You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1331 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1331 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- HexagonExpandCondsets.cpp ------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Replace mux instructions with the corresponding legal instructions.
 | |
| // It is meant to work post-SSA, but still on virtual registers. It was
 | |
| // originally placed between register coalescing and machine instruction
 | |
| // scheduler.
 | |
| // In this place in the optimization sequence, live interval analysis had
 | |
| // been performed, and the live intervals should be preserved. A large part
 | |
| // of the code deals with preserving the liveness information.
 | |
| //
 | |
| // Liveness tracking aside, the main functionality of this pass is divided
 | |
| // into two steps. The first step is to replace an instruction
 | |
| //   %0 = C2_mux %1, %2, %3
 | |
| // with a pair of conditional transfers
 | |
| //   %0 = A2_tfrt %1, %2
 | |
| //   %0 = A2_tfrf %1, %3
 | |
| // It is the intention that the execution of this pass could be terminated
 | |
| // after this step, and the code generated would be functionally correct.
 | |
| //
 | |
| // If the uses of the source values %1 and %2 are kills, and their
 | |
| // definitions are predicable, then in the second step, the conditional
 | |
| // transfers will then be rewritten as predicated instructions. E.g.
 | |
| //   %0 = A2_or %1, %2
 | |
| //   %3 = A2_tfrt %99, killed %0
 | |
| // will be rewritten as
 | |
| //   %3 = A2_port %99, %1, %2
 | |
| //
 | |
| // This replacement has two variants: "up" and "down". Consider this case:
 | |
| //   %0 = A2_or %1, %2
 | |
| //   ... [intervening instructions] ...
 | |
| //   %3 = A2_tfrt %99, killed %0
 | |
| // variant "up":
 | |
| //   %3 = A2_port %99, %1, %2
 | |
| //   ... [intervening instructions, %0->vreg3] ...
 | |
| //   [deleted]
 | |
| // variant "down":
 | |
| //   [deleted]
 | |
| //   ... [intervening instructions] ...
 | |
| //   %3 = A2_port %99, %1, %2
 | |
| //
 | |
| // Both, one or none of these variants may be valid, and checks are made
 | |
| // to rule out inapplicable variants.
 | |
| //
 | |
| // As an additional optimization, before either of the two steps above is
 | |
| // executed, the pass attempts to coalesce the target register with one of
 | |
| // the source registers, e.g. given an instruction
 | |
| //   %3 = C2_mux %0, %1, %2
 | |
| // %3 will be coalesced with either %1 or %2. If this succeeds,
 | |
| // the instruction would then be (for example)
 | |
| //   %3 = C2_mux %0, %3, %2
 | |
| // and, under certain circumstances, this could result in only one predicated
 | |
| // instruction:
 | |
| //   %3 = A2_tfrf %0, %2
 | |
| //
 | |
| 
 | |
| // Splitting a definition of a register into two predicated transfers
 | |
| // creates a complication in liveness tracking. Live interval computation
 | |
| // will see both instructions as actual definitions, and will mark the
 | |
| // first one as dead. The definition is not actually dead, and this
 | |
| // situation will need to be fixed. For example:
 | |
| //   dead %1 = A2_tfrt ...  ; marked as dead
 | |
| //   %1 = A2_tfrf ...
 | |
| //
 | |
| // Since any of the individual predicated transfers may end up getting
 | |
| // removed (in case it is an identity copy), some pre-existing def may
 | |
| // be marked as dead after live interval recomputation:
 | |
| //   dead %1 = ...          ; marked as dead
 | |
| //   ...
 | |
| //   %1 = A2_tfrf ...       ; if A2_tfrt is removed
 | |
| // This case happens if %1 was used as a source in A2_tfrt, which means
 | |
| // that is it actually live at the A2_tfrf, and so the now dead definition
 | |
| // of %1 will need to be updated to non-dead at some point.
 | |
| //
 | |
| // This issue could be remedied by adding implicit uses to the predicated
 | |
| // transfers, but this will create a problem with subsequent predication,
 | |
| // since the transfers will no longer be possible to reorder. To avoid
 | |
| // that, the initial splitting will not add any implicit uses. These
 | |
| // implicit uses will be added later, after predication. The extra price,
 | |
| // however, is that finding the locations where the implicit uses need
 | |
| // to be added, and updating the live ranges will be more involved.
