comparer);
}
static int DoBinarySearch (Array array, int index, int length, object value, IComparer comparer)
{
// cache this in case we need it
if (comparer == null)
comparer = Comparer.Default;
int iMin = index;
// Comment from Tum (tum@veridicus.com):
// *Must* start at index + length - 1 to pass rotor test co2460binarysearch_iioi
int iMax = index + length - 1;
int iCmp = 0;
try {
while (iMin <= iMax) {
// Be careful with overflow
// http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
int iMid = iMin + ((iMax - iMin) / 2);
object elt = array.GetValueImpl (iMid);
iCmp = comparer.Compare (elt, value);
if (iCmp == 0)
return iMid;
else if (iCmp > 0)
iMax = iMid - 1;
else
iMin = iMid + 1; // compensate for the rounding down
}
}
catch (Exception e) {
throw new InvalidOperationException (Locale.GetText ("Comparer threw an exception."), e);
}
return ~iMin;
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
public static void Clear (Array array, int index, int length)
{
if (array == null)
throw new ArgumentNullException ("array");
if (length < 0)
throw new IndexOutOfRangeException ("length < 0");
int low = array.GetLowerBound (0);
if (index < low)
throw new IndexOutOfRangeException ("index < lower bound");
index = index - low;
// re-ordered to avoid possible integer overflow
if (index > array.Length - length)
throw new IndexOutOfRangeException ("index + length > size");
ClearInternal (array, index, length);
}
[MethodImplAttribute (MethodImplOptions.InternalCall)]
static extern void ClearInternal (Array a, int index, int count);
[MethodImplAttribute (MethodImplOptions.InternalCall)]
public extern object Clone ();
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Copy (Array sourceArray, Array destinationArray, int length)
{
// need these checks here because we are going to use
// GetLowerBound() on source and dest.
if (sourceArray == null)
throw new ArgumentNullException ("sourceArray");
if (destinationArray == null)
throw new ArgumentNullException ("destinationArray");
Copy (sourceArray, sourceArray.GetLowerBound (0), destinationArray,
destinationArray.GetLowerBound (0), length);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Copy (Array sourceArray, int sourceIndex, Array destinationArray, int destinationIndex, int length)
{
if (sourceArray == null)
throw new ArgumentNullException ("sourceArray");
if (destinationArray == null)
throw new ArgumentNullException ("destinationArray");
if (length < 0)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value has to be >= 0."));;
if (sourceIndex < 0)
throw new ArgumentOutOfRangeException ("sourceIndex", Locale.GetText (
"Value has to be >= 0."));;
if (destinationIndex < 0)
throw new ArgumentOutOfRangeException ("destinationIndex", Locale.GetText (
"Value has to be >= 0."));;
if (FastCopy (sourceArray, sourceIndex, destinationArray, destinationIndex, length))
return;
int source_pos = sourceIndex - sourceArray.GetLowerBound (0);
int dest_pos = destinationIndex - destinationArray.GetLowerBound (0);
if (dest_pos < 0)
throw new ArgumentOutOfRangeException ("destinationIndex", "Index was less than the array's lower bound in the first dimension.");
// re-ordered to avoid possible integer overflow
if (source_pos > sourceArray.Length - length)
throw new ArgumentException ("length");
if (dest_pos > destinationArray.Length - length) {
string msg = "Destination array was not long enough. Check " +
"destIndex and length, and the array's lower bounds";
throw new ArgumentException (msg, string.Empty);
}
if (sourceArray.Rank != destinationArray.Rank)
throw new RankException (Locale.GetText ("Arrays must be of same size."));
Type src_type = sourceArray.GetType ().GetElementType ();
Type dst_type = destinationArray.GetType ().GetElementType ();
if (!Object.ReferenceEquals (sourceArray, destinationArray) || source_pos > dest_pos) {
for (int i = 0; i < length; i++) {
Object srcval = sourceArray.GetValueImpl (source_pos + i);
try {
destinationArray.SetValueImpl (srcval, dest_pos + i);
} catch (ArgumentException) {
throw CreateArrayTypeMismatchException ();
} catch {
if (CanAssignArrayElement (src_type, dst_type))
throw;
throw CreateArrayTypeMismatchException ();
}
}
}
else {
for (int i = length - 1; i >= 0; i--) {
Object srcval = sourceArray.GetValueImpl (source_pos + i);
try {
destinationArray.SetValueImpl (srcval, dest_pos + i);
} catch (ArgumentException) {
throw CreateArrayTypeMismatchException ();
} catch {
if (CanAssignArrayElement (src_type, dst_type))
throw;
throw CreateArrayTypeMismatchException ();
}
}
}
}
static Exception CreateArrayTypeMismatchException ()
{
return new ArrayTypeMismatchException ();
}
static bool CanAssignArrayElement (Type source, Type target)
{
if (source.IsValueType)
return source.IsAssignableFrom (target);
if (source.IsInterface)
return !target.IsValueType;
if (target.IsInterface)
return !source.IsValueType;
return source.IsAssignableFrom (target) || target.IsAssignableFrom (source);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Copy (Array sourceArray, long sourceIndex, Array destinationArray,
long destinationIndex, long length)
{
if (sourceArray == null)
throw new ArgumentNullException ("sourceArray");
if (destinationArray == null)
throw new ArgumentNullException ("destinationArray");
if (sourceIndex < Int32.MinValue || sourceIndex > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("sourceIndex",
Locale.GetText ("Must be in the Int32 range."));
if (destinationIndex < Int32.MinValue || destinationIndex > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("destinationIndex",
Locale.GetText ("Must be in the Int32 range."));
if (length < 0 || length > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
Copy (sourceArray, (int) sourceIndex, destinationArray, (int) destinationIndex, (int) length);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Copy (Array sourceArray, Array destinationArray, long length)
{
if (length < 0 || length > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
Copy (sourceArray, destinationArray, (int) length);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int IndexOf (Array array, object value)
{
if (array == null)
throw new ArgumentNullException ("array");
return IndexOf (array, value, 0, array.Length);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int IndexOf (Array array, object value, int startIndex)
{
if (array == null)
throw new ArgumentNullException ("array");
return IndexOf (array, value, startIndex, array.Length - startIndex);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int IndexOf (Array array, object value, int startIndex, int count)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
// re-ordered to avoid possible integer overflow
if (count < 0 || startIndex < array.GetLowerBound (0) || startIndex - 1 > array.GetUpperBound (0) - count)
throw new ArgumentOutOfRangeException ();
int max = startIndex + count;
for (int i = startIndex; i < max; i++) {
if (Object.Equals (array.GetValueImpl (i), value))
return i;
}
return array.GetLowerBound (0) - 1;
}
public void Initialize()
{
//FIXME: We would like to find a compiler that uses
// this method. It looks like this method do nothing
// in C# so no exception is trown by the moment.
