You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			637 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			637 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pass that optimizes call sequences on x86.
 | |
| // Currently, it converts movs of function parameters onto the stack into
 | |
| // pushes. This is beneficial for two main reasons:
 | |
| // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
 | |
| // 2) It is possible to push memory arguments directly. So, if the
 | |
| //    the transformation is performed pre-reg-alloc, it can help relieve
 | |
| //    register pressure.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "X86FrameLowering.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/MCDwarf.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-cf-opt"
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     NoX86CFOpt("no-x86-call-frame-opt",
 | |
|                cl::desc("Avoid optimizing x86 call frames for size"),
 | |
|                cl::init(false), cl::Hidden);
 | |
| 
 | |
| namespace llvm {
 | |
| void initializeX86CallFrameOptimizationPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class X86CallFrameOptimization : public MachineFunctionPass {
 | |
| public:
 | |
|   X86CallFrameOptimization() : MachineFunctionPass(ID) {
 | |
|     initializeX86CallFrameOptimizationPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   // Information we know about a particular call site
 | |
|   struct CallContext {
 | |
|     CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
 | |
| 
 | |
|     // Iterator referring to the frame setup instruction
 | |
|     MachineBasicBlock::iterator FrameSetup;
 | |
| 
 | |
|     // Actual call instruction
 | |
|     MachineInstr *Call = nullptr;
 | |
| 
 | |
|     // A copy of the stack pointer
 | |
|     MachineInstr *SPCopy = nullptr;
 | |
| 
 | |
|     // The total displacement of all passed parameters
 | |
|     int64_t ExpectedDist = 0;
 | |
| 
 | |
|     // The sequence of storing instructions used to pass the parameters
 | |
|     SmallVector<MachineInstr *, 4> ArgStoreVector;
 | |
| 
 | |
|     // True if this call site has no stack parameters
 | |
|     bool NoStackParams = false;
 | |
| 
 | |
|     // True if this call site can use push instructions
 | |
|     bool UsePush = false;
 | |
|   };
 | |
| 
 | |
|   typedef SmallVector<CallContext, 8> ContextVector;
 | |
| 
 | |
|   bool isLegal(MachineFunction &MF);
 | |
| 
 | |
|   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
 | |
| 
 | |
|   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
 | |
|                        MachineBasicBlock::iterator I, CallContext &Context);
 | |
| 
 | |
|   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
 | |
| 
 | |
|   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
 | |
|                                    unsigned Reg);
 | |
| 
 | |
|   enum InstClassification { Convert, Skip, Exit };
 | |
| 
 | |
|   InstClassification classifyInstruction(MachineBasicBlock &MBB,
 | |
|                                          MachineBasicBlock::iterator MI,
 | |
|                                          const X86RegisterInfo &RegInfo,
 | |
|                                          DenseSet<unsigned int> &UsedRegs);
 | |
| 
 | |
|   StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
 | |
| 
 | |
|   const X86InstrInfo *TII;
 | |
|   const X86FrameLowering *TFL;
 | |
|   const X86Subtarget *STI;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   unsigned SlotSize;
 | |
|   unsigned Log2SlotSize;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| char X86CallFrameOptimization::ID = 0;
 | |
| INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
 | |
|                 "X86 Call Frame Optimization", false, false)
 | |
| 
 | |
| // This checks whether the transformation is legal.
 | |
| // Also returns false in cases where it's potentially legal, but
 | |
| // we don't even want to try.
 | |
| bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
 | |
|   if (NoX86CFOpt.getValue())
 | |
|     return false;
 | |
| 
 | |
|   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
 | |
|   // in the compact unwind encoding that Darwin uses. So, bail if there
 | |
|   // is a danger of that being generated.
 | |
|   if (STI->isTargetDarwin() &&
 | |
|       (!MF.getLandingPads().empty() ||
 | |
|        (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
 | |
|     return false;
 | |
| 
 | |
|   // It is not valid to change the stack pointer outside the prolog/epilog
 | |
|   // on 64-bit Windows.
 | |
|   if (STI->isTargetWin64())
 | |
|     return false;
 | |
| 
 | |
|   // You would expect straight-line code between call-frame setup and
 | |
|   // call-frame destroy. You would be wrong. There are circumstances (e.g.
 | |
|   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
 | |
|   // end up with the setup and the destroy in different basic blocks.
 | |
|   // This is bad, and breaks SP adjustment.
 | |
|   // So, check that all of the frames in the function are closed inside
 | |
|   // the same block, and, for good measure, that there are no nested frames.
