You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			2381 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2381 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "hexagon-lir"
 | |
| 
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <deque>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
 | |
|   cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable generation of memcpy in loop idiom recognition"));
 | |
| 
 | |
| static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
 | |
|   cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable generation of memmove in loop idiom recognition"));
 | |
| 
 | |
| static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
 | |
|   cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
 | |
|   "check guarding the memmove."));
 | |
| 
 | |
| static cl::opt<unsigned> CompileTimeMemSizeThreshold(
 | |
|   "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
 | |
|   cl::desc("Threshold (in bytes) to perform the transformation, if the "
 | |
|     "runtime loop count (mem transfer size) is known at compile-time."));
 | |
| 
 | |
| static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
 | |
|   cl::Hidden, cl::init(true),
 | |
|   cl::desc("Only enable generating memmove in non-nested loops"));
 | |
| 
 | |
| cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
 | |
|   cl::Hidden, cl::init(false),
 | |
|   cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
 | |
| 
 | |
| static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
 | |
|   cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
 | |
| 
 | |
| static const char *HexagonVolatileMemcpyName
 | |
|   = "hexagon_memcpy_forward_vp4cp4n2";
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
 | |
|   Pass *createHexagonLoopIdiomPass();
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class HexagonLoopIdiomRecognize : public LoopPass {
 | |
|   public:
 | |
|     static char ID;
 | |
| 
 | |
|     explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
 | |
|       initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     StringRef getPassName() const override {
 | |
|       return "Recognize Hexagon-specific loop idioms";
 | |
|     }
 | |
| 
 | |
|    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<LoopInfoWrapperPass>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|       AU.addPreserved<AAResultsWrapperPass>();
 | |
|       AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|       AU.addPreserved<TargetLibraryInfoWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|   private:
 | |
|     int getSCEVStride(const SCEVAddRecExpr *StoreEv);
 | |
|     bool isLegalStore(Loop *CurLoop, StoreInst *SI);
 | |
|     void collectStores(Loop *CurLoop, BasicBlock *BB,
 | |
|         SmallVectorImpl<StoreInst*> &Stores);
 | |
|     bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
 | |
|     bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
 | |
|     bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
 | |
|         SmallVectorImpl<BasicBlock*> &ExitBlocks);
 | |
|     bool runOnCountableLoop(Loop *L);
 | |
| 
 | |
|     AliasAnalysis *AA;
 | |
|     const DataLayout *DL;
 | |
|     DominatorTree *DT;
 | |
|     LoopInfo *LF;
 | |
|     const TargetLibraryInfo *TLI;
 | |
|     ScalarEvolution *SE;
 | |
|     bool HasMemcpy, HasMemmove;
 | |
|   };
 | |
| 
 | |
|   struct Simplifier {
 | |
|     struct Rule {
 | |
|       using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
 | |
|       Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
 | |
|       StringRef Name;   // For debugging.
 | |
|       FuncType Fn;
 | |
|     };
 | |
| 
 | |
|     void addRule(StringRef N, const Rule::FuncType &F) {
 | |
|       Rules.push_back(Rule(N, F));
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     struct WorkListType {
 | |
|       WorkListType() = default;
 | |
| 
 | |
|       void push_back(Value* V) {
 | |
|         // Do not push back duplicates.
 | |
|         if (!S.count(V)) { Q.push_back(V); S.insert(V); }
 | |
|       }
 | |
| 
 | |
|       Value *pop_front_val() {
 | |
|         Value *V = Q.front(); Q.pop_front(); S.erase(V);
 | |
|         return V;
 | |
|       }
 | |
| 
 | |
|       bool empty() const { return Q.empty(); }
 | |
| 
 | |
|     private:
 | |
|       std::deque<Value*> Q;
 | |
|       std::set<Value*> S;
 | |
|     };
 | |
| 
 | |
|     using ValueSetType = std::set<Value *>;
 | |
| 
 | |
|     std::vector<Rule> Rules;
 | |
| 
 | |
|   public:
 | |
|     struct Context {
 | |
|       using ValueMapType = DenseMap<Value *, Value *>;
 | |
| 
 | |
|       Value *Root;
 | |
|       ValueSetType Used;    // The set of all cloned values used by Root.
 | |
|       ValueSetType Clones;  // The set of all cloned values.
 | |
|       LLVMContext &Ctx;
 | |
| 
 | |
|       Context(Instruction *Exp)
 | |
|         : Ctx(Exp->getParent()->getParent()->getContext()) {
 | |
|         initialize(Exp);
 | |
|       }
 | |
| 
 | |
|       ~Context() { cleanup(); }
 | |
| 
 | |
|       void print(raw_ostream &OS, const Value *V) const;
 | |
|       Value *materialize(BasicBlock *B, BasicBlock::iterator At);
 | |
| 
 | |
|     private:
 | |
|       friend struct Simplifier;
 | |
| 
 | |
|       void initialize(Instruction *Exp);
 | |
|       void cleanup();
 | |
| 
 | |
|       template <typename FuncT> void traverse(Value *V, FuncT F);
 | |
|       void record(Value *V);
 | |
|       void use(Value *V);
 | |
|       void unuse(Value *V);
 | |
| 
 | |
|       bool equal(const Instruction *I, const Instruction *J) const;
 | |
|       Value *find(Value *Tree, Value *Sub) const;
 | |
|       Value *subst(Value *Tree, Value *OldV, Value *NewV);
 | |
|       void replace(Value *OldV, Value *NewV);
 | |
|       void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
 | |
|     };
 | |
| 
 | |
|     Value *simplify(Context &C);
 | |
|   };
 | |
| 
 | |
|   struct PE {
 | |
|     PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
 | |
| 
 | |
|     const Simplifier::Context &C;
 | |
|     const Value *V;
 | |
|   };
 | |
| 
 | |
|   raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED;
 | |
|   raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
 | |
|     P.C.print(OS, P.V ? P.V : P.C.Root);
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char HexagonLoopIdiomRecognize::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
 | |
|     "Recognize Hexagon-specific loop idioms", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
 | |
|     "Recognize Hexagon-specific loop idioms", false, false)
 | |
| 
 | |
| template <typename FuncT>
 | |
| void Simplifier::Context::traverse(Value *V, FuncT F) {
 | |
|   WorkListType Q;
 | |
|   Q.push_back(V);
 | |
| 
 | |
|   while (!Q.empty()) {
 | |
|     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
 | |
|     if (!U || U->getParent())
 | |
|       continue;
 | |
|     if (!F(U))
 | |
|       continue;
 | |
|     for (Value *Op : U->operands())
 | |
|       Q.push_back(Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
 | |
|   const auto *U = dyn_cast<const Instruction>(V);
 | |
|   if (!U) {
 | |
|     OS << V << '(' << *V << ')';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (U->getParent()) {
 | |
|     OS << U << '(';
 | |
|     U->printAsOperand(OS, true);
 | |
|     OS << ')';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned N = U->getNumOperands();
 | |
|   if (N != 0)
 | |
|     OS << U << '(';
 | |
|   OS << U->getOpcodeName();
 | |
|   for (const Value *Op : U->operands()) {
 | |
|     OS << ' ';
 | |
|     print(OS, Op);
 | |
|   }
 | |
|   if (N != 0)
 | |
|     OS << ')';
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::initialize(Instruction *Exp) {
 | |
|   // Perform a deep clone of the expression, set Root to the root
 | |
|   // of the clone, and build a map from the cloned values to the
 | |
|   // original ones.
 | |
|   ValueMapType M;
 | |
|   BasicBlock *Block = Exp->getParent();
 | |
|   WorkListType Q;
 | |
|   Q.push_back(Exp);
 | |
| 
 | |
|   while (!Q.empty()) {
 | |
|     Value *V = Q.pop_front_val();
 | |
|     if (M.find(V) != M.end())
 | |
|       continue;
 | |
|     if (Instruction *U = dyn_cast<Instruction>(V)) {
 | |
|       if (isa<PHINode>(U) || U->getParent() != Block)
 | |
|         continue;
 | |
|       for (Value *Op : U->operands())
 | |
|         Q.push_back(Op);
 | |
|       M.insert({U, U->clone()});
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (std::pair<Value*,Value*> P : M) {
 | |
|     Instruction *U = cast<Instruction>(P.second);
 | |
|     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
 | |
|       auto F = M.find(U->getOperand(i));
 | |
|       if (F != M.end())
 | |
|         U->setOperand(i, F->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto R = M.find(Exp);
 | |
|   assert(R != M.end());
 | |
|   Root = R->second;
 | |
| 
 | |
|   record(Root);
 | |
|   use(Root);
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::record(Value *V) {
 | |
|   auto Record = [this](Instruction *U) -> bool {
 | |
|     Clones.insert(U);
 | |
|     return true;
 | |
|   };
 | |
|   traverse(V, Record);
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::use(Value *V) {
 | |
|   auto Use = [this](Instruction *U) -> bool {
 | |
|     Used.insert(U);
 | |
|     return true;
 | |
|   };
 | |
|   traverse(V, Use);
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::unuse(Value *V) {
 | |
|   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
 | |
|     return;
 | |
| 
 | |
|   auto Unuse = [this](Instruction *U) -> bool {
 | |
|     if (!U->use_empty())
 | |
|       return false;
 | |
|     Used.erase(U);
 | |
|     return true;
 | |
|   };
 | |
|   traverse(V, Unuse);
 | |
| }
 | |
| 
 | |
| Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
 | |
|   if (Tree == OldV)
 | |
|     return NewV;
 | |
|   if (OldV == NewV)
 | |
|     return Tree;
 | |
| 
 | |
|   WorkListType Q;
 | |
|   Q.push_back(Tree);
 | |
|   while (!Q.empty()) {
 | |
|     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
 | |
|     // If U is not an instruction, or it's not a clone, skip it.
 | |
|     if (!U || U->getParent())
 | |
|       continue;
 | |
|     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
 | |
|       Value *Op = U->getOperand(i);
 | |
|       if (Op == OldV) {
 | |
|         U->setOperand(i, NewV);
 | |
|         unuse(OldV);
 | |
|       } else {
 | |
|         Q.push_back(Op);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Tree;
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::replace(Value *OldV, Value *NewV) {
 | |
|   if (Root == OldV) {
 | |
|     Root = NewV;
 | |
|     use(Root);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // NewV may be a complex tree that has just been created by one of the
 | |
|   // transformation rules. We need to make sure that it is commoned with
 | |
|   // the existing Root to the maximum extent possible.