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int LastIndexOf (Array array, object value)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Length == 0)
return array.GetLowerBound (0) - 1;
return LastIndexOf (array, value, array.Length - 1);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int LastIndexOf (Array array, object value, int startIndex)
{
if (array == null)
throw new ArgumentNullException ("array");
return LastIndexOf (array, value, startIndex, startIndex - array.GetLowerBound (0) + 1);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int LastIndexOf (Array array, object value, int startIndex, int count)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
int lb = array.GetLowerBound (0);
// Empty arrays do not throw ArgumentOutOfRangeException
if (array.Length == 0)
return lb - 1;
if (count < 0 || startIndex < lb ||
startIndex > array.GetUpperBound (0) || startIndex - count + 1 < lb)
throw new ArgumentOutOfRangeException ();
for (int i = startIndex; i >= startIndex - count + 1; i--) {
if (Object.Equals (array.GetValueImpl (i), value))
return i;
}
return lb - 1;
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Reverse (Array array)
{
if (array == null)
throw new ArgumentNullException ("array");
Reverse (array, array.GetLowerBound (0), array.Length);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Reverse (Array array, int index, int length)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index < array.GetLowerBound (0) || length < 0)
throw new ArgumentOutOfRangeException ();
// re-ordered to avoid possible integer overflow
if (index > array.GetUpperBound (0) + 1 - length)
throw new ArgumentException ();
int end = index + length - 1;
var et = array.GetType ().GetElementType ();
switch (Type.GetTypeCode (et)) {
case TypeCode.Boolean:
while (index < end) {
bool a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
case TypeCode.Byte:
case TypeCode.SByte:
while (index < end) {
byte a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
case TypeCode.Int16:
case TypeCode.UInt16:
case TypeCode.Char:
while (index < end) {
short a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
case TypeCode.Int32:
case TypeCode.UInt32:
case TypeCode.Single:
while (index < end) {
int a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
case TypeCode.Int64:
case TypeCode.UInt64:
case TypeCode.Double:
while (index < end) {
long a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
case TypeCode.Decimal:
while (index < end) {
decimal a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
case TypeCode.String:
while (index < end) {
object a, b;
array.GetGenericValueImpl (index, out a);
array.GetGenericValueImpl (end, out b);
array.SetGenericValueImpl (index, ref b);
array.SetGenericValueImpl (end, ref a);
++index;
--end;
}
return;
default:
if (array is object[])
goto case TypeCode.String;
// Very slow fallback
while (index < end) {
object val = array.GetValueImpl (index);
array.SetValueImpl (array.GetValueImpl (end), index);
array.SetValueImpl (val, end);
++index;
--end;
}
return;
}
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array array)
{
Sort (array, (IComparer)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array keys, Array items)
{
Sort (keys, items, (IComparer)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array array, IComparer comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
SortImpl (array, null, array.GetLowerBound (0), array.GetLength (0), comparer);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array array, int index, int length)
{
Sort (array, index, length, (IComparer)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array keys, Array items, IComparer comparer)
{
if (items == null) {
Sort (keys, comparer);
return;
}
if (keys == null)
throw new ArgumentNullException ("keys");
if (keys.Rank > 1 || items.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
SortImpl (keys, items, keys.GetLowerBound (0), keys.GetLength (0), comparer);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array keys, Array items, int index, int length)
{
Sort (keys, items, index, length, (IComparer)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array array, int index, int length, IComparer comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index < array.GetLowerBound (0))
throw new ArgumentOutOfRangeException ("index");
if (length < 0)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value has to be >= 0."));
if (array.Length - (array.GetLowerBound (0) + index) < length)
throw new ArgumentException ();
SortImpl (array, null, index, length, comparer);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort (Array keys, Array items, int index, int length, IComparer comparer)
{
if (items == null) {
Sort (keys, index, length, comparer);
return;
}
if (keys == null)
throw new ArgumentNullException ("keys");
if (keys.Rank > 1 || items.Rank > 1)
throw new RankException ();
if (keys.GetLowerBound (0) != items.GetLowerBound (0))
throw new ArgumentException ();
if (index < keys.GetLowerBound (0))
throw new ArgumentOutOfRangeException ("index");
if (length < 0)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value has to be >= 0."));
if (items.Length - (index + items.GetLowerBound (0)) < length || keys.Length - (index + keys.GetLowerBound (0)) < length)
throw new ArgumentException ();
SortImpl (keys, items, index, length, comparer);
}
private static void SortImpl (Array keys, Array items, int index, int length, IComparer comparer)
{
if (length <= 1)
return;
int low = index;
int high = index + length - 1;
#if !BOOTSTRAP_BASIC
if (comparer == null && items is object[]) {
/* Its better to compare typecodes as casts treat long/ulong/long based enums the same */
switch (Type.GetTypeCode (keys.GetType ().GetElementType ())) {
case TypeCode.Int32:
qsort (keys as Int32[], items as object[], low, high);
return;
case TypeCode.Int64:
qsort (keys as Int64[], items as object[], low, high);
return;
case TypeCode.Byte:
qsort (keys as byte[], items as object[], low, high);
return;
case TypeCode.Char:
qsort (keys as char[], items as object[], low, high);
return;
case TypeCode.DateTime:
qsort (keys as DateTime[], items as object[], low, high);
return;
case TypeCode.Decimal:
qsort (keys as decimal[], items as object[], low, high);
return;
case TypeCode.Double:
qsort (keys as double[], items as object[], low, high);
return;
case TypeCode.Int16:
qsort (keys as Int16[], items as object[], low, high);
return;
case TypeCode.SByte:
qsort (keys as SByte[], items as object[], low, high);
return;
case TypeCode.Single:
qsort (keys as Single[], items as object[], low, high);
return;
case TypeCode.UInt16:
qsort (keys as UInt16[], items as object[], low, high);
return;
case TypeCode.UInt32:
qsort (keys as UInt32[], items as object[], low, high);
return;
case TypeCode.UInt64:
qsort (keys as UInt64[], items as object[], low, high);
return;
default:
break;
}
}
#endif
if (comparer == null)
CheckComparerAvailable (keys, low, high);
try {
qsort (keys, items, low, high, comparer);
} catch (Exception e) {
throw new InvalidOperationException (Locale.GetText ("The comparer threw an exception."), e);
}
}
struct QSortStack {
public int high;
public int low;
}
static bool QSortArrange (Array keys, Array items, int lo, ref object v0, int hi, ref object v1, IComparer comparer)
{
IComparable cmp;
object tmp;
if (comparer != null) {