 | |
| 
 | |
| #include "HexagonInstrInfo.h"
 | |
| #include "HexagonRegisterInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| 
 | |
| #define DEBUG_TYPE "expand-condsets"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
 | |
|   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
 | |
| static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
 | |
|   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   void initializeHexagonExpandCondsetsPass(PassRegistry&);
 | |
|   FunctionPass *createHexagonExpandCondsets();
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class HexagonExpandCondsets : public MachineFunctionPass {
 | |
|   public:
 | |
|     static char ID;
 | |
| 
 | |
|     HexagonExpandCondsets() : MachineFunctionPass(ID) {
 | |
|       if (OptCoaLimit.getPosition())
 | |
|         CoaLimitActive = true, CoaLimit = OptCoaLimit;
 | |
|       if (OptTfrLimit.getPosition())
 | |
|         TfrLimitActive = true, TfrLimit = OptTfrLimit;
 | |
|       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<LiveIntervals>();
 | |
|       AU.addPreserved<LiveIntervals>();
 | |
|       AU.addPreserved<SlotIndexes>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   private:
 | |
|     const HexagonInstrInfo *HII = nullptr;
 | |
|     const TargetRegisterInfo *TRI = nullptr;
 | |
|     MachineDominatorTree *MDT;
 | |
|     MachineRegisterInfo *MRI = nullptr;
 | |
|     LiveIntervals *LIS = nullptr;
 | |
|     bool CoaLimitActive = false;
 | |
|     bool TfrLimitActive = false;
 | |
|     unsigned CoaLimit;
 | |
|     unsigned TfrLimit;
 | |
|     unsigned CoaCounter = 0;
 | |
|     unsigned TfrCounter = 0;
 | |
| 
 | |
|     struct RegisterRef {
 | |
|       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
 | |
|           Sub(Op.getSubReg()) {}
 | |
|       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
 | |
| 
 | |
|       bool operator== (RegisterRef RR) const {
 | |
|         return Reg == RR.Reg && Sub == RR.Sub;
 | |
|       }
 | |
|       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
 | |
|       bool operator< (RegisterRef RR) const {
 | |
|         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
 | |
|       }
 | |
| 
 | |
|       unsigned Reg, Sub;
 | |
|     };
 | |
| 
 | |
|     using ReferenceMap = DenseMap<unsigned, unsigned>;
 | |
|     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
 | |
|     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
 | |
| 
 | |
|     unsigned getMaskForSub(unsigned Sub);
 | |
|     bool isCondset(const MachineInstr &MI);
 | |
|     LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
 | |
| 
 | |
|     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
 | |
|     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
 | |
| 
 | |
|     void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
 | |
|     void updateKillFlags(unsigned Reg);
 | |
|     void updateDeadFlags(unsigned Reg);
 | |
|     void recalculateLiveInterval(unsigned Reg);
 | |
|     void removeInstr(MachineInstr &MI);
 | |
|     void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
 | |
|         bool UpdateKills, bool UpdateDeads);
 | |
| 
 | |
|     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
 | |
|     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
 | |
|         MachineBasicBlock::iterator At, unsigned DstR,
 | |
|         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
 | |
|         bool ReadUndef, bool ImpUse);
 | |
|     bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
 | |
| 
 | |
|     bool isPredicable(MachineInstr *MI);
 | |
|     MachineInstr *getReachingDefForPred(RegisterRef RD,
 | |
|         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
 | |
|     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
 | |
|     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
 | |
|     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
 | |
|                      MachineBasicBlock::iterator Where,
 | |
|                      const MachineOperand &PredOp, bool Cond,
 | |
|                      std::set<unsigned> &UpdRegs);
 | |
|     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
 | |
|         bool Cond, MachineBasicBlock::iterator First,
 | |
|         MachineBasicBlock::iterator Last);
 | |
|     bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
 | |
|     bool predicateInBlock(MachineBasicBlock &B,
 | |
|         std::set<unsigned> &UpdRegs);
 | |
| 
 | |
|     bool isIntReg(RegisterRef RR, unsigned &BW);
 | |
|     bool isIntraBlocks(LiveInterval &LI);
 | |
|     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
 | |
|     bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
 | |
|                           std::set<unsigned> &UpdRegs);
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char HexagonExpandCondsets::ID = 0;
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
 | |
|   "Hexagon Expand Condsets", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
 | |
|   "Hexagon Expand Condsets", false, false)
 | |
| 
 | |
| unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
 | |
|   switch (Sub) {
 | |
|     case Hexagon::isub_lo:
 | |
|     case Hexagon::vsub_lo:
 | |
|       return Sub_Low;
 | |
|     case Hexagon::isub_hi:
 | |
|     case Hexagon::vsub_hi:
 | |
|       return Sub_High;
 | |
|     case Hexagon::NoSubRegister:
 | |
|       return Sub_None;
 | |
|   }
 | |
|   llvm_unreachable("Invalid subregister");
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   switch (Opc) {
 | |
|     case Hexagon::C2_mux:
 | |
|     case Hexagon::C2_muxii:
 | |
|     case Hexagon::C2_muxir:
 | |
|     case Hexagon::C2_muxri:
 | |
|     case Hexagon::PS_pselect:
 | |
|         return true;
 | |
|       break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg));
 | |
|   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
 | |
|                   : MRI->getMaxLaneMaskForVReg(Reg);
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
 | |
|       unsigned Exec) {
 | |
|   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
 | |
|   ReferenceMap::iterator F = Map.find(RR.Reg);
 | |
|   if (F == Map.end())
 | |
|     Map.insert(std::make_pair(RR.Reg, Mask));
 | |
|   else
 | |
|     F->second |= Mask;
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
 | |
|       unsigned Exec) {
 | |
|   ReferenceMap::iterator F = Map.find(RR.Reg);
 | |
|   if (F == Map.end())
 | |
|     return false;
 | |
|   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
 | |
|   if (Mask & F->second)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
 | |
|   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
 | |
|     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
 | |
|     MachineInstr *MI = LIS->getInstructionFromIndex(K);
 | |
|     for (auto &Op : MI->operands()) {
 | |
|       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
 | |
|         continue;
 | |
|       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
 | |
|       if ((SLM & LM) == SLM) {
 | |
|         // Only set the kill flag on the first encountered use of Reg in this
 | |
|         // instruction.
 | |
|         Op.setIsKill(true);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   LiveInterval &LI = LIS->getInterval(Reg);
 | |
|   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
 | |
|     if (!I->end.isRegister())
 | |
|       continue;
 | |
|     // Do not mark the end of the segment as <kill>, if the next segment
 | |
|     // starts with a predicated instruction.