 | |
|   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
 | |
|   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
 | |
|   for (MachineBasicBlock &BB : MF) {
 | |
|     bool InsideFrameSequence = false;
 | |
|     for (MachineInstr &MI : BB) {
 | |
|       if (MI.getOpcode() == FrameSetupOpcode) {
 | |
|         if (InsideFrameSequence)
 | |
|           return false;
 | |
|         InsideFrameSequence = true;
 | |
|       } else if (MI.getOpcode() == FrameDestroyOpcode) {
 | |
|         if (!InsideFrameSequence)
 | |
|           return false;
 | |
|         InsideFrameSequence = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (InsideFrameSequence)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Check whether this transformation is profitable for a particular
 | |
| // function - in terms of code size.
 | |
| bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
 | |
|                                             ContextVector &CallSeqVector) {
 | |
|   // This transformation is always a win when we do not expect to have
 | |
|   // a reserved call frame. Under other circumstances, it may be either
 | |
|   // a win or a loss, and requires a heuristic.
 | |
|   bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
 | |
|   if (CannotReserveFrame)
 | |
|     return true;
 | |
| 
 | |
|   unsigned StackAlign = TFL->getStackAlignment();
 | |
| 
 | |
|   int64_t Advantage = 0;
 | |
|   for (auto CC : CallSeqVector) {
 | |
|     // Call sites where no parameters are passed on the stack
 | |
|     // do not affect the cost, since there needs to be no
 | |
|     // stack adjustment.
 | |
|     if (CC.NoStackParams)
 | |
|       continue;
 | |
| 
 | |
|     if (!CC.UsePush) {
 | |
|       // If we don't use pushes for a particular call site,
 | |
|       // we pay for not having a reserved call frame with an
 | |
|       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
 | |
|       // depending on the size of the constant.
 | |
|       // TODO: Callee-pop functions should have a smaller penalty, because
 | |
|       // an add is needed even with a reserved call frame.
 | |
|       Advantage -= 6;
 | |
|     } else {
 | |
|       // We can use pushes. First, account for the fixed costs.
 | |
|       // We'll need a add after the call.
 | |
|       Advantage -= 3;
 | |
|       // If we have to realign the stack, we'll also need a sub before
 | |
|       if (CC.ExpectedDist % StackAlign)
 | |
|         Advantage -= 3;
 | |
|       // Now, for each push, we save ~3 bytes. For small constants, we actually,
 | |
|       // save more (up to 5 bytes), but 3 should be a good approximation.
 | |
|       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Advantage >= 0;
 | |
| }
 | |
| 
 | |
| bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
 | |
|   STI = &MF.getSubtarget<X86Subtarget>();
 | |
|   TII = STI->getInstrInfo();
 | |
|   TFL = STI->getFrameLowering();
 | |
|   MRI = &MF.getRegInfo();
 | |
| 
 | |
|   const X86RegisterInfo &RegInfo =
 | |
|       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
 | |
|   SlotSize = RegInfo.getSlotSize();
 | |
|   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
 | |
|   Log2SlotSize = Log2_32(SlotSize);
 | |
| 
 | |
|   if (skipFunction(MF.getFunction()) || !isLegal(MF))
 | |
|     return false;
 | |
| 
 | |
|   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   ContextVector CallSeqVector;
 | |
| 
 | |
|   for (auto &MBB : MF)
 | |
|     for (auto &MI : MBB)
 | |
|       if (MI.getOpcode() == FrameSetupOpcode) {
 | |
|         CallContext Context;
 | |
|         collectCallInfo(MF, MBB, MI, Context);
 | |
|         CallSeqVector.push_back(Context);
 | |
|       }
 | |
| 
 | |
|   if (!isProfitable(MF, CallSeqVector))
 | |
|     return false;
 | |
| 
 | |
|   for (auto CC : CallSeqVector) {
 | |
|     if (CC.UsePush) {
 | |
|       adjustCallSequence(MF, CC);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| X86CallFrameOptimization::InstClassification
 | |
| X86CallFrameOptimization::classifyInstruction(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | |
|     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
 | |
|   if (MI == MBB.end())
 | |
|     return Exit;
 | |
| 
 | |
|   // The instructions we actually care about are movs onto the stack or special
 | |
|   // cases of constant-stores to stack
 | |
|   switch (MI->getOpcode()) {
 | |
|     case X86::AND16mi8:
 | |
|     case X86::AND32mi8:
 | |
|     case X86::AND64mi8: {
 | |
|       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
 | |
|       return ImmOp.getImm() == 0 ? Convert : Exit;
 | |
|     }
 | |
|     case X86::OR16mi8:
 | |
|     case X86::OR32mi8:
 | |
|     case X86::OR64mi8: {
 | |
|       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
 | |
|       return ImmOp.getImm() == -1 ? Convert : Exit;
 | |
|     }
 | |
|     case X86::MOV32mi:
 | |
|     case X86::MOV32mr:
 | |
|     case X86::MOV64mi32:
 | |
|     case X86::MOV64mr:
 | |
|       return Convert;
 | |
|   }
 | |
| 
 | |
|   // Not all calling conventions have only stack MOVs between the stack
 | |
|   // adjust and the call.