 | |
|   // Identify all subtrees of NewV (including NewV itself) that have
 | |
|   // equivalent counterparts in Root, and replace those subtrees with
 | |
|   // these counterparts.
 | |
|   WorkListType Q;
 | |
|   Q.push_back(NewV);
 | |
|   while (!Q.empty()) {
 | |
|     Value *V = Q.pop_front_val();
 | |
|     Instruction *U = dyn_cast<Instruction>(V);
 | |
|     if (!U || U->getParent())
 | |
|       continue;
 | |
|     if (Value *DupV = find(Root, V)) {
 | |
|       if (DupV != V)
 | |
|         NewV = subst(NewV, V, DupV);
 | |
|     } else {
 | |
|       for (Value *Op : U->operands())
 | |
|         Q.push_back(Op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now, simply replace OldV with NewV in Root.
 | |
|   Root = subst(Root, OldV, NewV);
 | |
|   use(Root);
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::cleanup() {
 | |
|   for (Value *V : Clones) {
 | |
|     Instruction *U = cast<Instruction>(V);
 | |
|     if (!U->getParent())
 | |
|       U->dropAllReferences();
 | |
|   }
 | |
| 
 | |
|   for (Value *V : Clones) {
 | |
|     Instruction *U = cast<Instruction>(V);
 | |
|     if (!U->getParent())
 | |
|       U->deleteValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Simplifier::Context::equal(const Instruction *I,
 | |
|                                 const Instruction *J) const {
 | |
|   if (I == J)
 | |
|     return true;
 | |
|   if (!I->isSameOperationAs(J))
 | |
|     return false;
 | |
|   if (isa<PHINode>(I))
 | |
|     return I->isIdenticalTo(J);
 | |
| 
 | |
|   for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
 | |
|     Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
 | |
|     if (OpI == OpJ)
 | |
|       continue;
 | |
|     auto *InI = dyn_cast<const Instruction>(OpI);
 | |
|     auto *InJ = dyn_cast<const Instruction>(OpJ);
 | |
|     if (InI && InJ) {
 | |
|       if (!equal(InI, InJ))
 | |
|         return false;
 | |
|     } else if (InI != InJ || !InI)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
 | |
|   Instruction *SubI = dyn_cast<Instruction>(Sub);
 | |
|   WorkListType Q;
 | |
|   Q.push_back(Tree);
 | |
| 
 | |
|   while (!Q.empty()) {
 | |
|     Value *V = Q.pop_front_val();
 | |
|     if (V == Sub)
 | |
|       return V;
 | |
|     Instruction *U = dyn_cast<Instruction>(V);
 | |
|     if (!U || U->getParent())
 | |
|       continue;
 | |
|     if (SubI && equal(SubI, U))
 | |
|       return U;
 | |
|     assert(!isa<PHINode>(U));
 | |
|     for (Value *Op : U->operands())
 | |
|       Q.push_back(Op);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void Simplifier::Context::link(Instruction *I, BasicBlock *B,
 | |
|       BasicBlock::iterator At) {
 | |
|   if (I->getParent())
 | |
|     return;
 | |
| 
 | |
|   for (Value *Op : I->operands()) {
 | |
|     if (Instruction *OpI = dyn_cast<Instruction>(Op))
 | |
|       link(OpI, B, At);
 | |
|   }
 | |
| 
 | |
|   B->getInstList().insert(At, I);
 | |
| }
 | |
| 
 | |
| Value *Simplifier::Context::materialize(BasicBlock *B,
 | |
|       BasicBlock::iterator At) {
 | |
|   if (Instruction *RootI = dyn_cast<Instruction>(Root))
 | |
|     link(RootI, B, At);
 | |
|   return Root;
 | |
| }
 | |
| 
 | |
| Value *Simplifier::simplify(Context &C) {
 | |
|   WorkListType Q;
 | |
|   Q.push_back(C.Root);
 | |
|   unsigned Count = 0;
 | |
|   const unsigned Limit = SimplifyLimit;
 | |
| 
 | |
|   while (!Q.empty()) {
 | |
|     if (Count++ >= Limit)
 | |
|       break;
 | |
|     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
 | |
|     if (!U || U->getParent() || !C.Used.count(U))
 | |
|       continue;
 | |
|     bool Changed = false;
 | |
|     for (Rule &R : Rules) {
 | |
|       Value *W = R.Fn(U, C.Ctx);
 | |
|       if (!W)
 | |
|         continue;
 | |
|       Changed = true;
 | |
|       C.record(W);
 | |
|       C.replace(U, W);
 | |
|       Q.push_back(C.Root);
 | |
|       break;
 | |
|     }
 | |
|     if (!Changed) {
 | |
|       for (Value *Op : U->operands())
 | |
|         Q.push_back(Op);
 | |
|     }
 | |
|   }
 | |
|   return Count < Limit ? C.Root : nullptr;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //          Implementation of PolynomialMultiplyRecognize
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class PolynomialMultiplyRecognize {
 | |
|   public:
 | |
|     explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
 | |
|         const DominatorTree &dt, const TargetLibraryInfo &tli,
 | |
|         ScalarEvolution &se)
 | |
|       : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
 | |
| 
 | |
|     bool recognize();
 | |
| 
 | |
|   private:
 | |
|     using ValueSeq = SetVector<Value *>;
 | |
| 
 | |
|     IntegerType *getPmpyType() const {
 | |
|       LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
 | |
|       return IntegerType::get(Ctx, 32);
 | |
|     }
 | |
| 
 | |
|     bool isPromotableTo(Value *V, IntegerType *Ty);
 | |
|     void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
 | |
|     bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
 | |
| 
 | |
|     Value *getCountIV(BasicBlock *BB);
 | |
|     bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
 | |
|     void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
 | |
|           ValueSeq &Late);
 | |
|     bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
 | |
|     bool commutesWithShift(Instruction *I);
 | |
|     bool highBitsAreZero(Value *V, unsigned IterCount);
 | |
|     bool keepsHighBitsZero(Value *V, unsigned IterCount);
 | |
|     bool isOperandShifted(Instruction *I, Value *Op);
 | |
|     bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
 | |
|           unsigned IterCount);
 | |
|     void cleanupLoopBody(BasicBlock *LoopB);
 | |
| 
 | |
|     struct ParsedValues {
 | |
|       ParsedValues() = default;
 | |
| 
 | |
|       Value *M = nullptr;
 | |
|       Value *P = nullptr;
 | |
|       Value *Q = nullptr;
 | |
|       Value *R = nullptr;
 | |
|       Value *X = nullptr;
 | |
|       Instruction *Res = nullptr;
 | |
|       unsigned IterCount = 0;
 | |
|       bool Left = false;
 | |
|       bool Inv = false;
 | |
|     };
 | |
| 
 | |
|     bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
 | |
|     bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
 | |
|     bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
 | |
|           Value *CIV, ParsedValues &PV, bool PreScan);
 | |
|     unsigned getInverseMxN(unsigned QP);
 | |
|     Value *generate(BasicBlock::iterator At, ParsedValues &PV);
 | |
| 
 | |
|     void setupSimplifier();
 | |
| 
 | |
|     Simplifier Simp;
 | |
|     Loop *CurLoop;
 | |
|     const DataLayout &DL;
 | |
|     const DominatorTree &DT;
 | |
|     const TargetLibraryInfo &TLI;
 | |
|     ScalarEvolution &SE;
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
 | |
|   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
|   if (std::distance(PI, PE) != 2)
 | |
|     return nullptr;
 | |
|   BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
 | |
| 
 | |
|   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
 | |
|     auto *PN = cast<PHINode>(I);
 | |
|     Value *InitV = PN->getIncomingValueForBlock(PB);
 | |
|     if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
 | |
|       continue;
 | |
|     Value *IterV = PN->getIncomingValueForBlock(BB);
 | |
|     if (!isa<BinaryOperator>(IterV))
 | |
|       continue;
 | |
|     auto *BO = dyn_cast<BinaryOperator>(IterV);
 | |
|     if (BO->getOpcode() != Instruction::Add)
 | |
|       continue;
 | |
|     Value *IncV = nullptr;
 | |
|     if (BO->getOperand(0) == PN)
 | |
|       IncV = BO->getOperand(1);
 | |
|     else if (BO->getOperand(1) == PN)
 | |
|       IncV = BO->getOperand(0);
 | |
|     if (IncV == nullptr)
 | |
|       continue;
 | |
| 
 | |
|     if (auto *T = dyn_cast<ConstantInt>(IncV))
 | |
|       if (T->getZExtValue() == 1)
 | |
|         return PN;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
 | |
|   for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     ++UI;
 | |
|     if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
 | |
|       if (BB == II->getParent())
 | |
|         II->replaceUsesOfWith(I, J);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
 | |
|       Value *CIV, ParsedValues &PV) {
 | |
|   // Match the following:
 | |
|   //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
 | |
|   //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
 | |
|   // The condition may also check for equality with the masked value, i.e
 | |
|   //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
 | |
|   //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
 | |
| 
 | |
|   Value *CondV = SelI->getCondition();
 | |
|   Value *TrueV = SelI->getTrueValue();
 | |
|   Value *FalseV = SelI->getFalseValue();
 | |
| 
 | |
|   using namespace PatternMatch;
 | |
| 
 | |
|   CmpInst::Predicate P;
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr;
 | |
| 
 | |
|   if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
 | |
|       !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
 | |
|     return false;
 | |
|   if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
 | |
|     return false;
 | |
|   // Matched: select (A & B) == C ? ... : ...
 | |
|   //          select (A & B) != C ? ... : ...
 | |
| 
 | |
|   Value *X = nullptr, *Sh1 = nullptr;
 | |
|   // Check (A & B) for (X & (1 << i)):
 | |
|   if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
 | |
|     Sh1 = A;
 | |
|     X = B;
 | |
|   } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
 | |
|     Sh1 = B;
 | |
|     X = A;
 | |
|   } else {
 | |
|     // TODO: Could also check for an induction variable containing single
 | |
|     // bit shifted left by 1 in each iteration.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool TrueIfZero;
 | |
| 
 | |
|   // Check C against the possible values for comparison: 0 and (1 << i):
 | |
|   if (match(C, m_Zero()))
 | |
|     TrueIfZero = (P == CmpInst::ICMP_EQ);
 | |
|   else if (C == Sh1)
 | |
|     TrueIfZero = (P == CmpInst::ICMP_NE);
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // So far, matched:
 | |
|   //   select (X & (1 << i)) ? ... : ...