 | |
|     auto NextI = std::next(I);
 | |
|     if (NextI != E && NextI->start.isRegister()) {
 | |
|       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
 | |
|       if (HII->isPredicated(*DefI))
 | |
|         continue;
 | |
|     }
 | |
|     bool WholeReg = true;
 | |
|     if (LI.hasSubRanges()) {
 | |
|       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
 | |
|         LiveRange::iterator F = S.find(I->end);
 | |
|         return F != S.end() && I->end == F->end;
 | |
|       };
 | |
|       // Check if all subranges end at I->end. If so, make sure to kill
 | |
|       // the whole register.
 | |
|       for (LiveInterval::SubRange &S : LI.subranges()) {
 | |
|         if (EndsAtI(S))
 | |
|           KillAt(I->end, S.LaneMask);
 | |
|         else
 | |
|           WholeReg = false;
 | |
|       }
 | |
|     }
 | |
|     if (WholeReg)
 | |
|       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
 | |
|       LiveRange &Range) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg));
 | |
|   if (Range.empty())
 | |
|     return;
 | |
| 
 | |
|   // Return two booleans: { def-modifes-reg, def-covers-reg }.
 | |
|   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
 | |
|     if (!Op.isReg() || !Op.isDef())
 | |
|       return { false, false };
 | |
|     unsigned DR = Op.getReg(), DSR = Op.getSubReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
 | |
|       return { false, false };
 | |
|     LaneBitmask SLM = getLaneMask(DR, DSR);
 | |
|     LaneBitmask A = SLM & LM;
 | |
|     return { A.any(), A == SLM };
 | |
|   };
 | |
| 
 | |
|   // The splitting step will create pairs of predicated definitions without
 | |
|   // any implicit uses (since implicit uses would interfere with predication).
 | |
|   // This can cause the reaching defs to become dead after live range
 | |
|   // recomputation, even though they are not really dead.
 | |
|   // We need to identify predicated defs that need implicit uses, and
 | |
|   // dead defs that are not really dead, and correct both problems.
 | |
| 
 | |
|   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
 | |
|                           MachineBasicBlock *Dest) -> bool {
 | |
|     for (MachineBasicBlock *D : Defs)
 | |
|       if (D != Dest && MDT->dominates(D, Dest))
 | |
|         return true;
 | |
| 
 | |
|     MachineBasicBlock *Entry = &Dest->getParent()->front();
 | |
|     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
 | |
|     for (unsigned i = 0; i < Work.size(); ++i) {
 | |
|       MachineBasicBlock *B = Work[i];
 | |
|       if (Defs.count(B))
 | |
|         continue;
 | |
|       if (B == Entry)
 | |
|         return false;
 | |
|       for (auto *P : B->predecessors())
 | |
|         Work.insert(P);
 | |
|     }
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // First, try to extend live range within individual basic blocks. This
 | |
|   // will leave us only with dead defs that do not reach any predicated
 | |
|   // defs in the same block.
 | |
|   SetVector<MachineBasicBlock*> Defs;
 | |
|   SmallVector<SlotIndex,4> PredDefs;
 | |
|   for (auto &Seg : Range) {
 | |
|     if (!Seg.start.isRegister())
 | |
|       continue;
 | |
|     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
 | |
|     Defs.insert(DefI->getParent());
 | |
|     if (HII->isPredicated(*DefI))
 | |
|       PredDefs.push_back(Seg.start);
 | |
|   }
 | |
| 
 | |
|   SmallVector<SlotIndex,8> Undefs;
 | |
|   LiveInterval &LI = LIS->getInterval(Reg);
 | |
|   LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
 | |
| 
 | |
|   for (auto &SI : PredDefs) {
 | |
|     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
 | |
|     auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
 | |
|     if (P.first != nullptr || P.second)
 | |
|       SI = SlotIndex();
 | |
|   }
 | |
| 
 | |
|   // Calculate reachability for those predicated defs that were not handled
 | |
|   // by the in-block extension.
 | |
|   SmallVector<SlotIndex,4> ExtTo;
 | |
|   for (auto &SI : PredDefs) {
 | |
|     if (!SI.isValid())
 | |
|       continue;
 | |
|     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
 | |
|     if (BB->pred_empty())
 | |
|       continue;
 | |
|     // If the defs from this range reach SI via all predecessors, it is live.
 | |
|     // It can happen that SI is reached by the defs through some paths, but
 | |
|     // not all. In the IR coming into this optimization, SI would not be
 | |
|     // considered live, since the defs would then not jointly dominate SI.
 | |
|     // That means that SI is an overwriting def, and no implicit use is
 | |
|     // needed at this point. Do not add SI to the extension points, since
 | |
|     // extendToIndices will abort if there is no joint dominance.
 | |
|     // If the abort was avoided by adding extra undefs added to Undefs,
 | |
|     // extendToIndices could actually indicate that SI is live, contrary
 | |
|     // to the original IR.
 | |
|     if (Dominate(Defs, BB))
 | |
|       ExtTo.push_back(SI);
 | |
|   }
 | |
| 
 | |
|   if (!ExtTo.empty())
 | |
|     LIS->extendToIndices(Range, ExtTo, Undefs);
 | |
| 
 | |
|   // Remove <dead> flags from all defs that are not dead after live range
 | |
|   // extension, and collect all def operands. They will be used to generate
 | |
|   // the necessary implicit uses.
 | |
|   // At the same time, add <dead> flag to all defs that are actually dead.
 | |
|   // This can happen, for example, when a mux with identical inputs is
 | |
|   // replaced with a COPY: the use of the predicate register disappears and
 | |
|   // the dead can become dead.