 | |
| 
 | |
|   // We want to tolerate other instructions, to cover more cases.
 | |
|   // In particular:
 | |
|   // a) PCrel calls, where we expect an additional COPY of the basereg.
 | |
|   // b) Passing frame-index addresses.
 | |
|   // c) Calling conventions that have inreg parameters. These generate
 | |
|   //    both copies and movs into registers.
 | |
|   // To avoid creating lots of special cases, allow any instruction
 | |
|   // that does not write into memory, does not def or use the stack
 | |
|   // pointer, and does not def any register that was used by a preceding
 | |
|   // push.
 | |
|   // (Reading from memory is allowed, even if referenced through a
 | |
|   // frame index, since these will get adjusted properly in PEI)
 | |
| 
 | |
|   // The reason for the last condition is that the pushes can't replace
 | |
|   // the movs in place, because the order must be reversed.
 | |
|   // So if we have a MOV32mr that uses EDX, then an instruction that defs
 | |
|   // EDX, and then the call, after the transformation the push will use
 | |
|   // the modified version of EDX, and not the original one.
 | |
|   // Since we are still in SSA form at this point, we only need to
 | |
|   // make sure we don't clobber any *physical* registers that were
 | |
|   // used by an earlier mov that will become a push.
 | |
| 
 | |
|   if (MI->isCall() || MI->mayStore())
 | |
|     return Exit;
 | |
| 
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned int Reg = MO.getReg();
 | |
|     if (!RegInfo.isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
 | |
|       return Exit;
 | |
|     if (MO.isDef()) {
 | |
|       for (unsigned int U : UsedRegs)
 | |
|         if (RegInfo.regsOverlap(Reg, U))
 | |
|           return Exit;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Skip;
 | |
| }
 | |
| 
 | |
| void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
 | |
|                                                MachineBasicBlock &MBB,
 | |
|                                                MachineBasicBlock::iterator I,
 | |
|                                                CallContext &Context) {
 | |
|   // Check that this particular call sequence is amenable to the
 | |
|   // transformation.
 | |
|   const X86RegisterInfo &RegInfo =
 | |
|       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
 | |
| 
 | |
|   // We expect to enter this at the beginning of a call sequence
 | |
|   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
 | |
|   MachineBasicBlock::iterator FrameSetup = I++;
 | |
|   Context.FrameSetup = FrameSetup;
 | |
| 
 | |
|   // How much do we adjust the stack? This puts an upper bound on
 | |
|   // the number of parameters actually passed on it.
 | |
|   unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
 | |
| 
 | |
|   // A zero adjustment means no stack parameters
 | |
|   if (!MaxAdjust) {
 | |
|     Context.NoStackParams = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Skip over DEBUG_VALUE.
 | |
|   // For globals in PIC mode, we can have some LEAs here. Skip them as well.
 | |
|   // TODO: Extend this to something that covers more cases.
 | |
|   while (I->getOpcode() == X86::LEA32r || I->isDebugValue())
 | |
|     ++I;
 | |
| 
 | |
|   unsigned StackPtr = RegInfo.getStackRegister();
 | |
|   auto StackPtrCopyInst = MBB.end();
 | |
|   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
 | |
|   // register.  If it's there, use that virtual register as stack pointer
 | |
|   // instead. Also, we need to locate this instruction so that we can later
 | |
|   // safely ignore it while doing the conservative processing of the call chain.
 | |
|   // The COPY can be located anywhere between the call-frame setup
 | |
|   // instruction and its first use. We use the call instruction as a boundary
 | |
|   // because it is usually cheaper to check if an instruction is a call than
 | |
|   // checking if an instruction uses a register.
 | |
|   for (auto J = I; !J->isCall(); ++J)
 | |
|     if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
 | |
|         J->getOperand(1).getReg() == StackPtr) {
 | |
|       StackPtrCopyInst = J;
 | |
|       Context.SPCopy = &*J++;
 | |
|       StackPtr = Context.SPCopy->getOperand(0).getReg();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Scan the call setup sequence for the pattern we're looking for.