if (comparer.Compare (v1, v0) < 0) {
swap (keys, items, lo, hi);
tmp = v0;
v0 = v1;
v1 = tmp;
return true;
}
} else if (v0 != null) {
cmp = v1 as IComparable;
if (v1 == null || cmp.CompareTo (v0) < 0) {
swap (keys, items, lo, hi);
tmp = v0;
v0 = v1;
v1 = tmp;
return true;
}
}
return false;
}
unsafe static void qsort (Array keys, Array items, int low0, int high0, IComparer comparer)
{
QSortStack* stack = stackalloc QSortStack [32];
const int QSORT_THRESHOLD = 7;
int high, low, mid, i, k;
object key, hi, lo;
IComparable cmp;
int sp = 1;
// initialize our stack
stack[0].high = high0;
stack[0].low = low0;
do {
// pop the stack
sp--;
high = stack[sp].high;
low = stack[sp].low;
if ((low + QSORT_THRESHOLD) > high) {
// switch to insertion sort
for (i = low + 1; i <= high; i++) {
for (k = i; k > low; k--) {
lo = keys.GetValueImpl (k - 1);
hi = keys.GetValueImpl (k);
if (comparer != null) {
if (comparer.Compare (hi, lo) >= 0)
break;
} else {
if (lo == null)
break;
if (hi != null) {
cmp = hi as IComparable;
if (cmp.CompareTo (lo) >= 0)
break;
}
}
swap (keys, items, k - 1, k);
}
}
continue;
}
// calculate the middle element
mid = low + ((high - low) / 2);
// get the 3 keys
key = keys.GetValueImpl (mid);
hi = keys.GetValueImpl (high);
lo = keys.GetValueImpl (low);
// once we re-order the low, mid, and high elements to be in
// ascending order, we'll use mid as our pivot.
QSortArrange (keys, items, low, ref lo, mid, ref key, comparer);
if (QSortArrange (keys, items, mid, ref key, high, ref hi, comparer))
QSortArrange (keys, items, low, ref lo, mid, ref key, comparer);
cmp = key as IComparable;
// since we've already guaranteed that lo <= mid and mid <= hi,
// we can skip comparing them again.
k = high - 1;
i = low + 1;
do {
// Move the walls in
if (comparer != null) {
// find the first element with a value >= pivot value
while (i < k && comparer.Compare (key, keys.GetValueImpl (i)) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && comparer.Compare (key, keys.GetValueImpl (k)) < 0)
k--;
} else if (cmp != null) {
// find the first element with a value >= pivot value
while (i < k && cmp.CompareTo (keys.GetValueImpl (i)) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && cmp.CompareTo (keys.GetValueImpl (k)) < 0)
k--;
} else {
// This has the effect of moving the null values to the front if comparer is null
while (i < k && keys.GetValueImpl (i) == null)
i++;
while (k > i && keys.GetValueImpl (k) != null)
k--;
}
if (k <= i)
break;
swap (keys, items, i, k);
i++;
k--;
} while (true);
// push our partitions onto the stack, largest first
// (to make sure we don't run out of stack space)
if ((high - k) >= (k - low)) {
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
} else {
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
}
} while (sp > 0);
}
private static void CheckComparerAvailable (Array keys, int low, int high)
{
// move null keys to beginning of array,
// ensure that non-null keys implement IComparable
for (int i = 0; i < high; i++) {
object obj = keys.GetValueImpl (i);
if (obj == null)
continue;
if (!(obj is IComparable)) {
string msg = Locale.GetText ("No IComparable interface found for type '{0}'.");
throw new InvalidOperationException (String.Format (msg, obj.GetType ()));
}
}
}
private static void swap (Array keys, Array items, int i, int j)
{
object tmp = keys.GetValueImpl (i);
keys.SetValueImpl (keys.GetValueImpl (j), i);
keys.SetValueImpl (tmp, j);
if (items != null) {
tmp = items.GetValueImpl (i);
items.SetValueImpl (items.GetValueImpl (j), i);
items.SetValueImpl (tmp, j);
}
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<T> (T [] array)
{
Sort<T> (array, (IComparer<T>)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<TKey, TValue> (TKey [] keys, TValue [] items)
{
Sort<TKey, TValue> (keys, items, (IComparer<TKey>)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<T> (T [] array, IComparer<T> comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
SortImpl<T> (array, 0, array.Length, comparer);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<TKey, TValue> (TKey [] keys, TValue [] items, IComparer<TKey> comparer)
{
if (items == null) {
Sort<TKey> (keys, comparer);
return;
}
if (keys == null)
throw new ArgumentNullException ("keys");
if (keys.Length > items.Length)
throw new ArgumentException ("Length of keys is larger than length of items.");
SortImpl<TKey, TValue> (keys, items, 0, keys.Length, comparer);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<T> (T [] array, int index, int length)
{
Sort<T> (array, index, length, (IComparer<T>)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<TKey, TValue> (TKey [] keys, TValue [] items, int index, int length)
{
Sort<TKey, TValue> (keys, items, index, length, (IComparer<TKey>)null);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<T> (T [] array, int index, int length, IComparer<T> comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
if (index < 0)
throw new ArgumentOutOfRangeException ("index");
if (length < 0)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value has to be >= 0."));
if (index + length > array.Length)
throw new ArgumentException ();
SortImpl<T> (array, index, length, comparer);
}
[ReliabilityContractAttribute (Consistency.MayCorruptInstance, Cer.MayFail)]
public static void Sort<TKey, TValue> (TKey [] keys, TValue [] items, int index, int length, IComparer<TKey> comparer)
{
if (items == null) {
Sort<TKey> (keys, index, length, comparer);
return;
}
if (keys == null)
throw new ArgumentNullException ("keys");
if (index < 0)
throw new ArgumentOutOfRangeException ("index");
if (length < 0)
throw new ArgumentOutOfRangeException ("length");
if (items.Length - index < length || keys.Length - index < length)
throw new ArgumentException ();
SortImpl<TKey, TValue> (keys, items, index, length, comparer);
}
private static void SortImpl<TKey, TValue> (TKey [] keys, TValue [] items, int index, int length, IComparer<TKey> comparer)
{
if (keys.Length <= 1)
return;
int low = index;
int high = index + length - 1;
//
// Check for value types which can be sorted without Compare () method
//
if (comparer == null) {
/* Avoid this when using full-aot to prevent the generation of many unused qsort<K,T> instantiations */
#if !FULL_AOT_RUNTIME
#if !BOOTSTRAP_BASIC
switch (Type.GetTypeCode (typeof (TKey))) {
case TypeCode.Int32:
qsort (keys as Int32[], items, low, high);
return;
case TypeCode.Int64:
qsort (keys as Int64[], items, low, high);
return;
case TypeCode.Byte:
qsort (keys as byte[], items, low, high);
return;
case TypeCode.Char:
qsort (keys as char[], items, low, high);
return;
case TypeCode.DateTime:
qsort (keys as DateTime[], items, low, high);
return;
case TypeCode.Decimal:
qsort (keys as decimal[], items, low, high);
return;
case TypeCode.Double:
qsort (keys as double[], items, low, high);
return;
case TypeCode.Int16:
qsort (keys as Int16[], items, low, high);
return;
case TypeCode.SByte:
qsort (keys as SByte[], items, low, high);
return;
case TypeCode.Single:
qsort (keys as Single[], items, low, high);
return;
case TypeCode.UInt16:
qsort (keys as UInt16[], items, low, high);
return;
case TypeCode.UInt32:
qsort (keys as UInt32[], items, low, high);
return;
case TypeCode.UInt64:
qsort (keys as UInt64[], items, low, high);
return;
}
#endif
#endif
// Using Comparer<TKey> adds a small overload, but with value types it
// helps us to not box them.