 | |
|   std::set<RegisterRef> DefRegs;
 | |
|   for (auto &Seg : Range) {
 | |
|     if (!Seg.start.isRegister())
 | |
|       continue;
 | |
|     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
 | |
|     for (auto &Op : DefI->operands()) {
 | |
|       auto P = IsRegDef(Op);
 | |
|       if (P.second && Seg.end.isDead()) {
 | |
|         Op.setIsDead(true);
 | |
|       } else if (P.first) {
 | |
|         DefRegs.insert(Op);
 | |
|         Op.setIsDead(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now, add implicit uses to each predicated def that is reached
 | |
|   // by other defs.
 | |
|   for (auto &Seg : Range) {
 | |
|     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
 | |
|       continue;
 | |
|     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
 | |
|     if (!HII->isPredicated(*DefI))
 | |
|       continue;
 | |
|     // Construct the set of all necessary implicit uses, based on the def
 | |
|     // operands in the instruction. We need to tie the implicit uses to
 | |
|     // the corresponding defs.
 | |
|     std::map<RegisterRef,unsigned> ImpUses;
 | |
|     for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &Op = DefI->getOperand(i);
 | |
|       if (!Op.isReg() || !DefRegs.count(Op))
 | |
|         continue;
 | |
|       if (Op.isDef()) {
 | |
|         ImpUses.insert({Op, i});
 | |
|       } else {
 | |
|         // This function can be called for the same register with different
 | |
|         // lane masks. If the def in this instruction was for the whole
 | |
|         // register, we can get here more than once. Avoid adding multiple
 | |
|         // implicit uses (or adding an implicit use when an explicit one is
 | |
|         // present).
 | |
|         ImpUses.erase(Op);
 | |
|       }
 | |
|     }
 | |
|     if (ImpUses.empty())
 | |
|       continue;
 | |
|     MachineFunction &MF = *DefI->getParent()->getParent();
 | |
|     for (std::pair<RegisterRef, unsigned> P : ImpUses) {
 | |
|       RegisterRef R = P.first;
 | |
|       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
 | |
|       DefI->tieOperands(P.second, DefI->getNumOperands()-1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
 | |
|   LiveInterval &LI = LIS->getInterval(Reg);
 | |
|   if (LI.hasSubRanges()) {
 | |
|     for (LiveInterval::SubRange &S : LI.subranges()) {
 | |
|       updateDeadsInRange(Reg, S.LaneMask, S);
 | |
|       LIS->shrinkToUses(S, Reg);
 | |
|     }
 | |
|     LI.clear();
 | |
|     LIS->constructMainRangeFromSubranges(LI);
 | |
|   } else {
 | |
|     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
 | |
|   LIS->removeInterval(Reg);
 | |
|   LIS->createAndComputeVirtRegInterval(Reg);
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
 | |
|   LIS->RemoveMachineInstrFromMaps(MI);
 | |
|   MI.eraseFromParent();
 | |
| }
 | |
| 
 | |
| void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
 | |
|       bool Recalc, bool UpdateKills, bool UpdateDeads) {
 | |
|   UpdateKills |= UpdateDeads;
 | |
|   for (auto R : RegSet) {
 | |
|     if (Recalc)
 | |
|       recalculateLiveInterval(R);
 | |
|     if (UpdateKills)
 | |
|       MRI->clearKillFlags(R);
 | |
|     if (UpdateDeads)
 | |
|       updateDeadFlags(R);
 | |
|     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
 | |
|     // after that.
 | |
|     if (UpdateKills)
 | |
|       updateKillFlags(R);
 | |
|     LIS->getInterval(R).verify();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Get the opcode for a conditional transfer of the value in SO (source
 | |
| /// operand). The condition (true/false) is given in Cond.
 | |
| unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
 | |
|       bool IfTrue) {
 | |
|   using namespace Hexagon;
 | |
| 
 | |
|   if (SO.isReg()) {
 | |
|     unsigned PhysR;
 | |
|     RegisterRef RS = SO;
 | |
|     if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
 | |
|       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
 | |
|       assert(VC->begin() != VC->end() && "Empty register class");
 | |
|       PhysR = *VC->begin();
 | |
|     } else {
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
 | |
|       PhysR = RS.Reg;
 | |
|     }
 | |
|     unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
 | |
|     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
 | |
|     switch (TRI->getRegSizeInBits(*RC)) {
 | |
|       case 32:
 | |
|         return IfTrue ? A2_tfrt : A2_tfrf;
 | |
|       case 64:
 | |
|         return IfTrue ? A2_tfrpt : A2_tfrpf;
 | |
|     }
 | |
|     llvm_unreachable("Invalid register operand");
 | |
|   }
 | |
|   switch (SO.getType()) {
 | |
|     case MachineOperand::MO_Immediate:
 | |
|     case MachineOperand::MO_FPImmediate:
 | |
|     case MachineOperand::MO_ConstantPoolIndex:
 | |
|     case MachineOperand::MO_TargetIndex:
 | |
|     case MachineOperand::MO_JumpTableIndex:
 | |
|     case MachineOperand::MO_ExternalSymbol:
 | |
|     case MachineOperand::MO_GlobalAddress:
 | |
|     case MachineOperand::MO_BlockAddress:
 | |
|       return IfTrue ? C2_cmoveit : C2_cmoveif;
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
|   llvm_unreachable("Unexpected source operand");
 | |
| }
 | |
| 
 | |
| /// Generate a conditional transfer, copying the value SrcOp to the
 | |
| /// destination register DstR:DstSR, and using the predicate register from
 | |
| /// PredOp. The Cond argument specifies whether the predicate is to be
 | |
| /// if(PredOp), or if(!PredOp).