 | |
|   // including variations of the check against zero/non-zero value.
 | |
| 
 | |
|   Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
 | |
|   if (TrueIfZero) {
 | |
|     ShouldSameV = TrueV;
 | |
|     ShouldXoredV = FalseV;
 | |
|   } else {
 | |
|     ShouldSameV = FalseV;
 | |
|     ShouldXoredV = TrueV;
 | |
|   }
 | |
| 
 | |
|   Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
 | |
|   Value *T = nullptr;
 | |
|   if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
 | |
|     // Matched: select +++ ? ... : Y ^ Z
 | |
|     //          select +++ ? Y ^ Z : ...
 | |
|     // where +++ denotes previously checked matches.
 | |
|     if (ShouldSameV == Y)
 | |
|       T = Z;
 | |
|     else if (ShouldSameV == Z)
 | |
|       T = Y;
 | |
|     else
 | |
|       return false;
 | |
|     R = ShouldSameV;
 | |
|     // Matched: select +++ ? R : R ^ T
 | |
|     //          select +++ ? R ^ T : R
 | |
|     // depending on TrueIfZero.
 | |
| 
 | |
|   } else if (match(ShouldSameV, m_Zero())) {
 | |
|     // Matched: select +++ ? 0 : ...
 | |
|     //          select +++ ? ... : 0
 | |
|     if (!SelI->hasOneUse())
 | |
|       return false;
 | |
|     T = ShouldXoredV;
 | |
|     // Matched: select +++ ? 0 : T
 | |
|     //          select +++ ? T : 0
 | |
| 
 | |
|     Value *U = *SelI->user_begin();
 | |
|     if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
 | |
|         !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
 | |
|       return false;
 | |
|     // Matched: xor (select +++ ? 0 : T), R
 | |
|     //          xor (select +++ ? T : 0), R
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // The xor input value T is isolated into its own match so that it could
 | |
|   // be checked against an induction variable containing a shifted bit
 | |
|   // (todo).
 | |
|   // For now, check against (Q << i).
 | |
|   if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
 | |
|       !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
 | |
|     return false;
 | |
|   // Matched: select +++ ? R : R ^ (Q << i)
 | |
|   //          select +++ ? R ^ (Q << i) : R
 | |
| 
 | |
|   PV.X = X;
 | |
|   PV.Q = Q;
 | |
|   PV.R = R;
 | |
|   PV.Left = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
 | |
|       ParsedValues &PV) {
 | |
|   // Match the following:
 | |
|   //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
 | |
|   //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
 | |
|   // The condition may also check for equality with the masked value, i.e
 | |
|   //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
 | |
|   //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
 | |
| 
 | |
|   Value *CondV = SelI->getCondition();
 | |
|   Value *TrueV = SelI->getTrueValue();
 | |
|   Value *FalseV = SelI->getFalseValue();
 | |
| 
 | |
|   using namespace PatternMatch;
 | |
| 
 | |
|   Value *C = nullptr;
 | |
|   CmpInst::Predicate P;
 | |
|   bool TrueIfZero;
 | |
| 
 | |
|   if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
 | |
|       match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
 | |
|     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
 | |
|       return false;
 | |
|     // Matched: select C == 0 ? ... : ...
 | |
|     //          select C != 0 ? ... : ...
 | |
|     TrueIfZero = (P == CmpInst::ICMP_EQ);
 | |
|   } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
 | |
|              match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
 | |
|     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
 | |
|       return false;
 | |
|     // Matched: select C == 1 ? ... : ...
 | |
|     //          select C != 1 ? ... : ...
 | |
|     TrueIfZero = (P == CmpInst::ICMP_NE);
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   Value *X = nullptr;
 | |
|   if (!match(C, m_And(m_Value(X), m_One())) &&
 | |
|       !match(C, m_And(m_One(), m_Value(X))))
 | |
|     return false;
 | |
|   // Matched: select (X & 1) == +++ ? ... : ...
 | |
|   //          select (X & 1) != +++ ? ... : ...
 | |
| 
 | |
|   Value *R = nullptr, *Q = nullptr;
 | |
|   if (TrueIfZero) {
 | |
|     // The select's condition is true if the tested bit is 0.
 | |
|     // TrueV must be the shift, FalseV must be the xor.
 | |
|     if (!match(TrueV, m_LShr(m_Value(R), m_One())))
 | |
|       return false;
 | |
|     // Matched: select +++ ? (R >> 1) : ...
 | |
|     if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
 | |
|         !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
 | |
|       return false;
 | |
|     // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
 | |
|     // with commuting ^.
 | |
|   } else {
 | |
|     // The select's condition is true if the tested bit is 1.
 | |
|     // TrueV must be the xor, FalseV must be the shift.
 | |
|     if (!match(FalseV, m_LShr(m_Value(R), m_One())))
 | |
|       return false;
 | |
|     // Matched: select +++ ? ... : (R >> 1)
 | |
|     if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
 | |
|         !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
 | |
|       return false;
 | |
|     // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
 | |
|     // with commuting ^.
 | |
|   }
 | |
| 
 | |
|   PV.X = X;
 | |
|   PV.Q = Q;
 | |
|   PV.R = R;
 | |
|   PV.Left = false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
 | |
|       BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
 | |
|       bool PreScan) {
 | |
|   using namespace PatternMatch;
 | |
| 
 | |
|   // The basic pattern for R = P.Q is:
 | |
|   // for i = 0..31
 | |
|   //   R = phi (0, R')
 | |
|   //   if (P & (1 << i))        ; test-bit(P, i)
 | |
|   //     R' = R ^ (Q << i)
 | |
|   //
 | |
|   // Similarly, the basic pattern for R = (P/Q).Q - P
 | |
|   // for i = 0..31
 | |
|   //   R = phi(P, R')
 | |
|   //   if (R & (1 << i))
 | |
|   //     R' = R ^ (Q << i)
 | |
| 
 | |
|   // There exist idioms, where instead of Q being shifted left, P is shifted
 | |
|   // right. This produces a result that is shifted right by 32 bits (the
 | |
|   // non-shifted result is 64-bit).
 | |
|   //
 | |
|   // For R = P.Q, this would be:
 | |
|   // for i = 0..31
 | |
|   //   R = phi (0, R')
 | |
|   //   if ((P >> i) & 1)
 | |
|   //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must
 | |
|   //   else                     ; be shifted by 1, not i.
 | |
|   //     R' = R >> 1
 | |
|   //
 | |
|   // And for the inverse:
 | |
|   // for i = 0..31
 | |
|   //   R = phi (P, R')
 | |
|   //   if (R & 1)
 | |
|   //     R' = (R >> 1) ^ Q
 | |
|   //   else
 | |
|   //     R' = R >> 1
 | |
| 
 | |
|   // The left-shifting idioms share the same pattern:
 | |
|   //   select (X & (1 << i)) ? R ^ (Q << i) : R
 | |
|   // Similarly for right-shifting idioms:
 | |
|   //   select (X & 1) ? (R >> 1) ^ Q
 | |
| 
 | |
|   if (matchLeftShift(SelI, CIV, PV)) {
 | |
|     // If this is a pre-scan, getting this far is sufficient.
 | |
|     if (PreScan)
 | |
|       return true;
 | |
| 
 | |
|     // Need to make sure that the SelI goes back into R.
 | |
|     auto *RPhi = dyn_cast<PHINode>(PV.R);
 | |
|     if (!RPhi)
 | |
|       return false;
 | |
|     if (SelI != RPhi->getIncomingValueForBlock(LoopB))
 | |
|       return false;
 | |
|     PV.Res = SelI;
 | |
| 
 | |
|     // If X is loop invariant, it must be the input polynomial, and the
 | |
|     // idiom is the basic polynomial multiply.
 | |
|     if (CurLoop->isLoopInvariant(PV.X)) {
 | |
|       PV.P = PV.X;
 | |
|       PV.Inv = false;
 | |
|     } else {
 | |
|       // X is not loop invariant. If X == R, this is the inverse pmpy.
 | |
|       // Otherwise, check for an xor with an invariant value. If the
 | |
|       // variable argument to the xor is R, then this is still a valid
 | |
|       // inverse pmpy.
 | |
|       PV.Inv = true;
 | |
|       if (PV.X != PV.R) {
 | |
|         Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
 | |
|         if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
 | |
|           return false;
 | |
|         auto *I1 = dyn_cast<Instruction>(X1);
 | |
|         auto *I2 = dyn_cast<Instruction>(X2);
 | |
|         if (!I1 || I1->getParent() != LoopB) {
 | |
|           Var = X2;
 | |
|           Inv = X1;
 | |
|         } else if (!I2 || I2->getParent() != LoopB) {
 | |
|           Var = X1;
 | |
|           Inv = X2;
 | |
|         } else
 | |
|           return false;
 | |
|         if (Var != PV.R)
 | |
|           return false;
 | |
|         PV.M = Inv;
 | |
|       }
 | |
|       // The input polynomial P still needs to be determined. It will be
 | |
|       // the entry value of R.
 | |
|       Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
 | |
|       PV.P = EntryP;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (matchRightShift(SelI, PV)) {
 | |
|     // If this is an inverse pattern, the Q polynomial must be known at
 | |
|     // compile time.
 | |
|     if (PV.Inv && !isa<ConstantInt>(PV.Q))
 | |
|       return false;
 | |
|     if (PreScan)
 | |
|       return true;
 | |
|     // There is no exact matching of right-shift pmpy.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
 | |
|       IntegerType *DestTy) {
 | |
|   IntegerType *T = dyn_cast<IntegerType>(Val->getType());
 | |
|   if (!T || T->getBitWidth() > DestTy->getBitWidth())
 | |
|     return false;
 | |
|   if (T->getBitWidth() == DestTy->getBitWidth())
 | |
|     return true;
 | |
|   // Non-instructions are promotable. The reason why an instruction may not
 | |
|   // be promotable is that it may produce a different result if its operands
 | |
|   // and the result are promoted, for example, it may produce more non-zero
 | |
|   // bits. While it would still be possible to represent the proper result
 | |
|   // in a wider type, it may require adding additional instructions (which
 | |
|   // we don't want to do).
 | |
|   Instruction *In = dyn_cast<Instruction>(Val);
 | |
|   if (!In)
 | |
|     return true;
 | |
|   // The bitwidth of the source type is smaller than the destination.
 | |
|   // Check if the individual operation can be promoted.
 | |
|   switch (In->getOpcode()) {
 | |
|     case Instruction::PHI:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::LShr: // Shift right is ok.