 | |
|   // We only handle a simple case - a sequence of store instructions that
 | |
|   // push a sequence of stack-slot-aligned values onto the stack, with
 | |
|   // no gaps between them.
 | |
|   if (MaxAdjust > 4)
 | |
|     Context.ArgStoreVector.resize(MaxAdjust, nullptr);
 | |
| 
 | |
|   DenseSet<unsigned int> UsedRegs;
 | |
| 
 | |
|   for (InstClassification Classification = Skip; Classification != Exit; ++I) {
 | |
|     // If this is the COPY of the stack pointer, it's ok to ignore.
 | |
|     if (I == StackPtrCopyInst)
 | |
|       continue;
 | |
|     Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
 | |
|     if (Classification != Convert)
 | |
|       continue;
 | |
|     // We know the instruction has a supported store opcode.
 | |
|     // We only want movs of the form:
 | |
|     // mov imm/reg, k(%StackPtr)
 | |
|     // If we run into something else, bail.
 | |
|     // Note that AddrBaseReg may, counter to its name, not be a register,
 | |
|     // but rather a frame index.
 | |
|     // TODO: Support the fi case. This should probably work now that we
 | |
|     // have the infrastructure to track the stack pointer within a call
 | |
|     // sequence.
 | |
|     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
 | |
|         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
 | |
|         !I->getOperand(X86::AddrScaleAmt).isImm() ||
 | |
|         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
 | |
|         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
 | |
|         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
 | |
|         !I->getOperand(X86::AddrDisp).isImm())
 | |
|       return;
 | |
| 
 | |
|     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
 | |
|     assert(StackDisp >= 0 &&
 | |
|            "Negative stack displacement when passing parameters");
 | |
| 
 | |
|     // We really don't want to consider the unaligned case.
 | |
|     if (StackDisp & (SlotSize - 1))
 | |
|       return;
 | |
|     StackDisp >>= Log2SlotSize;
 | |
| 
 | |
|     assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
 | |
|            "Function call has more parameters than the stack is adjusted for.");
 | |
| 
 | |
|     // If the same stack slot is being filled twice, something's fishy.
 | |
|     if (Context.ArgStoreVector[StackDisp] != nullptr)
 | |
|       return;
 | |
|     Context.ArgStoreVector[StackDisp] = &*I;
 | |
| 
 | |
|     for (const MachineOperand &MO : I->uses()) {
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned int Reg = MO.getReg();
 | |
|       if (RegInfo.isPhysicalRegister(Reg))
 | |
|         UsedRegs.insert(Reg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   --I;
 | |
| 
 | |
|   // We now expect the end of the sequence. If we stopped early,
 | |
|   // or reached the end of the block without finding a call, bail.
 | |
|   if (I == MBB.end() || !I->isCall())
 | |
|     return;
 | |
| 
 | |
|   Context.Call = &*I;
 | |
|   if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
 | |
|     return;
 | |
| 
 | |
|   // Now, go through the vector, and see that we don't have any gaps,
 | |
|   // but only a series of storing instructions.
 | |
|   auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
 | |
|   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
 | |
|     if (*MMI == nullptr)
 | |
|       break;
 | |
| 
 | |
|   // If the call had no parameters, do nothing
 | |
|   if (MMI == Context.ArgStoreVector.begin())
 | |
|     return;
 | |
| 
 | |
|   // We are either at the last parameter, or a gap.
 | |
|   // Make sure it's not a gap
 | |
|   for (; MMI != MME; ++MMI)
 | |
|     if (*MMI != nullptr)
 | |
|       return;
 | |
| 
 | |
|   Context.UsePush = true;
 | |
| }
 | |
| 
 | |
| void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
 | |
|                                                   const CallContext &Context) {
 | |
|   // Ok, we can in fact do the transformation for this call.
 | |
|   // Do not remove the FrameSetup instruction, but adjust the parameters.
 | |
|   // PEI will end up finalizing the handling of this.
 | |
|   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
 | |
|   MachineBasicBlock &MBB = *(FrameSetup->getParent());
 | |
|   TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
 | |
| 
 | |
|   DebugLoc DL = FrameSetup->getDebugLoc();
 | |
|   bool Is64Bit = STI->is64Bit();
 | |
|   // Now, iterate through the vector in reverse order, and replace the store to
 | |
|   // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
 | |
|   // replace uses.