 | |
| MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
 | |
|       MachineBasicBlock::iterator At,
 | |
|       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
 | |
|       bool PredSense, bool ReadUndef, bool ImpUse) {
 | |
|   MachineInstr *MI = SrcOp.getParent();
 | |
|   MachineBasicBlock &B = *At->getParent();
 | |
|   const DebugLoc &DL = MI->getDebugLoc();
 | |
| 
 | |
|   // Don't avoid identity copies here (i.e. if the source and the destination
 | |
|   // are the same registers). It is actually better to generate them here,
 | |
|   // since this would cause the copy to potentially be predicated in the next
 | |
|   // step. The predication will remove such a copy if it is unable to
 | |
|   /// predicate.
 | |
| 
 | |
|   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
 | |
|   unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
 | |
|   unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
 | |
|   MachineInstrBuilder MIB;
 | |
| 
 | |
|   if (SrcOp.isReg()) {
 | |
|     unsigned SrcState = getRegState(SrcOp);
 | |
|     if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
 | |
|       SrcState &= ~RegState::Kill;
 | |
|     MIB = BuildMI(B, At, DL, HII->get(Opc))
 | |
|           .addReg(DstR, DstState, DstSR)
 | |
|           .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
 | |
|           .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
 | |
|   } else {
 | |
|     MIB = BuildMI(B, At, DL, HII->get(Opc))
 | |
|               .addReg(DstR, DstState, DstSR)
 | |
|               .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
 | |
|               .add(SrcOp);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "created an initial copy: " << *MIB);
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
 | |
| /// performs all necessary changes to complete the replacement.
 | |
| bool HexagonExpandCondsets::split(MachineInstr &MI,
 | |
|                                   std::set<unsigned> &UpdRegs) {
 | |
|   if (TfrLimitActive) {
 | |
|     if (TfrCounter >= TfrLimit)
 | |
|       return false;
 | |
|     TfrCounter++;
 | |
|   }
 | |
|   DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent()) << ": "
 | |
|                << MI);
 | |
|   MachineOperand &MD = MI.getOperand(0);  // Definition
 | |
|   MachineOperand &MP = MI.getOperand(1);  // Predicate register
 | |
|   assert(MD.isDef());
 | |
|   unsigned DR = MD.getReg(), DSR = MD.getSubReg();
 | |
|   bool ReadUndef = MD.isUndef();
 | |
|   MachineBasicBlock::iterator At = MI;
 | |
| 
 | |
|   auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
 | |
|     for (auto &Op : MI.operands())
 | |
|       if (Op.isReg())
 | |
|         UpdRegs.insert(Op.getReg());
 | |
|   };
 | |
| 
 | |
|   // If this is a mux of the same register, just replace it with COPY.
 | |
|   // Ideally, this would happen earlier, so that register coalescing would
 | |
|   // see it.
 | |
|   MachineOperand &ST = MI.getOperand(2);
 | |
|   MachineOperand &SF = MI.getOperand(3);
 | |
|   if (ST.isReg() && SF.isReg()) {
 | |
|     RegisterRef RT(ST);
 | |
|     if (RT == RegisterRef(SF)) {
 | |
|       // Copy regs to update first.
 | |
|       updateRegs(MI);
 | |
|       MI.setDesc(HII->get(TargetOpcode::COPY));
 | |
|       unsigned S = getRegState(ST);
 | |
|       while (MI.getNumOperands() > 1)
 | |
|         MI.RemoveOperand(MI.getNumOperands()-1);
 | |
|       MachineFunction &MF = *MI.getParent()->getParent();
 | |
|       MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First, create the two invididual conditional transfers, and add each
 | |
|   // of them to the live intervals information. Do that first and then remove
 | |
|   // the old instruction from live intervals.
 | |
|   MachineInstr *TfrT =
 | |
|       genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
 | |
|   MachineInstr *TfrF =
 | |
|       genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
 | |
|   LIS->InsertMachineInstrInMaps(*TfrT);
 | |
|   LIS->InsertMachineInstrInMaps(*TfrF);
 | |
| 
 | |
|   // Will need to recalculate live intervals for all registers in MI.
 | |
|   updateRegs(MI);
 | |
| 
 | |
|   removeInstr(MI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
 | |
|   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
 | |
|     return false;
 | |
|   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
 | |
|     return false;
 | |
|   // Reject instructions with multiple defs (e.g. post-increment loads).
 | |
|   bool HasDef = false;
 | |
|   for (auto &Op : MI->operands()) {
 | |
|     if (!Op.isReg() || !Op.isDef())
 | |
|       continue;
 | |
|     if (HasDef)
 | |
|       return false;
 | |
|     HasDef = true;
 | |
|   }
 | |
|   for (auto &Mo : MI->memoperands())
 | |
|     if (Mo->isVolatile())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Find the reaching definition for a predicated use of RD. The RD is used
 | |
| /// under the conditions given by PredR and Cond, and this function will ignore
 | |
| /// definitions that set RD under the opposite conditions.
 | |
| MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
 | |
|       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
 | |
|   MachineBasicBlock &B = *UseIt->getParent();
 | |
|   MachineBasicBlock::iterator I = UseIt, S = B.begin();
 | |
|   if (I == S)
 | |
|     return nullptr;
 | |
| 
 | |
|   bool PredValid = true;
 | |
|   do {
 | |
|     --I;
 | |
|     MachineInstr *MI = &*I;
 | |
|     // Check if this instruction can be ignored, i.e. if it is predicated
 | |
|     // on the complementary condition.