if (typeof (IComparable<TKey>).IsAssignableFrom (typeof (TKey)) &&
typeof (TKey).IsValueType)
comparer = Comparer<TKey>.Default;
}
if (comparer == null)
CheckComparerAvailable<TKey> (keys, low, high);
//try {
qsort (keys, items, low, high, comparer);
//} catch (Exception e) {
//throw new InvalidOperationException (Locale.GetText ("The comparer threw an exception."), e);
//}
}
// Specialized version for items==null
private static void SortImpl<TKey> (TKey [] keys, int index, int length, IComparer<TKey> comparer)
{
if (keys.Length <= 1)
return;
int low = index;
int high = index + length - 1;
//
// Check for value types which can be sorted without Compare () method
//
if (comparer == null) {
#if !BOOTSTRAP_BASIC
switch (Type.GetTypeCode (typeof (TKey))) {
case TypeCode.Int32:
qsort (keys as Int32[], low, high);
return;
case TypeCode.Int64:
qsort (keys as Int64[], low, high);
return;
case TypeCode.Byte:
qsort (keys as byte[], low, high);
return;
case TypeCode.Char:
qsort (keys as char[], low, high);
return;
case TypeCode.DateTime:
qsort (keys as DateTime[], low, high);
return;
case TypeCode.Decimal:
qsort (keys as decimal[], low, high);
return;
case TypeCode.Double:
qsort (keys as double[], low, high);
return;
case TypeCode.Int16:
qsort (keys as Int16[], low, high);
return;
case TypeCode.SByte:
qsort (keys as SByte[], low, high);
return;
case TypeCode.Single:
qsort (keys as Single[], low, high);
return;
case TypeCode.UInt16:
qsort (keys as UInt16[], low, high);
return;
case TypeCode.UInt32:
qsort (keys as UInt32[], low, high);
return;
case TypeCode.UInt64:
qsort (keys as UInt64[], low, high);
return;
}
#endif
// Using Comparer<TKey> adds a small overload, but with value types it
// helps us to not box them.
if (typeof (IComparable<TKey>).IsAssignableFrom (typeof (TKey)) &&
typeof (TKey).IsValueType)
comparer = Comparer<TKey>.Default;
}
if (comparer == null)
CheckComparerAvailable<TKey> (keys, low, high);
//try {
qsort<TKey> (keys, low, high, comparer);
//} catch (Exception e) {
//throw new InvalidOperationException (Locale.GetText ("The comparer threw an exception."), e);
//}
}
public static void Sort<T> (T [] array, Comparison<T> comparison)
{
if (array == null)
throw new ArgumentNullException ("array");
if (comparison == null)
throw new ArgumentNullException ("comparison");
SortImpl<T> (array, array.Length, comparison);
}
// used by List<T>.Sort (Comparison <T>)
internal static void SortImpl<T> (T [] array, int length, Comparison<T> comparison)
{
if (length <= 1)
return;
try {
int low0 = 0;
int high0 = length - 1;
qsort<T> (array, low0, high0, comparison);
} catch (InvalidOperationException) {
throw;
} catch (Exception e) {
throw new InvalidOperationException (Locale.GetText ("Comparison threw an exception."), e);
}
}
static bool QSortArrange<T, U> (T [] keys, U [] items, int lo, int hi) where T : IComparable<T>
{
if (keys[lo] != null) {
if (keys[hi] == null || keys[hi].CompareTo (keys[lo]) < 0) {
swap (keys, items, lo, hi);
return true;
}
}
return false;
}
// Specialized version for items==null
static bool QSortArrange<T> (T [] keys, int lo, int hi) where T : IComparable<T>
{
if (keys[lo] != null) {
if (keys[hi] == null || keys[hi].CompareTo (keys[lo]) < 0) {
swap (keys, lo, hi);
return true;
}
}
return false;
}
unsafe static void qsort<T, U> (T[] keys, U[] items, int low0, int high0) where T : IComparable<T>
{
QSortStack* stack = stackalloc QSortStack [32];
const int QSORT_THRESHOLD = 7;
int high, low, mid, i, k;
int sp = 1;
T key;
// initialize our stack
stack[0].high = high0;
stack[0].low = low0;
do {
// pop the stack
sp--;
high = stack[sp].high;
low = stack[sp].low;
if ((low + QSORT_THRESHOLD) > high) {
// switch to insertion sort
for (i = low + 1; i <= high; i++) {
for (k = i; k > low; k--) {
// if keys[k] >= keys[k-1], break
if (keys[k-1] == null)
break;
if (keys[k] != null && keys[k].CompareTo (keys[k-1]) >= 0)
break;
swap (keys, items, k - 1, k);
}
}
continue;
}
// calculate the middle element
mid = low + ((high - low) / 2);
// once we re-order the lo, mid, and hi elements to be in
// ascending order, we'll use mid as our pivot.