 | |
|   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
 | |
|     MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
 | |
|     MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
 | |
|     MachineBasicBlock::iterator Push = nullptr;
 | |
|     unsigned PushOpcode;
 | |
|     switch (Store->getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected Opcode!");
 | |
|     case X86::AND16mi8:
 | |
|     case X86::AND32mi8:
 | |
|     case X86::AND64mi8:
 | |
|     case X86::OR16mi8:
 | |
|     case X86::OR32mi8:
 | |
|     case X86::OR64mi8:
 | |
|     case X86::MOV32mi:
 | |
|     case X86::MOV64mi32:
 | |
|       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
 | |
|       // If the operand is a small (8-bit) immediate, we can use a
 | |
|       // PUSH instruction with a shorter encoding.
 | |
|       // Note that isImm() may fail even though this is a MOVmi, because
 | |
|       // the operand can also be a symbol.
 | |
|       if (PushOp.isImm()) {
 | |
|         int64_t Val = PushOp.getImm();
 | |
|         if (isInt<8>(Val))
 | |
|           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
 | |
|       }
 | |
|       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
 | |
|       break;
 | |
|     case X86::MOV32mr:
 | |
|     case X86::MOV64mr: {
 | |
|       unsigned int Reg = PushOp.getReg();
 | |
| 
 | |
|       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
 | |
|       // in preparation for the PUSH64. The upper 32 bits can be undef.
 | |
|       if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
 | |
|         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
 | |
|         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
 | |
|         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
 | |
|         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
 | |
|             .addReg(UndefReg)
 | |
|             .add(PushOp)
 | |
|             .addImm(X86::sub_32bit);
 | |
|       }
 | |
| 
 | |
|       // If PUSHrmm is not slow on this target, try to fold the source of the
 | |
|       // push into the instruction.
 | |
|       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
 | |
| 
 | |
|       // Check that this is legal to fold. Right now, we're extremely
 | |
|       // conservative about that.
 | |
|       MachineInstr *DefMov = nullptr;
 | |
|       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
 | |
|         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
 | |
|         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
 | |
| 
 | |
|         unsigned NumOps = DefMov->getDesc().getNumOperands();
 | |
|         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
 | |
|           Push->addOperand(DefMov->getOperand(i));
 | |
| 
 | |
|         DefMov->eraseFromParent();
 | |
|       } else {
 | |
|         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
 | |
|         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
 | |
|                    .addReg(Reg)
 | |
|                    .getInstr();
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // For debugging, when using SP-based CFA, we need to adjust the CFA
 | |
|     // offset after each push.
 | |
|     // TODO: This is needed only if we require precise CFA.
 | |
|     if (!TFL->hasFP(MF))
 | |
|       TFL->BuildCFI(
 | |
|           MBB, std::next(Push), DL,
 | |
|           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
 | |
| 
 | |
|     MBB.erase(Store);
 | |
|   }
 | |
| 
 | |
|   // The stack-pointer copy is no longer used in the call sequences.
 | |
|   // There should not be any other users, but we can't commit to that, so:
 | |
|   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
 | |
|     Context.SPCopy->eraseFromParent();
 | |
| 
 | |
|   // Once we've done this, we need to make sure PEI doesn't assume a reserved
 | |
|   // frame.
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   FuncInfo->setHasPushSequences(true);
 | |
| }
 | |
| 
 | |
| MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
 | |
|     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
 | |
|   // Do an extremely restricted form of load folding.
 | |
|   // ISel will often create patterns like:
 | |
|   // movl    4(%edi), %eax
 | |
|   // movl    8(%edi), %ecx
 | |
|   // movl    12(%edi), %edx
 | |
|   // movl    %edx, 8(%esp)
 | |
|   // movl    %ecx, 4(%esp)
 | |
|   // movl    %eax, (%esp)
 | |
|   // call
 | |
|   // Get rid of those with prejudice.
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure this is the only use of Reg.
 | |
|   if (!MRI->hasOneNonDBGUse(Reg))
 | |
|     return nullptr;
 | |
| 
 | |
|   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
 | |
| 
 | |
|   // Make sure the def is a MOV from memory.
 | |
|   // If the def is in another block, give up.
 | |
|   if ((DefMI.getOpcode() != X86::MOV32rm &&
 | |
|        DefMI.getOpcode() != X86::MOV64rm) ||
 | |
|       DefMI.getParent() != FrameSetup->getParent())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure we don't have any instructions between DefMI and the
 | |
|   // push that make folding the load illegal.
 | |
|   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
 | |
|     if (I->isLoadFoldBarrier())
 | |
|       return nullptr;
 | |
| 
 | |
|   return &DefMI;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86CallFrameOptimization() {
 | |
|   return new X86CallFrameOptimization();
 | |
| }
 |