 | |
|     if (PredValid && HII->isPredicated(*MI)) {
 | |
|       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Check the defs. If the PredR is defined, invalidate it. If RD is
 | |
|     // defined, return the instruction or 0, depending on the circumstances.
 | |
|     for (auto &Op : MI->operands()) {
 | |
|       if (!Op.isReg() || !Op.isDef())
 | |
|         continue;
 | |
|       RegisterRef RR = Op;
 | |
|       if (RR.Reg == PredR) {
 | |
|         PredValid = false;
 | |
|         continue;
 | |
|       }
 | |
|       if (RR.Reg != RD.Reg)
 | |
|         continue;
 | |
|       // If the "Reg" part agrees, there is still the subregister to check.
 | |
|       // If we are looking for %1:loreg, we can skip %1:hireg, but
 | |
|       // not %1 (w/o subregisters).
 | |
|       if (RR.Sub == RD.Sub)
 | |
|         return MI;
 | |
|       if (RR.Sub == 0 || RD.Sub == 0)
 | |
|         return nullptr;
 | |
|       // We have different subregisters, so we can continue looking.
 | |
|     }
 | |
|   } while (I != S);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Check if the instruction MI can be safely moved over a set of instructions
 | |
| /// whose side-effects (in terms of register defs and uses) are expressed in
 | |
| /// the maps Defs and Uses. These maps reflect the conditional defs and uses
 | |
| /// that depend on the same predicate register to allow moving instructions
 | |
| /// over instructions predicated on the opposite condition.
 | |
| bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
 | |
|                                         ReferenceMap &Uses) {
 | |
|   // In order to be able to safely move MI over instructions that define
 | |
|   // "Defs" and use "Uses", no def operand from MI can be defined or used
 | |
|   // and no use operand can be defined.
 | |
|   for (auto &Op : MI.operands()) {
 | |
|     if (!Op.isReg())
 | |
|       continue;
 | |
|     RegisterRef RR = Op;
 | |
|     // For physical register we would need to check register aliases, etc.
 | |
|     // and we don't want to bother with that. It would be of little value
 | |
|     // before the actual register rewriting (from virtual to physical).
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | |
|       return false;
 | |
|     // No redefs for any operand.
 | |
|     if (isRefInMap(RR, Defs, Exec_Then))
 | |
|       return false;
 | |
|     // For defs, there cannot be uses.
 | |
|     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if the instruction accessing memory (TheI) can be moved to the
 | |
| /// location ToI.
 | |
| bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
 | |
|                                          bool IsDown) {
 | |
|   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
 | |
|   if (!IsLoad && !IsStore)
 | |
|     return true;
 | |
|   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
 | |
|     return true;
 | |
|   if (TheI.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
 | |
|   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
 | |
|   bool Ordered = TheI.hasOrderedMemoryRef();
 | |
| 
 | |
|   // Search for aliased memory reference in (StartI, EndI).
 | |
|   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     if (MI->hasUnmodeledSideEffects())
 | |
|       return false;
 | |
|     bool L = MI->mayLoad(), S = MI->mayStore();
 | |
|     if (!L && !S)
 | |
|       continue;
 | |
|     if (Ordered && MI->hasOrderedMemoryRef())
 | |
|       return false;
 | |
| 
 | |
|     bool Conflict = (L && IsStore) || S;
 | |
|     if (Conflict)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Generate a predicated version of MI (where the condition is given via
 | |
| /// PredR and Cond) at the point indicated by Where.
 | |
| void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
 | |
|                                         MachineInstr &MI,
 | |
|                                         MachineBasicBlock::iterator Where,
 | |
|                                         const MachineOperand &PredOp, bool Cond,
 | |
|                                         std::set<unsigned> &UpdRegs) {
 | |
|   // The problem with updating live intervals is that we can move one def
 | |
|   // past another def. In particular, this can happen when moving an A2_tfrt
 | |
|   // over an A2_tfrf defining the same register. From the point of view of
 | |
|   // live intervals, these two instructions are two separate definitions,
 | |
|   // and each one starts another live segment. LiveIntervals's "handleMove"
 | |
|   // does not allow such moves, so we need to handle it ourselves. To avoid
 | |
|   // invalidating liveness data while we are using it, the move will be
 | |
|   // implemented in 4 steps: (1) add a clone of the instruction MI at the
 | |
|   // target location, (2) update liveness, (3) delete the old instruction,
 | |
|   // and (4) update liveness again.
 | |
| 
 | |
|   MachineBasicBlock &B = *MI.getParent();
 | |
|   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
 | |
|   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
 | |
|   unsigned Ox = 0, NP = MI.getNumOperands();
 | |
|   // Skip all defs from MI first.
 | |
|   while (Ox < NP) {
 | |
|     MachineOperand &MO = MI.getOperand(Ox);
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       break;
 | |
|     Ox++;
 | |
|   }
 | |
|   // Add the new def, then the predicate register, then the rest of the
 | |
|   // operands.