 | |
|     case Instruction::Select:
 | |
|       return true;
 | |
|     case Instruction::ICmp:
 | |
|       if (CmpInst *CI = cast<CmpInst>(In))
 | |
|         return CI->isEquality() || CI->isUnsigned();
 | |
|       llvm_unreachable("Cast failed unexpectedly");
 | |
|     case Instruction::Add:
 | |
|       return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
 | |
|       IntegerType *DestTy, BasicBlock *LoopB) {
 | |
|   // Leave boolean values alone.
 | |
|   if (!In->getType()->isIntegerTy(1))
 | |
|     In->mutateType(DestTy);
 | |
|   unsigned DestBW = DestTy->getBitWidth();
 | |
| 
 | |
|   // Handle PHIs.
 | |
|   if (PHINode *P = dyn_cast<PHINode>(In)) {
 | |
|     unsigned N = P->getNumIncomingValues();
 | |
|     for (unsigned i = 0; i != N; ++i) {
 | |
|       BasicBlock *InB = P->getIncomingBlock(i);
 | |
|       if (InB == LoopB)
 | |
|         continue;
 | |
|       Value *InV = P->getIncomingValue(i);
 | |
|       IntegerType *Ty = cast<IntegerType>(InV->getType());
 | |
|       // Do not promote values in PHI nodes of type i1.
 | |
|       if (Ty != P->getType()) {
 | |
|         // If the value type does not match the PHI type, the PHI type
 | |
|         // must have been promoted.
 | |
|         assert(Ty->getBitWidth() < DestBW);
 | |
|         InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
 | |
|         P->setIncomingValue(i, InV);
 | |
|       }
 | |
|     }
 | |
|   } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
 | |
|     Value *Op = Z->getOperand(0);
 | |
|     if (Op->getType() == Z->getType())
 | |
|       Z->replaceAllUsesWith(Op);
 | |
|     Z->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Promote immediates.
 | |
|   for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
 | |
|       if (CI->getType()->getBitWidth() < DestBW)
 | |
|         In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
 | |
|       BasicBlock *ExitB) {
 | |
|   assert(LoopB);
 | |
|   // Skip loops where the exit block has more than one predecessor. The values
 | |
|   // coming from the loop block will be promoted to another type, and so the
 | |
|   // values coming into the exit block from other predecessors would also have
 | |
|   // to be promoted.
 | |
|   if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
 | |
|     return false;
 | |
|   IntegerType *DestTy = getPmpyType();
 | |
|   // Check if the exit values have types that are no wider than the type
 | |
|   // that we want to promote to.
 | |
|   unsigned DestBW = DestTy->getBitWidth();
 | |
|   for (PHINode &P : ExitB->phis()) {
 | |
|     if (P.getNumIncomingValues() != 1)
 | |
|       return false;
 | |
|     assert(P.getIncomingBlock(0) == LoopB);
 | |
|     IntegerType *T = dyn_cast<IntegerType>(P.getType());
 | |
|     if (!T || T->getBitWidth() > DestBW)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check all instructions in the loop.
 | |
|   for (Instruction &In : *LoopB)
 | |
|     if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
 | |
|       return false;
 | |
| 
 | |
|   // Perform the promotion.
 | |
|   std::vector<Instruction*> LoopIns;
 | |
|   std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
 | |
|                  [](Instruction &In) { return &In; });
 | |
|   for (Instruction *In : LoopIns)
 | |
|     promoteTo(In, DestTy, LoopB);
 | |
| 
 | |
|   // Fix up the PHI nodes in the exit block.
 | |
|   Instruction *EndI = ExitB->getFirstNonPHI();
 | |
|   BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
 | |
|   for (auto I = ExitB->begin(); I != End; ++I) {
 | |
|     PHINode *P = dyn_cast<PHINode>(I);
 | |
|     if (!P)
 | |
|       break;
 | |
|     Type *Ty0 = P->getIncomingValue(0)->getType();
 | |
|     Type *PTy = P->getType();
 | |
|     if (PTy != Ty0) {
 | |
|       assert(Ty0 == DestTy);
 | |
|       // In order to create the trunc, P must have the promoted type.
 | |
|       P->mutateType(Ty0);
 | |
|       Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
 | |
|       // In order for the RAUW to work, the types of P and T must match.
 | |
|       P->mutateType(PTy);
 | |
|       P->replaceAllUsesWith(T);
 | |
|       // Final update of the P's type.
 | |
|       P->mutateType(Ty0);
 | |
|       cast<Instruction>(T)->setOperand(0, P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
 | |
|       ValueSeq &Cycle) {
 | |
|   // Out = ..., In, ...
 | |
|   if (Out == In)
 | |
|     return true;
 | |
| 
 | |
|   auto *BB = cast<Instruction>(Out)->getParent();
 | |
|   bool HadPhi = false;
 | |
| 
 | |
|   for (auto U : Out->users()) {
 | |
|     auto *I = dyn_cast<Instruction>(&*U);
 | |
|     if (I == nullptr || I->getParent() != BB)
 | |
|       continue;
 | |
|     // Make sure that there are no multi-iteration cycles, e.g.
 | |
|     //   p1 = phi(p2)
 | |
|     //   p2 = phi(p1)
 | |
|     // The cycle p1->p2->p1 would span two loop iterations.
 | |
|     // Check that there is only one phi in the cycle.
 | |
|     bool IsPhi = isa<PHINode>(I);
 | |
|     if (IsPhi && HadPhi)
 | |
|       return false;
 | |
|     HadPhi |= IsPhi;
 | |
|     if (Cycle.count(I))
 | |
|       return false;
 | |
|     Cycle.insert(I);
 | |
|     if (findCycle(I, In, Cycle))
 | |
|       break;
 | |
|     Cycle.remove(I);
 | |
|   }
 | |
|   return !Cycle.empty();
 | |
| }
 | |
| 
 | |
| void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
 | |
|       ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
 | |
|   // All the values in the cycle that are between the phi node and the
 | |
|   // divider instruction will be classified as "early", all other values
 | |
|   // will be "late".
 | |
| 
 | |
|   bool IsE = true;
 | |
|   unsigned I, N = Cycle.size();
 | |
|   for (I = 0; I < N; ++I) {
 | |
|     Value *V = Cycle[I];
 | |
|     if (DivI == V)
 | |
|       IsE = false;
 | |
|     else if (!isa<PHINode>(V))
 | |
|       continue;
 | |
|     // Stop if found either.
 | |
|     break;
 | |
|   }
 | |
|   // "I" is the index of either DivI or the phi node, whichever was first.
 | |
|   // "E" is "false" or "true" respectively.
 | |
|   ValueSeq &First = !IsE ? Early : Late;
 | |
|   for (unsigned J = 0; J < I; ++J)
 | |
|     First.insert(Cycle[J]);
 | |
| 
 | |
|   ValueSeq &Second = IsE ? Early : Late;
 | |
|   Second.insert(Cycle[I]);
 | |
|   for (++I; I < N; ++I) {
 | |
|     Value *V = Cycle[I];
 | |
|     if (DivI == V || isa<PHINode>(V))
 | |
|       break;
 | |
|     Second.insert(V);
 | |
|   }
 | |
| 
 | |
|   for (; I < N; ++I)
 | |
|     First.insert(Cycle[I]);
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
 | |
|       ValueSeq &Early, ValueSeq &Late) {
 | |
|   // Select is an exception, since the condition value does not have to be
 | |
|   // classified in the same way as the true/false values. The true/false
 | |
|   // values do have to be both early or both late.
 | |
|   if (UseI->getOpcode() == Instruction::Select) {
 | |
|     Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
 | |
|     if (Early.count(TV) || Early.count(FV)) {
 | |
|       if (Late.count(TV) || Late.count(FV))
 | |
|         return false;
 | |
|       Early.insert(UseI);
 | |
|     } else if (Late.count(TV) || Late.count(FV)) {
 | |
|       if (Early.count(TV) || Early.count(FV))
 | |
|         return false;
 | |
|       Late.insert(UseI);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Not sure what would be the example of this, but the code below relies
 | |
|   // on having at least one operand.
 | |
|   if (UseI->getNumOperands() == 0)
 | |
|     return true;
 | |
| 
 | |
|   bool AE = true, AL = true;
 | |
|   for (auto &I : UseI->operands()) {
 | |
|     if (Early.count(&*I))
 | |
|       AL = false;
 | |
|     else if (Late.count(&*I))
 | |
|       AE = false;
 | |
|   }
 | |
|   // If the operands appear "all early" and "all late" at the same time,
 | |
|   // then it means that none of them are actually classified as either.
 | |
|   // This is harmless.
 | |
|   if (AE && AL)
 | |
|     return true;
 | |
|   // Conversely, if they are neither "all early" nor "all late", then
 | |
|   // we have a mixture of early and late operands that is not a known
 | |
|   // exception.
 | |
|   if (!AE && !AL)
 | |
|     return false;
 | |
| 
 | |
|   // Check that we have covered the two special cases.
 | |
|   assert(AE != AL);
 | |
| 
 | |
|   if (AE)
 | |
|     Early.insert(UseI);
 | |
|   else
 | |
|     Late.insert(UseI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::PHI:
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
 | |
|       unsigned IterCount) {
 | |
|   auto *T = dyn_cast<IntegerType>(V->getType());
 | |
|   if (!T)
 | |
|     return false;
 | |
| 
 | |
|   KnownBits Known(T->getBitWidth());
 | |
|   computeKnownBits(V, Known, DL);
 | |
|   return Known.countMinLeadingZeros() >= IterCount;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
 | |
|       unsigned IterCount) {
 | |
|   // Assume that all inputs to the value have the high bits zero.
 | |
|   // Check if the value itself preserves the zeros in the high bits.
 | |
|   if (auto *C = dyn_cast<ConstantInt>(V))
 | |
|     return C->getValue().countLeadingZeros() >= IterCount;
 | |
| 
 | |
|   if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|     switch (I->getOpcode()) {
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::Select:
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::PHI:
 | |
|       case Instruction::ZExt:
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   if (Opc == Instruction::Shl || Opc == Instruction::LShr)
 | |
|     return Op != I->getOperand(1);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
 | |
|       BasicBlock *ExitB, unsigned IterCount) {
 | |
|   Value *CIV = getCountIV(LoopB);
 | |
|   if (CIV == nullptr)
 | |
|     return false;
 | |
|   auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
 | |
|   if (CIVTy == nullptr)
 | |
|     return false;
 | |
| 
 | |
|   ValueSeq RShifts;
 | |
|   ValueSeq Early, Late, Cycled;
 | |
| 
 | |
|   // Find all value cycles that contain logical right shifts by 1.