QSortArrange<T, U> (keys, items, low, mid);
if (QSortArrange<T, U> (keys, items, mid, high))
QSortArrange<T, U> (keys, items, low, mid);
key = keys[mid];
// since we've already guaranteed that lo <= mid and mid <= hi,
// we can skip comparing them again
k = high - 1;
i = low + 1;
do {
if (key != null) {
// find the first element with a value >= pivot value
while (i < k && key.CompareTo (keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && key.CompareTo (keys[k]) < 0)
k--;
} else {
while (i < k && keys[i] == null)
i++;
while (k > i && keys[k] != null)
k--;
}
if (k <= i)
break;
swap (keys, items, i, k);
i++;
k--;
} while (true);
// push our partitions onto the stack, largest first
// (to make sure we don't run out of stack space)
if ((high - k) >= (k - low)) {
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
} else {
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
}
} while (sp > 0);
}
// Specialized version for items==null
unsafe static void qsort<T> (T[] keys, int low0, int high0) where T : IComparable<T>
{
QSortStack* stack = stackalloc QSortStack [32];
const int QSORT_THRESHOLD = 7;
int high, low, mid, i, k;
int sp = 1;
T key;
// initialize our stack
stack[0].high = high0;
stack[0].low = low0;
do {
// pop the stack
sp--;
high = stack[sp].high;
low = stack[sp].low;
if ((low + QSORT_THRESHOLD) > high) {
// switch to insertion sort
for (i = low + 1; i <= high; i++) {
for (k = i; k > low; k--) {
// if keys[k] >= keys[k-1], break
if (keys[k-1] == null)
break;
if (keys[k] != null && keys[k].CompareTo (keys[k-1]) >= 0)
break;
swap (keys, k - 1, k);
}
}
continue;
}
// calculate the middle element
mid = low + ((high - low) / 2);
// once we re-order the lo, mid, and hi elements to be in
// ascending order, we'll use mid as our pivot.
QSortArrange<T> (keys, low, mid);
if (QSortArrange<T> (keys, mid, high))
QSortArrange<T> (keys, low, mid);
key = keys[mid];
// since we've already guaranteed that lo <= mid and mid <= hi,
// we can skip comparing them again
k = high - 1;
i = low + 1;
do {
if (key != null) {
// find the first element with a value >= pivot value
while (i < k && key.CompareTo (keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k >= i && key.CompareTo (keys[k]) < 0)
k--;
} else {
while (i < k && keys[i] == null)
i++;
while (k >= i && keys[k] != null)
k--;
}
if (k <= i)
break;
swap (keys, i, k);
i++;
k--;
} while (true);
// push our partitions onto the stack, largest first
// (to make sure we don't run out of stack space)
if ((high - k) >= (k - low)) {
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
} else {
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
}
} while (sp > 0);
}
static bool QSortArrange<K, V> (K [] keys, V [] items, int lo, int hi, IComparer<K> comparer)
{
IComparable<K> gcmp;
IComparable cmp;
if (comparer != null) {
if (comparer.Compare (keys[hi], keys[lo]) < 0) {
swap<K, V> (keys, items, lo, hi);
return true;
}
} else if (keys[lo] != null) {
if (keys[hi] == null) {
swap<K, V> (keys, items, lo, hi);
return true;
}
gcmp = keys[hi] as IComparable<K>;
if (gcmp != null) {
if (gcmp.CompareTo (keys[lo]) < 0) {
swap<K, V> (keys, items, lo, hi);
return true;
}
return false;
}
cmp = keys[hi] as IComparable;
if (cmp != null) {
if (cmp.CompareTo (keys[lo]) < 0) {
swap<K, V> (keys, items, lo, hi);
return true;
}
return false;
}
}
return false;
}
// Specialized version for items==null
static bool QSortArrange<K> (K [] keys, int lo, int hi, IComparer<K> comparer)
{
IComparable<K> gcmp;
IComparable cmp;
if (comparer != null) {
if (comparer.Compare (keys[hi], keys[lo]) < 0) {
swap<K> (keys, lo, hi);
return true;
}
} else if (keys[lo] != null) {
if (keys[hi] == null) {
swap<K> (keys, lo, hi);
return true;
}
gcmp = keys[hi] as IComparable<K>;
if (gcmp != null) {
if (gcmp.CompareTo (keys[lo]) < 0) {
swap<K> (keys, lo, hi);
return true;
}
return false;
}
cmp = keys[hi] as IComparable;
if (cmp != null) {
if (cmp.CompareTo (keys[lo]) < 0) {
swap<K> (keys, lo, hi);
return true;
}
return false;
}
}
return false;
}
unsafe static void qsort<K, V> (K [] keys, V [] items, int low0, int high0, IComparer<K> comparer)
{
QSortStack* stack = stackalloc QSortStack [32];
const int QSORT_THRESHOLD = 7;
int high, low, mid, i, k;
IComparable<K> gcmp;
IComparable cmp;
int sp = 1;
K key;
// initialize our stack
stack[0].high = high0;
stack[0].low = low0;
do {
// pop the stack
sp--;
high = stack[sp].high;
low = stack[sp].low;
if ((low + QSORT_THRESHOLD) > high) {
// switch to insertion sort
for (i = low + 1; i <= high; i++) {
for (k = i; k > low; k--) {
// if keys[k] >= keys[k-1], break
if (comparer != null) {
if (comparer.Compare (keys[k], keys[k-1]) >= 0)
break;
} else {
if (keys[k-1] == null)
break;
if (keys[k] != null) {
gcmp = keys[k] as IComparable<K>;
cmp = keys[k] as IComparable;
if (gcmp != null) {
if (gcmp.CompareTo (keys[k-1]) >= 0)
break;
} else {
if (cmp.CompareTo (keys[k-1]) >= 0)
break;
}
}
}
swap<K, V> (keys, items, k - 1, k);
}
}
continue;
}
// calculate the middle element
mid = low + ((high - low) / 2);
// once we re-order the low, mid, and high elements to be in
// ascending order, we'll use mid as our pivot.