 | |
|   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
 | |
|   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
 | |
|             PredOp.getSubReg());
 | |
|   while (Ox < NP) {
 | |
|     MachineOperand &MO = MI.getOperand(Ox);
 | |
|     if (!MO.isReg() || !MO.isImplicit())
 | |
|       MB.add(MO);
 | |
|     Ox++;
 | |
|   }
 | |
| 
 | |
|   MachineFunction &MF = *B.getParent();
 | |
|   MachineInstr::mmo_iterator I = MI.memoperands_begin();
 | |
|   unsigned NR = std::distance(I, MI.memoperands_end());
 | |
|   MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
 | |
|   for (unsigned i = 0; i < NR; ++i)
 | |
|     MemRefs[i] = *I++;
 | |
|   MB.setMemRefs(MemRefs, MemRefs+NR);
 | |
| 
 | |
|   MachineInstr *NewI = MB;
 | |
|   NewI->clearKillInfo();
 | |
|   LIS->InsertMachineInstrInMaps(*NewI);
 | |
| 
 | |
|   for (auto &Op : NewI->operands())
 | |
|     if (Op.isReg())
 | |
|       UpdRegs.insert(Op.getReg());
 | |
| }
 | |
| 
 | |
| /// In the range [First, Last], rename all references to the "old" register RO
 | |
| /// to the "new" register RN, but only in instructions predicated on the given
 | |
| /// condition.
 | |
| void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
 | |
|       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
 | |
|       MachineBasicBlock::iterator Last) {
 | |
|   MachineBasicBlock::iterator End = std::next(Last);
 | |
|   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     // Do not touch instructions that are not predicated, or are predicated
 | |
|     // on the opposite condition.
 | |
|     if (!HII->isPredicated(*MI))
 | |
|       continue;
 | |
|     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
 | |
|       continue;
 | |
| 
 | |
|     for (auto &Op : MI->operands()) {
 | |
|       if (!Op.isReg() || RO != RegisterRef(Op))
 | |
|         continue;
 | |
|       Op.setReg(RN.Reg);
 | |
|       Op.setSubReg(RN.Sub);
 | |
|       // In practice, this isn't supposed to see any defs.
 | |
|       assert(!Op.isDef() && "Not expecting a def");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For a given conditional copy, predicate the definition of the source of
 | |
| /// the copy under the given condition (using the same predicate register as
 | |
| /// the copy).
 | |
| bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
 | |
|                                       std::set<unsigned> &UpdRegs) {
 | |
|   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
 | |
|   unsigned Opc = TfrI.getOpcode();
 | |
|   (void)Opc;
 | |
|   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
 | |
|   DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
 | |
|                << ": " << TfrI);
 | |
| 
 | |
|   MachineOperand &MD = TfrI.getOperand(0);
 | |
|   MachineOperand &MP = TfrI.getOperand(1);
 | |
|   MachineOperand &MS = TfrI.getOperand(2);
 | |
|   // The source operand should be a <kill>. This is not strictly necessary,
 | |
|   // but it makes things a lot simpler. Otherwise, we would need to rename
 | |
|   // some registers, which would complicate the transformation considerably.
 | |
|   if (!MS.isKill())
 | |
|     return false;
 | |
|   // Avoid predicating instructions that define a subregister if subregister
 | |
|   // liveness tracking is not enabled.
 | |
|   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
 | |
|     return false;
 | |
| 
 | |
|   RegisterRef RT(MS);
 | |
|   unsigned PredR = MP.getReg();
 | |
|   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
 | |
|   if (!DefI || !isPredicable(DefI))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Source def: " << *DefI);
 | |
| 
 | |
|   // Collect the information about registers defined and used between the
 | |
|   // DefI and the TfrI.
 | |
|   // Map: reg -> bitmask of subregs
 | |
|   ReferenceMap Uses, Defs;
 | |
|   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
 | |
| 
 | |
|   // Check if the predicate register is valid between DefI and TfrI.
 | |
|   // If it is, we can then ignore instructions predicated on the negated
 | |
|   // conditions when collecting def and use information.
 | |
|   bool PredValid = true;
 | |
|   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
 | |
|     if (!I->modifiesRegister(PredR, nullptr))
 | |
|       continue;
 | |
|     PredValid = false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     // If this instruction is predicated on the same register, it could
 | |
|     // potentially be ignored.
 | |
|     // By default assume that the instruction executes on the same condition
 | |
|     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
 | |
|     unsigned Exec = Exec_Then | Exec_Else;
 | |
|     if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
 | |
|       Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
 | |
| 
 | |
|     for (auto &Op : MI->operands()) {
 | |
|       if (!Op.isReg())
 | |
|         continue;
 | |
|       // We don't want to deal with physical registers. The reason is that
 | |
|       // they can be aliased with other physical registers. Aliased virtual
 | |
|       // registers must share the same register number, and can only differ
 | |
|       // in the subregisters, which we are keeping track of. Physical
 | |
|       // registers ters no longer have subregisters---their super- and
 | |
|       // subregisters are other physical registers, and we are not checking
 | |
|       // that.
 | |
|       RegisterRef RR = Op;
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | |
|         return false;
 | |
| 
 | |
|       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
 | |
|       if (Op.isDef() && Op.isUndef()) {
 | |
|         assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
 | |
|         // If this is a <def,read-undef>, then it invalidates the non-written
 | |
|         // part of the register. For the purpose of checking the validity of
 | |
|         // the move, assume that it modifies the whole register.
 | |
|         RR.Sub = 0;
 | |
|       }
 | |
|       addRefToMap(RR, Map, Exec);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The situation:
 | |
|   //   RT = DefI
 | |
|   //   ...
 | |
|   //   RD = TfrI ..., RT
 | |
| 
 | |
|   // If the register-in-the-middle (RT) is used or redefined between
 | |
|   // DefI and TfrI, we may not be able proceed with this transformation.