 | |
|   for (Instruction &I : *LoopB) {
 | |
|     using namespace PatternMatch;
 | |
| 
 | |
|     Value *V = nullptr;
 | |
|     if (!match(&I, m_LShr(m_Value(V), m_One())))
 | |
|       continue;
 | |
|     ValueSeq C;
 | |
|     if (!findCycle(&I, V, C))
 | |
|       continue;
 | |
| 
 | |
|     // Found a cycle.
 | |
|     C.insert(&I);
 | |
|     classifyCycle(&I, C, Early, Late);
 | |
|     Cycled.insert(C.begin(), C.end());
 | |
|     RShifts.insert(&I);
 | |
|   }
 | |
| 
 | |
|   // Find the set of all values affected by the shift cycles, i.e. all
 | |
|   // cycled values, and (recursively) all their users.
 | |
|   ValueSeq Users(Cycled.begin(), Cycled.end());
 | |
|   for (unsigned i = 0; i < Users.size(); ++i) {
 | |
|     Value *V = Users[i];
 | |
|     if (!isa<IntegerType>(V->getType()))
 | |
|       return false;
 | |
|     auto *R = cast<Instruction>(V);
 | |
|     // If the instruction does not commute with shifts, the loop cannot
 | |
|     // be unshifted.
 | |
|     if (!commutesWithShift(R))
 | |
|       return false;
 | |
|     for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
 | |
|       auto *T = cast<Instruction>(*I);
 | |
|       // Skip users from outside of the loop. They will be handled later.
 | |
|       // Also, skip the right-shifts and phi nodes, since they mix early
 | |
|       // and late values.
 | |
|       if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
 | |
|         continue;
 | |
| 
 | |
|       Users.insert(T);
 | |
|       if (!classifyInst(T, Early, Late))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Users.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Verify that high bits remain zero.
 | |
|   ValueSeq Internal(Users.begin(), Users.end());
 | |
|   ValueSeq Inputs;
 | |
|   for (unsigned i = 0; i < Internal.size(); ++i) {
 | |
|     auto *R = dyn_cast<Instruction>(Internal[i]);
 | |
|     if (!R)
 | |
|       continue;
 | |
|     for (Value *Op : R->operands()) {
 | |
|       auto *T = dyn_cast<Instruction>(Op);
 | |
|       if (T && T->getParent() != LoopB)
 | |
|         Inputs.insert(Op);
 | |
|       else
 | |
|         Internal.insert(Op);
 | |
|     }
 | |
|   }
 | |
|   for (Value *V : Inputs)
 | |
|     if (!highBitsAreZero(V, IterCount))
 | |
|       return false;
 | |
|   for (Value *V : Internal)
 | |
|     if (!keepsHighBitsZero(V, IterCount))
 | |
|       return false;
 | |
| 
 | |
|   // Finally, the work can be done. Unshift each user.
 | |
|   IRBuilder<> IRB(LoopB);
 | |
|   std::map<Value*,Value*> ShiftMap;
 | |
| 
 | |
|   using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
 | |
| 
 | |
|   CastMapType CastMap;
 | |
| 
 | |
|   auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
 | |
|         IntegerType *Ty) -> Value* {
 | |
|     auto H = CM.find(std::make_pair(V, Ty));
 | |
|     if (H != CM.end())
 | |
|       return H->second;
 | |
|     Value *CV = IRB.CreateIntCast(V, Ty, false);
 | |
|     CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
 | |
|     return CV;
 | |
|   };
 | |
| 
 | |
|   for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
 | |
|     using namespace PatternMatch;
 | |
| 
 | |
|     if (isa<PHINode>(I) || !Users.count(&*I))
 | |
|       continue;
 | |
| 
 | |
|     // Match lshr x, 1.
 | |
|     Value *V = nullptr;
 | |
|     if (match(&*I, m_LShr(m_Value(V), m_One()))) {
 | |
|       replaceAllUsesOfWithIn(&*I, V, LoopB);
 | |
|       continue;
 | |
|     }
 | |
|     // For each non-cycled operand, replace it with the corresponding
 | |
|     // value shifted left.
 | |
|     for (auto &J : I->operands()) {
 | |
|       Value *Op = J.get();
 | |
|       if (!isOperandShifted(&*I, Op))
 | |
|         continue;
 | |
|       if (Users.count(Op))
 | |
|         continue;
 | |
|       // Skip shifting zeros.
 | |
|       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
 | |
|         continue;
 | |
|       // Check if we have already generated a shift for this value.
 | |
|       auto F = ShiftMap.find(Op);
 | |
|       Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
 | |
|       if (W == nullptr) {
 | |
|         IRB.SetInsertPoint(&*I);
 | |
|         // First, the shift amount will be CIV or CIV+1, depending on
 | |
|         // whether the value is early or late. Instead of creating CIV+1,
 | |
|         // do a single shift of the value.
 | |
|         Value *ShAmt = CIV, *ShVal = Op;
 | |
|         auto *VTy = cast<IntegerType>(ShVal->getType());
 | |
|         auto *ATy = cast<IntegerType>(ShAmt->getType());
 | |
|         if (Late.count(&*I))
 | |
|           ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
 | |
|         // Second, the types of the shifted value and the shift amount
 | |
|         // must match.
 | |
|         if (VTy != ATy) {
 | |
|           if (VTy->getBitWidth() < ATy->getBitWidth())
 | |
|             ShVal = upcast(CastMap, IRB, ShVal, ATy);
 | |
|           else
 | |
|             ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
 | |
|         }
 | |
|         // Ready to generate the shift and memoize it.
 | |
|         W = IRB.CreateShl(ShVal, ShAmt);
 | |
|         ShiftMap.insert(std::make_pair(Op, W));
 | |
|       }
 | |
|       I->replaceUsesOfWith(Op, W);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update the users outside of the loop to account for having left
 | |
|   // shifts. They would normally be shifted right in the loop, so shift
 | |
|   // them right after the loop exit.
 | |
|   // Take advantage of the loop-closed SSA form, which has all the post-
 | |
|   // loop values in phi nodes.
 | |
|   IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
 | |
|   for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
 | |
|     if (!isa<PHINode>(P))
 | |
|       break;
 | |
|     auto *PN = cast<PHINode>(P);
 | |
|     Value *U = PN->getIncomingValueForBlock(LoopB);
 | |
|     if (!Users.count(U))
 | |
|       continue;
 | |
|     Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
 | |
|     PN->replaceAllUsesWith(S);
 | |
|     // The above RAUW will create
 | |
|     //   S = lshr S, IterCount
 | |
|     // so we need to fix it back into
 | |
|     //   S = lshr PN, IterCount
 | |
|     cast<User>(S)->replaceUsesOfWith(S, PN);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
 | |
|   for (auto &I : *LoopB)
 | |
|     if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
 | |
|       I.replaceAllUsesWith(SV);
 | |
| 
 | |
|   for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
 | |
|     N = std::next(I);
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
 | |
|   // Arrays of coefficients of Q and the inverse, C.
 | |
|   // Q[i] = coefficient at x^i.
 | |
|   std::array<char,32> Q, C;
 | |
| 
 | |
|   for (unsigned i = 0; i < 32; ++i) {
 | |
|     Q[i] = QP & 1;
 | |
|     QP >>= 1;
 | |
|   }
 | |
|   assert(Q[0] == 1);
 | |
| 
 | |
|   // Find C, such that
 | |
|   // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
 | |
|   //
 | |
|   // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
 | |
|   // operations * and + are & and ^ respectively.
 | |
|   //
 | |
|   // Find C[i] recursively, by comparing i-th coefficient in the product
 | |
|   // with 0 (or 1 for i=0).
 | |
|   //
 | |
|   // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
 | |
|   C[0] = 1;
 | |
|   for (unsigned i = 1; i < 32; ++i) {
 | |
|     // Solve for C[i] in:
 | |
|     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
 | |
|     // This is equivalent to
 | |
|     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
 | |
|     // which is
 | |
|     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
 | |
|     unsigned T = 0;
 | |
|     for (unsigned j = 0; j < i; ++j)
 | |
|       T = T ^ (C[j] & Q[i-j]);
 | |
|     C[i] = T;
 | |
|   }
 | |
| 
 | |
|   unsigned QV = 0;
 | |
|   for (unsigned i = 0; i < 32; ++i)
 | |
|     if (C[i])
 | |
|       QV |= (1 << i);
 | |
| 
 | |
|   return QV;
 | |
| }
 | |
| 
 | |
| Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
 | |
|       ParsedValues &PV) {
 | |
|   IRBuilder<> B(&*At);
 | |
|   Module *M = At->getParent()->getParent()->getParent();
 | |
|   Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
 | |
| 
 | |
|   Value *P = PV.P, *Q = PV.Q, *P0 = P;
 | |
|   unsigned IC = PV.IterCount;
 | |
| 
 | |
|   if (PV.M != nullptr)
 | |
|     P0 = P = B.CreateXor(P, PV.M);
 | |
| 
 | |
|   // Create a bit mask to clear the high bits beyond IterCount.
 | |
|   auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
 | |
| 
 | |
|   if (PV.IterCount != 32)
 | |
|     P = B.CreateAnd(P, BMI);
 | |
| 
 | |
|   if (PV.Inv) {
 | |
|     auto *QI = dyn_cast<ConstantInt>(PV.Q);
 | |
|     assert(QI && QI->getBitWidth() <= 32);
 | |
| 
 | |
|     // Again, clearing bits beyond IterCount.
 | |
|     unsigned M = (1 << PV.IterCount) - 1;
 | |
|     unsigned Tmp = (QI->getZExtValue() | 1) & M;
 | |
|     unsigned QV = getInverseMxN(Tmp) & M;
 | |
|     auto *QVI = ConstantInt::get(QI->getType(), QV);
 | |
|     P = B.CreateCall(PMF, {P, QVI});
 | |
|     P = B.CreateTrunc(P, QI->getType());
 | |
|     if (IC != 32)
 | |
|       P = B.CreateAnd(P, BMI);
 | |
|   }
 | |
| 
 | |
|   Value *R = B.CreateCall(PMF, {P, Q});
 | |
| 
 | |
|   if (PV.M != nullptr)
 | |
|     R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| static bool hasZeroSignBit(const Value *V) {
 | |
|   if (const auto *CI = dyn_cast<const ConstantInt>(V))
 | |
|     return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
 | |
|   const Instruction *I = dyn_cast<const Instruction>(V);
 | |
|   if (!I)
 | |
|     return false;
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::LShr:
 | |
|       if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
 | |
|         return SI->getZExtValue() > 0;
 | |
|       return false;
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|       return hasZeroSignBit(I->getOperand(0)) &&
 | |
|              hasZeroSignBit(I->getOperand(1));
 | |
|     case Instruction::And:
 | |
|       return hasZeroSignBit(I->getOperand(0)) ||
 | |
|              hasZeroSignBit(I->getOperand(1));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void PolynomialMultiplyRecognize::setupSimplifier() {
 | |
|   Simp.addRule("sink-zext",
 | |
|     // Sink zext past bitwise operations.