QSortArrange<K, V> (keys, items, low, mid, comparer);
if (QSortArrange<K, V> (keys, items, mid, high, comparer))
QSortArrange<K, V> (keys, items, low, mid, comparer);
key = keys[mid];
gcmp = key as IComparable<K>;
cmp = key as IComparable;
// since we've already guaranteed that lo <= mid and mid <= hi,
// we can skip comparing them again.
k = high - 1;
i = low + 1;
do {
// Move the walls in
if (comparer != null) {
// find the first element with a value >= pivot value
while (i < k && comparer.Compare (key, keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && comparer.Compare (key, keys[k]) < 0)
k--;
} else {
if (gcmp != null) {
// find the first element with a value >= pivot value
while (i < k && gcmp.CompareTo (keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && gcmp.CompareTo (keys[k]) < 0)
k--;
} else if (cmp != null) {
// find the first element with a value >= pivot value
while (i < k && cmp.CompareTo (keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && cmp.CompareTo (keys[k]) < 0)
k--;
} else {
while (i < k && keys[i] == null)
i++;
while (k > i && keys[k] != null)
k--;
}
}
if (k <= i)
break;
swap<K, V> (keys, items, i, k);
i++;
k--;
} while (true);
// push our partitions onto the stack, largest first
// (to make sure we don't run out of stack space)
if ((high - k) >= (k - low)) {
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
} else {
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
}
} while (sp > 0);
}
// Specialized version for items==null
unsafe static void qsort<K> (K [] keys, int low0, int high0, IComparer<K> comparer)
{
QSortStack* stack = stackalloc QSortStack [32];
const int QSORT_THRESHOLD = 7;
int high, low, mid, i, k;
IComparable<K> gcmp;
IComparable cmp;
int sp = 1;
K key;
// initialize our stack
stack[0].high = high0;
stack[0].low = low0;
do {
// pop the stack
sp--;
high = stack[sp].high;
low = stack[sp].low;
if ((low + QSORT_THRESHOLD) > high) {
// switch to insertion sort
for (i = low + 1; i <= high; i++) {
for (k = i; k > low; k--) {
// if keys[k] >= keys[k-1], break
if (comparer != null) {
if (comparer.Compare (keys[k], keys[k-1]) >= 0)
break;
} else {
if (keys[k-1] == null)
break;
if (keys[k] != null) {
gcmp = keys[k] as IComparable<K>;
cmp = keys[k] as IComparable;
if (gcmp != null) {
if (gcmp.CompareTo (keys[k-1]) >= 0)
break;
} else {
if (cmp.CompareTo (keys[k-1]) >= 0)
break;
}
}
}
swap<K> (keys, k - 1, k);
}
}
continue;
}
// calculate the middle element
mid = low + ((high - low) / 2);
// once we re-order the low, mid, and high elements to be in
// ascending order, we'll use mid as our pivot.
QSortArrange<K> (keys, low, mid, comparer);
if (QSortArrange<K> (keys, mid, high, comparer))
QSortArrange<K> (keys, low, mid, comparer);
key = keys[mid];
gcmp = key as IComparable<K>;
cmp = key as IComparable;
// since we've already guaranteed that lo <= mid and mid <= hi,
// we can skip comparing them again.
k = high - 1;
i = low + 1;
do {
// Move the walls in
if (comparer != null) {
// find the first element with a value >= pivot value
while (i < k && comparer.Compare (key, keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && comparer.Compare (key, keys[k]) < 0)
k--;
} else {
if (gcmp != null) {
// find the first element with a value >= pivot value
while (i < k && gcmp.CompareTo (keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && gcmp.CompareTo (keys[k]) < 0)
k--;
} else if (cmp != null) {
// find the first element with a value >= pivot value
while (i < k && cmp.CompareTo (keys[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && cmp.CompareTo (keys[k]) < 0)
k--;
} else {
while (i < k && keys[i] == null)
i++;
while (k > i && keys[k] != null)
k--;
}
}
if (k <= i)
break;
swap<K> (keys, i, k);
i++;
k--;
} while (true);
// push our partitions onto the stack, largest first
// (to make sure we don't run out of stack space)
if ((high - k) >= (k - low)) {
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
} else {
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
}
} while (sp > 0);
}
static bool QSortArrange<T> (T [] array, int lo, int hi, Comparison<T> compare)
{
if (array[lo] != null) {
if (array[hi] == null || compare (array[hi], array[lo]) < 0) {
swap<T> (array, lo, hi);
return true;
}
}
return false;
}
unsafe static void qsort<T> (T [] array, int low0, int high0, Comparison<T> compare)
{
QSortStack* stack = stackalloc QSortStack [32];
const int QSORT_THRESHOLD = 7;
int high, low, mid, i, k;
int sp = 1;
T key;
// initialize our stack
stack[0].high = high0;
stack[0].low = low0;
do {
// pop the stack
sp--;
high = stack[sp].high;
low = stack[sp].low;
if ((low + QSORT_THRESHOLD) > high) {
// switch to insertion sort
for (i = low + 1; i <= high; i++) {
for (k = i; k > low; k--) {
if (compare (array[k], array[k-1]) >= 0)
break;
swap<T> (array, k - 1, k);
}
}
continue;
}
// calculate the middle element
mid = low + ((high - low) / 2);
// once we re-order the lo, mid, and hi elements to be in
// ascending order, we'll use mid as our pivot.