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       if (I->getOpcode() != Instruction::ZExt)
 | |
|         return nullptr;
 | |
|       Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
 | |
|       if (!T)
 | |
|         return nullptr;
 | |
|       switch (T->getOpcode()) {
 | |
|         case Instruction::And:
 | |
|         case Instruction::Or:
 | |
|         case Instruction::Xor:
 | |
|           break;
 | |
|         default:
 | |
|           return nullptr;
 | |
|       }
 | |
|       IRBuilder<> B(Ctx);
 | |
|       return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
 | |
|                            B.CreateZExt(T->getOperand(0), I->getType()),
 | |
|                            B.CreateZExt(T->getOperand(1), I->getType()));
 | |
|     });
 | |
|   Simp.addRule("xor/and -> and/xor",
 | |
|     // (xor (and x a) (and y a)) -> (and (xor x y) a)
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       if (I->getOpcode() != Instruction::Xor)
 | |
|         return nullptr;
 | |
|       Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
 | |
|       Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
 | |
|       if (!And0 || !And1)
 | |
|         return nullptr;
 | |
|       if (And0->getOpcode() != Instruction::And ||
 | |
|           And1->getOpcode() != Instruction::And)
 | |
|         return nullptr;
 | |
|       if (And0->getOperand(1) != And1->getOperand(1))
 | |
|         return nullptr;
 | |
|       IRBuilder<> B(Ctx);
 | |
|       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
 | |
|                          And0->getOperand(1));
 | |
|     });
 | |
|   Simp.addRule("sink binop into select",
 | |
|     // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
 | |
|     // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
 | |
|       if (!BO)
 | |
|         return nullptr;
 | |
|       Instruction::BinaryOps Op = BO->getOpcode();
 | |
|       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
 | |
|         IRBuilder<> B(Ctx);
 | |
|         Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
 | |
|         Value *Z = BO->getOperand(1);
 | |
|         return B.CreateSelect(Sel->getCondition(),
 | |
|                               B.CreateBinOp(Op, X, Z),
 | |
|                               B.CreateBinOp(Op, Y, Z));
 | |
|       }
 | |
|       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
 | |
|         IRBuilder<> B(Ctx);
 | |
|         Value *X = BO->getOperand(0);
 | |
|         Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
 | |
|         return B.CreateSelect(Sel->getCondition(),
 | |
|                               B.CreateBinOp(Op, X, Y),
 | |
|                               B.CreateBinOp(Op, X, Z));
 | |
|       }
 | |
|       return nullptr;
 | |
|     });
 | |
|   Simp.addRule("fold select-select",
 | |
|     // (select c (select c x y) z) -> (select c x z)
 | |
|     // (select c x (select c y z)) -> (select c x z)
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       SelectInst *Sel = dyn_cast<SelectInst>(I);
 | |
|       if (!Sel)
 | |
|         return nullptr;
 | |
|       IRBuilder<> B(Ctx);
 | |
|       Value *C = Sel->getCondition();
 | |
|       if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
 | |
|         if (Sel0->getCondition() == C)
 | |
|           return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
 | |
|       }
 | |
|       if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
 | |
|         if (Sel1->getCondition() == C)
 | |
|           return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
 | |
|       }
 | |
|       return nullptr;
 | |
|     });
 | |
|   Simp.addRule("or-signbit -> xor-signbit",
 | |
|     // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       if (I->getOpcode() != Instruction::Or)
 | |
|         return nullptr;
 | |
|       ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|       if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
 | |
|         return nullptr;
 | |
|       if (!hasZeroSignBit(I->getOperand(0)))
 | |
|         return nullptr;
 | |
|       return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
 | |
|     });
 | |
|   Simp.addRule("sink lshr into binop",
 | |
|     // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       if (I->getOpcode() != Instruction::LShr)
 | |
|         return nullptr;
 | |
|       BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
 | |
|       if (!BitOp)
 | |
|         return nullptr;
 | |
|       switch (BitOp->getOpcode()) {
 | |
|         case Instruction::And:
 | |
|         case Instruction::Or:
 | |
|         case Instruction::Xor:
 | |
|           break;
 | |
|         default:
 | |
|           return nullptr;
 | |
|       }
 | |
|       IRBuilder<> B(Ctx);
 | |
|       Value *S = I->getOperand(1);
 | |
|       return B.CreateBinOp(BitOp->getOpcode(),
 | |
|                 B.CreateLShr(BitOp->getOperand(0), S),
 | |
|                 B.CreateLShr(BitOp->getOperand(1), S));
 | |
|     });
 | |
|   Simp.addRule("expose bitop-const",
 | |
|     // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
 | |
|     [](Instruction *I, LLVMContext &Ctx) -> Value* {
 | |
|       auto IsBitOp = [](unsigned Op) -> bool {
 | |
|         switch (Op) {
 | |
|           case Instruction::And:
 | |
|           case Instruction::Or:
 | |
|           case Instruction::Xor:
 | |
|             return true;
 | |
|         }
 | |
|         return false;
 | |
|       };
 | |
|       BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
 | |
|       if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
 | |
|         return nullptr;
 | |
|       BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
 | |
|       if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
 | |
|         return nullptr;
 | |
|       ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
 | |
|       ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
 | |
|       if (!CA || !CB)
 | |
|         return nullptr;
 | |
|       IRBuilder<> B(Ctx);
 | |
|       Value *X = BitOp2->getOperand(0);
 | |
|       return B.CreateBinOp(BitOp2->getOpcode(), X,
 | |
|                 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
 | |
|     });
 | |
| }
 | |
| 
 | |
| bool PolynomialMultiplyRecognize::recognize() {
 | |
|   DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
 | |
|                << *CurLoop << '\n');
 | |
|   // Restrictions:
 | |
|   // - The loop must consist of a single block.
 | |
|   // - The iteration count must be known at compile-time.
 | |
|   // - The loop must have an induction variable starting from 0, and
 | |
|   //   incremented in each iteration of the loop.
 | |
|   BasicBlock *LoopB = CurLoop->getHeader();
 | |
|   DEBUG(dbgs() << "Loop header:\n" << *LoopB);
 | |
| 
 | |
|   if (LoopB != CurLoop->getLoopLatch())
 | |
|     return false;
 | |
|   BasicBlock *ExitB = CurLoop->getExitBlock();
 | |
|   if (ExitB == nullptr)
 | |
|     return false;
 | |
|   BasicBlock *EntryB = CurLoop->getLoopPreheader();
 | |
|   if (EntryB == nullptr)
 | |
|     return false;
 | |
| 
 | |
|   unsigned IterCount = 0;
 | |
|   const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
 | |
|   if (isa<SCEVCouldNotCompute>(CT))
 | |
|     return false;
 | |
|   if (auto *CV = dyn_cast<SCEVConstant>(CT))
 | |
|     IterCount = CV->getValue()->getZExtValue() + 1;
 | |
| 
 | |
|   Value *CIV = getCountIV(LoopB);
 | |
|   ParsedValues PV;
 | |
|   PV.IterCount = IterCount;
 | |
|   DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n');
 | |
| 
 | |
|   setupSimplifier();
 | |
| 
 | |
|   // Perform a preliminary scan of select instructions to see if any of them
 | |
|   // looks like a generator of the polynomial multiply steps. Assume that a
 | |
|   // loop can only contain a single transformable operation, so stop the
 | |
|   // traversal after the first reasonable candidate was found.
 | |
|   // XXX: Currently this approach can modify the loop before being 100% sure
 | |
|   // that the transformation can be carried out.
 | |
|   bool FoundPreScan = false;
 | |
|   auto FeedsPHI = [LoopB](const Value *V) -> bool {
 | |
|     for (const Value *U : V->users()) {
 | |
|       if (const auto *P = dyn_cast<const PHINode>(U))
 | |
|         if (P->getParent() == LoopB)
 | |
|           return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
|   for (Instruction &In : *LoopB) {
 | |
|     SelectInst *SI = dyn_cast<SelectInst>(&In);
 | |
|     if (!SI || !FeedsPHI(SI))
 | |
|       continue;
 | |
| 
 | |
|     Simplifier::Context C(SI);
 | |
|     Value *T = Simp.simplify(C);
 | |
|     SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
 | |
|     DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
 | |
|     if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
 | |
|       FoundPreScan = true;
 | |
|       if (SelI != SI) {
 | |
|         Value *NewSel = C.materialize(LoopB, SI->getIterator());
 | |
|         SI->replaceAllUsesWith(NewSel);
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FoundPreScan) {
 | |
|     DEBUG(dbgs() << "Have not found candidates for pmpy\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!PV.Left) {
 | |
|     // The right shift version actually only returns the higher bits of
 | |
|     // the result (each iteration discards the LSB). If we want to convert it
 | |
|     // to a left-shifting loop, the working data type must be at least as
 | |
|     // wide as the target's pmpy instruction.
 | |
|     if (!promoteTypes(LoopB, ExitB))
 | |
|       return false;
 | |
|     if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
 | |
|       return false;
 | |
|     cleanupLoopBody(LoopB);
 | |
|   }
 | |
| 
 | |
|   // Scan the loop again, find the generating select instruction.