QSortArrange<T> (array, low, mid, compare);
if (QSortArrange<T> (array, mid, high, compare))
QSortArrange<T> (array, low, mid, compare);
key = array[mid];
// since we've already guaranteed that lo <= mid and mid <= hi,
// we can skip comparing them again
k = high - 1;
i = low + 1;
do {
// Move the walls in
if (key != null) {
// find the first element with a value >= pivot value
while (i < k && compare (key, array[i]) > 0)
i++;
// find the last element with a value <= pivot value
while (k > i && compare (key, array[k]) < 0)
k--;
} else {
while (i < k && array[i] == null)
i++;
while (k > i && array[k] != null)
k--;
}
if (k <= i)
break;
swap<T> (array, i, k);
i++;
k--;
} while (true);
// push our partitions onto the stack, largest first
// (to make sure we don't run out of stack space)
if ((high - k) >= (k - low)) {
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
} else {
if ((k - 1) > low) {
stack[sp].high = k;
stack[sp].low = low;
sp++;
}
if ((k + 1) < high) {
stack[sp].high = high;
stack[sp].low = k;
sp++;
}
}
} while (sp > 0);
}
private static void CheckComparerAvailable<K> (K [] keys, int low, int high)
{
// move null keys to beginning of array,
// ensure that non-null keys implement IComparable
for (int i = low; i < high; i++) {
K key = keys [i];
if (key != null) {
if (!(key is IComparable<K>) && !(key is IComparable)) {
string msg = Locale.GetText ("No IComparable<T> or IComparable interface found for type '{0}'.");
throw new InvalidOperationException (String.Format (msg, key.GetType ()));
}
}
}
}
[MethodImpl ((MethodImplOptions)256)]
private static void swap<K, V> (K [] keys, V [] items, int i, int j)
{
K tmp;
tmp = keys [i];
keys [i] = keys [j];
keys [j] = tmp;
if (items != null) {
V itmp;
itmp = items [i];
items [i] = items [j];
items [j] = itmp;
}
}
[MethodImpl ((MethodImplOptions)256)]
private static void swap<T> (T [] array, int i, int j)
{
T tmp = array [i];
array [i] = array [j];
array [j] = tmp;
}
public void CopyTo (Array array, int index)
{
if (array == null)
throw new ArgumentNullException ("array");
// The order of these exception checks may look strange,
// but that's how the microsoft runtime does it.
if (this.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index + this.GetLength (0) > array.GetLowerBound (0) + array.GetLength (0))
throw new ArgumentException ("Destination array was not long " +
"enough. Check destIndex and length, and the array's " +
"lower bounds.");
if (array.Rank > 1)
throw new RankException (Locale.GetText ("Only single dimension arrays are supported."));
if (index < 0)
throw new ArgumentOutOfRangeException ("index", Locale.GetText (
"Value has to be >= 0."));
Copy (this, this.GetLowerBound (0), array, index, this.GetLength (0));
}
[ComVisible (false)]
public void CopyTo (Array array, long index)
{
if (index < 0 || index > Int32.MaxValue)
throw new ArgumentOutOfRangeException ("index", Locale.GetText (
"Value must be >= 0 and <= Int32.MaxValue."));
CopyTo (array, (int) index);
}
internal class SimpleEnumerator : IEnumerator, ICloneable
{
Array enumeratee;
int currentpos;
int length;
public SimpleEnumerator (Array arrayToEnumerate)
{
this.enumeratee = arrayToEnumerate;
this.currentpos = -1;
this.length = arrayToEnumerate.Length;
}
public object Current {
get {
// Exception messages based on MS implementation
if (currentpos < 0 )
throw new InvalidOperationException (Locale.GetText (
"Enumeration has not started."));
if (currentpos >= length)
throw new InvalidOperationException (Locale.GetText (
"Enumeration has already ended"));
// Current should not increase the position. So no ++ over here.
return enumeratee.GetValueImpl (currentpos);
}
}
public bool MoveNext()
{
//The docs say Current should throw an exception if last
//call to MoveNext returned false. This means currentpos
//should be set to length when returning false.
if (currentpos < length)
currentpos++;
if(currentpos < length)
return true;
else
return false;
}
public void Reset()
{
currentpos = -1;
}
public object Clone ()
{
return MemberwiseClone ();
}
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static void Resize<T> (ref T [] array, int newSize)
{
if (newSize < 0)
throw new ArgumentOutOfRangeException ("newSize");
if (array == null) {
array = new T [newSize];
return;
}
var arr = array;
int length = arr.Length;
if (length == newSize)
return;
T [] a = new T [newSize];
int tocopy = Math.Min (newSize, length);
if (tocopy < 9) {
for (int i = 0; i < tocopy; ++i)
UnsafeStore (a, i, UnsafeLoad (arr, i));
} else {
FastCopy (arr, 0, a, 0, tocopy);
}
array = a;
}
public static bool TrueForAll <T> (T [] array, Predicate <T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
foreach (T t in array)
if (! match (t))
return false;
return true;
}
public static void ForEach<T> (T [] array, Action <T> action)
{
if (array == null)
throw new ArgumentNullException ("array");
if (action == null)
throw new ArgumentNullException ("action");
foreach (T t in array)
action (t);
}
public static TOutput[] ConvertAll<TInput, TOutput> (TInput [] array, Converter<TInput, TOutput> converter)
{
if (array == null)
throw new ArgumentNullException ("array");
if (converter == null)
throw new ArgumentNullException ("converter");
TOutput [] output = new TOutput [array.Length];
for (int i = 0; i < array.Length; i ++)
output [i] = converter (array [i]);
return output;
}
public static int FindLastIndex<T> (T [] array, Predicate <T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
return GetLastIndex (array, 0, array.Length, match);
}
public static int FindLastIndex<T> (T [] array, int startIndex, Predicate<T> match)
{
if (array == null)
throw new ArgumentNullException ();
if (startIndex < 0 || (uint) startIndex > (uint) array.Length)
throw new ArgumentOutOfRangeException ("startIndex");
if (match == null)
throw new ArgumentNullException ("match");
return GetLastIndex (array, 0, startIndex + 1, match);
}
public static int FindLastIndex<T> (T [] array, int startIndex, int count, Predicate<T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
if (startIndex < 0 || (uint) startIndex > (uint) array.Length)
throw new ArgumentOutOfRangeException ("startIndex");
if (count < 0)
throw new ArgumentOutOfRangeException ("count");
if (startIndex - count + 1 < 0)
throw new ArgumentOutOfRangeException ("count must refer to a location within the array");
return GetLastIndex (array, startIndex - count + 1, count, match);
}
internal static int GetLastIndex<T> (T[] array, int startIndex, int count, Predicate<T> match)
{
// unlike FindLastIndex, takes regular params for search range
for (int i = startIndex + count; i != startIndex;)
if (match (array [--i]))
return i;
return -1;
}
public static int FindIndex<T> (T [] array, Predicate<T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
return GetIndex (array, 0, array.Length, match);
}
public static int FindIndex<T> (T [] array, int startIndex, Predicate<T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (startIndex < 0 || (uint) startIndex > (uint) array.Length)
throw new ArgumentOutOfRangeException ("startIndex");