 | |
|   bool FoundScan = false;
 | |
|   for (Instruction &In : *LoopB) {
 | |
|     SelectInst *SelI = dyn_cast<SelectInst>(&In);
 | |
|     if (!SelI)
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
 | |
|     FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
 | |
|     if (FoundScan)
 | |
|       break;
 | |
|   }
 | |
|   assert(FoundScan);
 | |
| 
 | |
|   DEBUG({
 | |
|     StringRef PP = (PV.M ? "(P+M)" : "P");
 | |
|     if (!PV.Inv)
 | |
|       dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
 | |
|     else
 | |
|       dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
 | |
|              << PP << "\n";
 | |
|     dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n";
 | |
|     if (PV.M)
 | |
|       dbgs() << "  M:" << *PV.M << "\n";
 | |
|     dbgs() << "  Q:" << *PV.Q << "\n";
 | |
|     dbgs() << "  Iteration count:" << PV.IterCount << "\n";
 | |
|   });
 | |
| 
 | |
|   BasicBlock::iterator At(EntryB->getTerminator());
 | |
|   Value *PM = generate(At, PV);
 | |
|   if (PM == nullptr)
 | |
|     return false;
 | |
| 
 | |
|   if (PM->getType() != PV.Res->getType())
 | |
|     PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
 | |
| 
 | |
|   PV.Res->replaceAllUsesWith(PM);
 | |
|   PV.Res->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
 | |
|     return SC->getAPInt().getSExtValue();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
 | |
|   // Allow volatile stores if HexagonVolatileMemcpy is enabled.
 | |
|   if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
 | |
|     return false;
 | |
| 
 | |
|   Value *StoredVal = SI->getValueOperand();
 | |
|   Value *StorePtr = SI->getPointerOperand();
 | |
| 
 | |
|   // Reject stores that are so large that they overflow an unsigned.
 | |
|   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
 | |
|   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
 | |
|     return false;
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided store.  If we have something else, it's a
 | |
|   // random store we can't handle.
 | |
|   auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | |
|   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if the stride matches the size of the store.  If so, then we
 | |
|   // know that every byte is touched in the loop.
 | |
|   int Stride = getSCEVStride(StoreEv);
 | |
|   if (Stride == 0)
 | |
|     return false;
 | |
|   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
 | |
|   if (StoreSize != unsigned(std::abs(Stride)))
 | |
|     return false;
 | |
| 
 | |
|   // The store must be feeding a non-volatile load.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
 | |
|   if (!LI || !LI->isSimple())
 | |
|     return false;
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided load.  If we have something else, it's a
 | |
|   // random load we can't handle.
 | |
|   Value *LoadPtr = LI->getPointerOperand();
 | |
|   auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
 | |
|   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // The store and load must share the same stride.
 | |
|   if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
 | |
|     return false;
 | |
| 
 | |
|   // Success.  This store can be converted into a memcpy.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// mayLoopAccessLocation - Return true if the specified loop might access the
 | |
| /// specified pointer location, which is a loop-strided access.  The 'Access'
 | |
| /// argument specifies what the verboten forms of access are (read or write).
 | |
| static bool
 | |
| mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
 | |
|                       const SCEV *BECount, unsigned StoreSize,
 | |
|                       AliasAnalysis &AA,
 | |
|                       SmallPtrSetImpl<Instruction *> &Ignored) {
 | |
|   // Get the location that may be stored across the loop.  Since the access
 | |
|   // is strided positively through memory, we say that the modified location
 | |
|   // starts at the pointer and has infinite size.
 | |
|   uint64_t AccessSize = MemoryLocation::UnknownSize;
 | |
| 
 | |
|   // If the loop iterates a fixed number of times, we can refine the access
 | |
|   // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
 | |
|   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | |
|     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
 | |
| 
 | |
|   // TODO: For this to be really effective, we have to dive into the pointer
 | |
|   // operand in the store.  Store to &A[i] of 100 will always return may alias
 | |
|   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
 | |
|   // which will then no-alias a store to &A[100].
 | |
|   MemoryLocation StoreLoc(Ptr, AccessSize);
 | |
| 
 | |
|   for (auto *B : L->blocks())
 | |
|     for (auto &I : *B)
 | |
|       if (Ignored.count(&I) == 0 &&
 | |
|           isModOrRefSet(
 | |
|               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
 | |
|       SmallVectorImpl<StoreInst*> &Stores) {
 | |
|   Stores.clear();
 | |
|   for (Instruction &I : *BB)
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
 | |
|       if (isLegalStore(CurLoop, SI))
 | |
|         Stores.push_back(SI);
 | |
| }
 | |
| 
 | |
| bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
 | |
|       StoreInst *SI, const SCEV *BECount) {
 | |
|   assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
 | |
|          "Expected only non-volatile stores, or Hexagon-specific memcpy"
 | |
|          "to volatile destination.");
 | |
| 
 | |
|   Value *StorePtr = SI->getPointerOperand();
 | |
|   auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | |
|   unsigned Stride = getSCEVStride(StoreEv);
 | |
|   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
 | |
|   if (Stride != StoreSize)
 | |
|     return false;
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided load.  If we have something else, it's a
 | |
|   // random load we can't handle.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
 | |
|   auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
 | |
| 
 | |
|   // The trip count of the loop and the base pointer of the addrec SCEV is
 | |
|   // guaranteed to be loop invariant, which means that it should dominate the
 | |
|   // header.  This allows us to insert code for it in the preheader.
 | |
|   BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | |
|   Instruction *ExpPt = Preheader->getTerminator();
 | |
|   IRBuilder<> Builder(ExpPt);
 | |
|   SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
 | |
| 
 | |
|   Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
 | |
| 
 | |
|   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
 | |
|   // this into a memcpy/memmove in the loop preheader now if we want.  However,
 | |
|   // this would be unsafe to do if there is anything else in the loop that may
 | |
|   // read or write the memory region we're storing to.  For memcpy, this
 | |
|   // includes the load that feeds the stores.  Check for an alias by generating
 | |
|   // the base address and checking everything.
 | |
|   Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
 | |
|       Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
 | |
|   Value *LoadBasePtr = nullptr;
 | |
| 
 | |
|   bool Overlap = false;
 | |
|   bool DestVolatile = SI->isVolatile();
 | |
|   Type *BECountTy = BECount->getType();
 | |
| 
 | |
|   if (DestVolatile) {
 | |
|     // The trip count must fit in i32, since it is the type of the "num_words"
 | |
|     // argument to hexagon_memcpy_forward_vp4cp4n2.
 | |
|     if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
 | |
| CleanupAndExit:
 | |
|       // If we generated new code for the base pointer, clean up.
 | |
|       Expander.clear();
 | |
|       if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
 | |
|         StoreBasePtr = nullptr;
 | |
|       }
 | |
|       if (LoadBasePtr) {
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
 | |
|         LoadBasePtr = nullptr;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallPtrSet<Instruction*, 2> Ignore1;
 | |
|   Ignore1.insert(SI);
 | |
|   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
 | |
|                             StoreSize, *AA, Ignore1)) {
 | |
|     // Check if the load is the offending instruction.
 | |
|     Ignore1.insert(LI);
 | |
|     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
 | |
|                               BECount, StoreSize, *AA, Ignore1)) {
 | |
|       // Still bad. Nothing we can do.
 | |
|       goto CleanupAndExit;
 | |
|     }
 | |
|     // It worked with the load ignored.
 | |
|     Overlap = true;
 | |
|   }
 | |
| 
 | |
|   if (!Overlap) {
 | |
|     if (DisableMemcpyIdiom || !HasMemcpy)
 | |
|       goto CleanupAndExit;
 | |
|   } else {
 | |
|     // Don't generate memmove if this function will be inlined. This is
 | |
|     // because the caller will undergo this transformation after inlining.
 | |
|     Function *Func = CurLoop->getHeader()->getParent();
 | |
|     if (Func->hasFnAttribute(Attribute::AlwaysInline))
 | |
|       goto CleanupAndExit;
 | |
| 
 | |
|     // In case of a memmove, the call to memmove will be executed instead
 | |
|     // of the loop, so we need to make sure that there is nothing else in
 | |
|     // the loop than the load, store and instructions that these two depend
 | |
|     // on.
 | |
|     SmallVector<Instruction*,2> Insts;
 | |
|     Insts.push_back(SI);
 | |
|     Insts.push_back(LI);
 | |
|     if (!coverLoop(CurLoop, Insts))
 | |
|       goto CleanupAndExit;
 | |
| 
 | |
|     if (DisableMemmoveIdiom || !HasMemmove)
 | |
|       goto CleanupAndExit;
 | |
|     bool IsNested = CurLoop->getParentLoop() != nullptr;
 | |
|     if (IsNested && OnlyNonNestedMemmove)
 | |
|       goto CleanupAndExit;
 | |
|   }
 | |
| 
 | |
|   // For a memcpy, we have to make sure that the input array is not being
 | |
|   // mutated by the loop.
 | |
|   LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
 | |
|       Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
 | |
| 
 | |
|   SmallPtrSet<Instruction*, 2> Ignore2;
 | |
|   Ignore2.insert(SI);
 | |
|   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
 | |
|                             StoreSize, *AA, Ignore2))
 | |
|     goto CleanupAndExit;
 | |
| 
 | |
|   // Check the stride.
 | |
|   bool StridePos = getSCEVStride(LoadEv) >= 0;
 | |
| 
 | |
|   // Currently, the volatile memcpy only emulates traversing memory forward.
 | |
|   if (!StridePos && DestVolatile)
 | |
|     goto CleanupAndExit;
 | |
| 
 | |
|   bool RuntimeCheck = (Overlap || DestVolatile);
 | |
| 
 | |
|   BasicBlock *ExitB;
 | |
|   if (RuntimeCheck) {
 | |
|     // The runtime check needs a single exit block.
 | |
|     SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|     CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
|     if (ExitBlocks.size() != 1)
 | |
|       goto CleanupAndExit;
 | |
|     ExitB = ExitBlocks[0];
 | |
|   }
 | |
| 
 | |
|   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
 | |
|   // pointer size if it isn't already.
 | |
|   LLVMContext &Ctx = SI->getContext();
 | |
|   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
 | |
|   unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment());
 | |
|   DebugLoc DLoc = SI->getDebugLoc();
 | |
| 
 | |
|   const SCEV *NumBytesS =
 | |
|       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
 | |
|   if (StoreSize != 1)
 | |
|     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
 | |
|                                SCEV::FlagNUW);
 | |
|   Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
 | |
|   if (Instruction *In = dyn_cast<Instruction>(NumBytes))
 | |
|     if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
 | |
|       NumBytes = Simp;
 | |
| 
 | |
|   CallInst *NewCall;
 | |
| 
 | |
|   if (RuntimeCheck) {
 | |
|     unsigned Threshold = RuntimeMemSizeThreshold;
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
 | |
|       uint64_t C = CI->getZExtValue();
 | |
|       if (Threshold != 0 && C < Threshold)
 | |
|         goto CleanupAndExit;
 | |
|       if (C < CompileTimeMemSizeThreshold)
 | |
|         goto CleanupAndExit;
 | |
|     }
 | |
| 
 | |
|     BasicBlock *Header = CurLoop->getHeader();
 | |
|     Function *Func = Header->getParent();
 | |
|     Loop *ParentL = LF->getLoopFor(Preheader);
 | |
|     StringRef HeaderName = Header->getName();
 | |
| 
 | |
|     // Create a new (empty) preheader, and update the PHI nodes in the
 | |
|     // header to use the new preheader.
 | |
|     BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
 | |
|                                                   Func, Header);
 | |
|     if (ParentL)
 | |
|       ParentL->addBasicBlockToLoop(NewPreheader, *LF);
 | |
|     IRBuilder<>(NewPreheader).CreateBr(Header);
 | |
|     for (auto &In : *Header) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(&In);
 | |
|       if (!PN)
 | |
|         break;
 | |
|       int bx = PN->getBasicBlockIndex(Preheader);
 | |
|       if (bx >= 0)
 | |
|         PN->setIncomingBlock(bx, NewPreheader);
 | |
|     }
 | |
|     DT->addNewBlock(NewPreheader, Preheader);
 | |
|     DT->changeImmediateDominator(Header, NewPreheader);
 | |
| 
 | |
|     // Check for safe conditions to execute memmove.
 | |
|     // If stride is positive, copying things from higher to lower addresses
 | |
|     // is equivalent to memmove.  For negative stride, it's the other way
 | |
|     // around.  Copying forward in memory with positive stride may not be
 | |
|     // same as memmove since we may be copying values that we just stored
 | |
|     // in some previous iteration.
 | |
|     Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
 | |
|     Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
 | |
|     Value *LowA = StridePos ? SA : LA;
 | |
|     Value *HighA = StridePos ? LA : SA;
 | |
|     Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
 | |
|     Value *Cond = CmpA;
 | |
| 
 | |
|     // Check for distance between pointers. Since the case LowA < HighA
 | |
|     // is checked for above, assume LowA >= HighA.
 | |
|     Value *Dist = Builder.CreateSub(LowA, HighA);
 | |
|     Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
 | |
|     Value *CmpEither = Builder.CreateOr(Cond, CmpD);
 | |
|     Cond = CmpEither;
 | |
| 
 | |
|     if (Threshold != 0) {
 | |
|       Type *Ty = NumBytes->getType();
 | |
|       Value *Thr = ConstantInt::get(Ty, Threshold);
 | |
|       Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
 | |
|       Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
 | |
|       Cond = CmpBoth;
 | |
|     }
 | |
|     BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
 | |
|                                               Func, NewPreheader);
 | |
|     if (ParentL)
 | |
|       ParentL->addBasicBlockToLoop(MemmoveB, *LF);
 | |
|     Instruction *OldT = Preheader->getTerminator();
 | |
|     Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
 | |
|     OldT->eraseFromParent();
 | |
|     Preheader->setName(Preheader->getName()+".old");
 | |
|     DT->addNewBlock(MemmoveB, Preheader);
 | |
|     // Find the new immediate dominator of the exit block.
 | |
|     BasicBlock *ExitD = Preheader;
 | |
|     for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
 | |
|       BasicBlock *PB = *PI;
 | |
|       ExitD = DT->findNearestCommonDominator(ExitD, PB);
 | |
|       if (!ExitD)
 | |
|         break;
 | |
|     }
 | |
|     // If the prior immediate dominator of ExitB was dominated by the
 | |
|     // old preheader, then the old preheader becomes the new immediate
 | |
|     // dominator.  Otherwise don't change anything (because the newly
 | |
|     // added blocks are dominated by the old preheader).
 | |
|     if (ExitD && DT->dominates(Preheader, ExitD)) {
 | |
|       DomTreeNode *BN = DT->getNode(ExitB);
 | |
|       DomTreeNode *DN = DT->getNode(ExitD);
 | |
|       BN->setIDom(DN);
 | |
|     }
 | |
| 
 | |
|     // Add a call to memmove to the conditional block.
 | |
|     IRBuilder<> CondBuilder(MemmoveB);
 | |
|     CondBuilder.CreateBr(ExitB);
 | |
|     CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
 | |
| 
 | |
|     if (DestVolatile) {
 | |
|       Type *Int32Ty = Type::getInt32Ty(Ctx);
 | |
|       Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
 | |
|       Type *VoidTy = Type::getVoidTy(Ctx);
 | |
|       Module *M = Func->getParent();
 | |
|       Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
 | |
|                                             Int32PtrTy, Int32PtrTy, Int32Ty);
 | |
|       Function *Fn = cast<Function>(CF);
 | |
|       Fn->setLinkage(Function::ExternalLinkage);
 | |
| 
 | |
|       const SCEV *OneS = SE->getConstant(Int32Ty, 1);
 | |
|       const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
 | |
|       const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
 | |
|       Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
 | |
|                                                MemmoveB->getTerminator());
 | |
|       if (Instruction *In = dyn_cast<Instruction>(NumWords))
 | |
|         if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
 | |
|           NumWords = Simp;
 | |
| 
 | |
|       Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
 | |
|                       ? StoreBasePtr
 | |
|                       : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
 | |
|       Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
 | |
|                       ? LoadBasePtr
 | |
|                       : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
 | |
|       NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
 | |
|     } else {
 | |
|       NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr,
 | |
|                                           NumBytes, Alignment);
 | |
|     }
 | |
|   } else {
 | |
|     NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr,
 | |
|                                    NumBytes, Alignment);
 | |
|     // Okay, the memcpy has been formed.  Zap the original store and
 | |
|     // anything that feeds into it.
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
 | |
|   }
 | |
| 
 | |
|   NewCall->setDebugLoc(DLoc);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ")
 | |
|                << *NewCall << "\n"
 | |
|                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
 | |
|                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // \brief Check if the instructions in Insts, together with their dependencies
 | |
| // cover the loop in the sense that the loop could be safely eliminated once
 | |
| // the instructions in Insts are removed.
 | |
| bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
 | |
|       SmallVectorImpl<Instruction*> &Insts) const {
 | |
|   SmallSet<BasicBlock*,8> LoopBlocks;
 | |
|   for (auto *B : L->blocks())
 | |
|     LoopBlocks.insert(B);
 | |
| 
 | |
|   SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
 | |
| 
 | |
|   // Collect all instructions from the loop that the instructions in Insts
 | |
|   // depend on (plus their dependencies, etc.).  These instructions will
 | |
|   // constitute the expression trees that feed those in Insts, but the trees
 | |
|   // will be limited only to instructions contained in the loop.
 | |
|   for (unsigned i = 0; i < Worklist.size(); ++i) {
 | |
|     Instruction *In = Worklist[i];
 | |
|     for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
 | |
|       Instruction *OpI = dyn_cast<Instruction>(I);
 | |
|       if (!OpI)
 | |
|         continue;
 | |
|       BasicBlock *PB = OpI->getParent();
 | |
|       if (!LoopBlocks.count(PB))
 | |
|         continue;
 | |
|       Worklist.insert(OpI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan all instructions in the loop, if any of them have a user outside
 | |
|   // of the loop, or outside of the expressions collected above, then either
 | |
|   // the loop has a side-effect visible outside of it, or there are
 | |
|   // instructions in it that are not involved in the original set Insts.
 | |
|   for (auto *B : L->blocks()) {
 | |
|     for (auto &In : *B) {
 | |
|       if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
 | |
|         continue;
 | |
|       if (!Worklist.count(&In) && In.mayHaveSideEffects())
 | |
|         return false;
 | |
|       for (const auto &K : In.users()) {
 | |
|         Instruction *UseI = dyn_cast<Instruction>(K);
 | |
|         if (!UseI)
 | |
|           continue;
 | |
|         BasicBlock *UseB = UseI->getParent();
 | |
|         if (LF->getLoopFor(UseB) != L)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop
 | |
| /// with the specified backedge count.  This block is known to be in the current
 | |
| /// loop and not in any subloops.
 | |
| bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
 | |
|       const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
 | |
|   // We can only promote stores in this block if they are unconditionally
 | |
|   // executed in the loop.  For a block to be unconditionally executed, it has
 | |
|   // to dominate all the exit blocks of the loop.  Verify this now.
 | |
|   auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
 | |
|     return DT->dominates(BB, EB);
 | |
|   };
 | |
|   if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB))
 | |
|     return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   // Look for store instructions, which may be optimized to memset/memcpy.
 | |
|   SmallVector<StoreInst*,8> Stores;
 | |
|   collectStores(CurLoop, BB, Stores);
 | |
| 
 | |
|   // Optimize the store into a memcpy, if it feeds an similarly strided load.
 | |
|   for (auto &SI : Stores)
 | |
|     MadeChange |= processCopyingStore(CurLoop, SI, BECount);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
 | |
|   PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
 | |
|   if (PMR.recognize())
 | |
|     return true;
 | |
| 
 | |
|   if (!HasMemcpy && !HasMemmove)
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *BECount = SE->getBackedgeTakenCount(L);
 | |
|   assert(!isa<SCEVCouldNotCompute>(BECount) &&
 | |
|          "runOnCountableLoop() called on a loop without a predictable"
 | |
|          "backedge-taken count");
 | |
| 
 | |
|   SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Scan all the blocks in the loop that are not in subloops.
 | |
|   for (auto *BB : L->getBlocks()) {
 | |
|     // Ignore blocks in subloops.
 | |
|     if (LF->getLoopFor(BB) != L)
 | |
|       continue;
 | |
|     Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   const Module &M = *L->getHeader()->getParent()->getParent();
 | |
|   if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
 | |
|     return false;
 | |
| 
 | |
|   if (skipLoop(L))
 | |
|     return false;
 | |
| 
 | |
|   // If the loop could not be converted to canonical form, it must have an
 | |
|   // indirectbr in it, just give up.
 | |
|   if (!L->getLoopPreheader())
 | |
|     return false;
 | |
| 
 | |
|   // Disable loop idiom recognition if the function's name is a common idiom.
 | |
|   StringRef Name = L->getHeader()->getParent()->getName();
 | |
|   if (Name == "memset" || Name == "memcpy" || Name == "memmove")
 | |
|     return false;
 | |
| 
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   DL = &L->getHeader()->getModule()->getDataLayout();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
| 
 | |
|   HasMemcpy = TLI->has(LibFunc_memcpy);
 | |
|   HasMemmove = TLI->has(LibFunc_memmove);
 | |
| 
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L))
 | |
|     return runOnCountableLoop(L);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Pass *llvm::createHexagonLoopIdiomPass() {
 | |
|   return new HexagonLoopIdiomRecognize();
 | |
| }
 |