if (match == null)
throw new ArgumentNullException ("match");
return GetIndex (array, startIndex, array.Length - startIndex, match);
}
public static int FindIndex<T> (T [] array, int startIndex, int count, Predicate<T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (startIndex < 0)
throw new ArgumentOutOfRangeException ("startIndex");
if (count < 0)
throw new ArgumentOutOfRangeException ("count");
if ((uint) startIndex + (uint) count > (uint) array.Length)
throw new ArgumentOutOfRangeException ("index and count exceed length of list");
return GetIndex (array, startIndex, count, match);
}
internal static int GetIndex<T> (T[] array, int startIndex, int count, Predicate<T> match)
{
int end = startIndex + count;
for (int i = startIndex; i < end; i ++)
if (match (array [i]))
return i;
return -1;
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch<T> (T [] array, T value)
{
if (array == null)
throw new ArgumentNullException ("array");
return BinarySearch<T> (array, 0, array.Length, value, null);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch<T> (T [] array, T value, IComparer<T> comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
return BinarySearch<T> (array, 0, array.Length, value, comparer);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch<T> (T [] array, int index, int length, T value)
{
return BinarySearch<T> (array, index, length, value, null);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.MayFail)]
public static int BinarySearch<T> (T [] array, int index, int length, T value, IComparer<T> comparer)
{
if (array == null)
throw new ArgumentNullException ("array");
if (index < 0)
throw new ArgumentOutOfRangeException ("index", Locale.GetText (
"index is less than the lower bound of array."));
if (length < 0)
throw new ArgumentOutOfRangeException ("length", Locale.GetText (
"Value has to be >= 0."));
// re-ordered to avoid possible integer overflow
if (index > array.Length - length)
throw new ArgumentException (Locale.GetText (
"index and length do not specify a valid range in array."));
if (comparer == null)
comparer = Comparer <T>.Default;
int iMin = index;
int iMax = index + length - 1;
int iCmp = 0;
try {
while (iMin <= iMax) {
// Be careful with overflows
int iMid = iMin + ((iMax - iMin) / 2);
iCmp = comparer.Compare (array [iMid], value);
if (iCmp == 0)
return iMid;
if (iCmp > 0)
iMax = iMid - 1;
else
iMin = iMid + 1; // compensate for the rounding down
}
} catch (Exception e) {
throw new InvalidOperationException (Locale.GetText ("Comparer threw an exception."), e);
}
return ~iMin;
}
public static int IndexOf<T> (T [] array, T value)
{
if (array == null)
throw new ArgumentNullException ("array");
return IndexOf<T> (array, value, 0, array.Length);
}
public static int IndexOf<T> (T [] array, T value, int startIndex)
{
if (array == null)
throw new ArgumentNullException ("array");
return IndexOf<T> (array, value, startIndex, array.Length - startIndex);
}
public static int IndexOf<T> (T[] array, T value, int startIndex, int count)
{
if (array == null)
throw new ArgumentNullException ("array");
// re-ordered to avoid possible integer overflow
if (count < 0 || startIndex < array.GetLowerBound (0) || startIndex - 1 > array.GetUpperBound (0) - count)
throw new ArgumentOutOfRangeException ();
return EqualityComparer<T>.Default.IndexOf (array, value, startIndex, count);
}
public static int LastIndexOf<T> (T [] array, T value)
{
if (array == null)
throw new ArgumentNullException ("array");
if (array.Length == 0)
return -1;
return LastIndexOf<T> (array, value, array.Length - 1);
}
public static int LastIndexOf<T> (T [] array, T value, int startIndex)
{
if (array == null)
throw new ArgumentNullException ("array");
return LastIndexOf<T> (array, value, startIndex, startIndex + 1);
}
public static int LastIndexOf<T> (T [] array, T value, int startIndex, int count)
{
if (array == null)
throw new ArgumentNullException ("array");
if (count < 0 || startIndex < array.GetLowerBound (0) ||
startIndex > array.GetUpperBound (0) || startIndex - count + 1 < array.GetLowerBound (0))
throw new ArgumentOutOfRangeException ();
EqualityComparer<T> equalityComparer = EqualityComparer<T>.Default;
for (int i = startIndex; i >= startIndex - count + 1; i--) {
if (equalityComparer.Equals (array [i], value))
return i;
}
return -1;
}
public static T [] FindAll<T> (T [] array, Predicate <T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
int pos = 0;
T [] d = new T [array.Length];
foreach (T t in array)
if (match (t))
d [pos++] = t;
Resize <T> (ref d, pos);
return d;
}
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
public static T[] Empty<T>()
{
return EmptyArray<T>.Value;
}
public static bool Exists<T> (T [] array, Predicate <T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
foreach (T t in array)
if (match (t))
return true;
return false;
}
public static ReadOnlyCollection<T> AsReadOnly<T> (T[] array)
{
if (array == null)
throw new ArgumentNullException ("array");
return new ReadOnlyCollection<T> (array);
}
public static T Find<T> (T [] array, Predicate<T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
foreach (T t in array)
if (match (t))
return t;
return default (T);
}
public static T FindLast<T> (T [] array, Predicate <T> match)
{
if (array == null)
throw new ArgumentNullException ("array");
if (match == null)
throw new ArgumentNullException ("match");
for (int i = array.Length - 1; i >= 0; i--)
if (match (array [i]))
return array [i];
return default (T);
}
[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
//
// The constrained copy should guarantee that if there is an exception thrown
// during the copy, the destination array remains unchanged.
// This is related to System.Runtime.Reliability.CER
public static void ConstrainedCopy (Array sourceArray, int sourceIndex, Array destinationArray, int destinationIndex, int length)
{
Copy (sourceArray, sourceIndex, destinationArray, destinationIndex, length);
}
#region Unsafe array operations
//
// Loads array index with no safety checks (JIT intristics)
//
internal static T UnsafeLoad<T> (T[] array, int index) {
return array [index];
}
//
// Stores values at specified array index with no safety checks (JIT intristics)
//
internal static void UnsafeStore<T> (T[] array, int index, T value) {
array [index] = value;
}
//
// Moved value from instance into target of different type with no checks (JIT intristics)
//
// Restrictions:
//
// S and R must either:
// both be blitable valuetypes
// both be reference types (IOW, an unsafe cast)
// S and R cannot be float or double
// S and R must either:
// both be a struct
// both be a scalar
// S and R must either:
// be of same size
// both be a scalar of size <= 4
//
internal static R UnsafeMov<S,R> (S instance) {
return (R)(object) instance;
}
#endregion
internal sealed class FunctorComparer<T> : IComparer<T> {
Comparison<T> comparison;
public FunctorComparer(Comparison<T> comparison) {
this.comparison = comparison;
}
public int Compare(T x, T y) {
return comparison(x, y);
}
}
}
}