 | |
|   // We can ignore a def that will not execute together with TfrI, and a
 | |
|   // use that will. If there is such a use (that does execute together with
 | |
|   // TfrI), we will not be able to move DefI down. If there is a use that
 | |
|   // executed if TfrI's condition is false, then RT must be available
 | |
|   // unconditionally (cannot be predicated).
 | |
|   // Essentially, we need to be able to rename RT to RD in this segment.
 | |
|   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
 | |
|     return false;
 | |
|   RegisterRef RD = MD;
 | |
|   // If the predicate register is defined between DefI and TfrI, the only
 | |
|   // potential thing to do would be to move the DefI down to TfrI, and then
 | |
|   // predicate. The reaching def (DefI) must be movable down to the location
 | |
|   // of the TfrI.
 | |
|   // If the target register of the TfrI (RD) is not used or defined between
 | |
|   // DefI and TfrI, consider moving TfrI up to DefI.
 | |
|   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
 | |
|   bool CanDown = canMoveOver(*DefI, Defs, Uses);
 | |
|   // The TfrI does not access memory, but DefI could. Check if it's safe
 | |
|   // to move DefI down to TfrI.
 | |
|   if (DefI->mayLoad() || DefI->mayStore())
 | |
|     if (!canMoveMemTo(*DefI, TfrI, true))
 | |
|       CanDown = false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
 | |
|                << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
 | |
|   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
 | |
|   if (CanUp)
 | |
|     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
 | |
|   else if (CanDown)
 | |
|     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (RT != RD) {
 | |
|     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
 | |
|     UpdRegs.insert(RT.Reg);
 | |
|   }
 | |
| 
 | |
|   removeInstr(TfrI);
 | |
|   removeInstr(*DefI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Predicate all cases of conditional copies in the specified block.
 | |
| bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
 | |
|       std::set<unsigned> &UpdRegs) {
 | |
|   bool Changed = false;
 | |
|   MachineBasicBlock::iterator I, E, NextI;
 | |
|   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
 | |
|     NextI = std::next(I);
 | |
|     unsigned Opc = I->getOpcode();
 | |
|     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
 | |
|       bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
 | |
|       if (!Done) {
 | |
|         // If we didn't predicate I, we may need to remove it in case it is
 | |
|         // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
 | |
|         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
 | |
|           for (auto &Op : I->operands())
 | |
|             if (Op.isReg())
 | |
|               UpdRegs.insert(Op.getReg());
 | |
|           removeInstr(*I);
 | |
|         }
 | |
|       }
 | |
|       Changed |= Done;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | |
|     return false;
 | |
|   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
 | |
|   if (RC == &Hexagon::IntRegsRegClass) {
 | |
|     BW = 32;
 | |
|     return true;
 | |
|   }
 | |
|   if (RC == &Hexagon::DoubleRegsRegClass) {
 | |
|     BW = (RR.Sub != 0) ? 32 : 64;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
 | |
|   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | |
|     LiveRange::Segment &LR = *I;
 | |
|     // Range must start at a register...
 | |
|     if (!LR.start.isRegister())
 | |
|       return false;
 | |
|     // ...and end in a register or in a dead slot.
 | |
|     if (!LR.end.isRegister() && !LR.end.isDead())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
 | |
|   if (CoaLimitActive) {
 | |
|     if (CoaCounter >= CoaLimit)
 | |
|       return false;
 | |
|     CoaCounter++;
 | |
|   }
 | |
|   unsigned BW1, BW2;
 | |
|   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
 | |
|     return false;
 | |
|   if (MRI->isLiveIn(R1.Reg))
 | |
|     return false;
 | |
|   if (MRI->isLiveIn(R2.Reg))
 | |
|     return false;
 | |
| 
 | |
|   LiveInterval &L1 = LIS->getInterval(R1.Reg);
 | |
|   LiveInterval &L2 = LIS->getInterval(R2.Reg);
 | |
|   if (L2.empty())
 | |
|     return false;
 | |
|   if (L1.hasSubRanges() || L2.hasSubRanges())
 | |
|     return false;
 | |
|   bool Overlap = L1.overlaps(L2);
 | |
| 
 | |
|   DEBUG(dbgs() << "compatible registers: ("
 | |
|                << (Overlap ? "overlap" : "disjoint") << ")\n  "
 | |
|                << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
 | |
|                << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
 | |
|   if (R1.Sub || R2.Sub)
 | |
|     return false;
 | |
|   if (Overlap)
 | |
|     return false;
 | |
| 
 | |
|   // Coalescing could have a negative impact on scheduling, so try to limit
 | |
|   // to some reasonable extent. Only consider coalescing segments, when one
 | |
|   // of them does not cross basic block boundaries.
 | |
|   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
 | |
|     return false;
 | |
| 
 | |
|   MRI->replaceRegWith(R2.Reg, R1.Reg);
 | |
| 
 | |
|   // Move all live segments from L2 to L1.
 | |
|   using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
 | |
|   ValueInfoMap VM;
 | |
|   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
 | |
|     VNInfo *NewVN, *OldVN = I->valno;
 | |
|     ValueInfoMap::iterator F = VM.find(OldVN);
 | |
|     if (F == VM.end()) {
 | |
|       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
 | |
|       VM.insert(std::make_pair(OldVN, NewVN));
 | |
|     } else {
 | |
|       NewVN = F->second;
 | |
|     }
 | |
|     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
 | |
|   }
 | |
|   while (L2.begin() != L2.end())
 | |
|     L2.removeSegment(*L2.begin());
 | |
|   LIS->removeInterval(R2.Reg);
 | |
| 
 | |
|   updateKillFlags(R1.Reg);
 | |
|   DEBUG(dbgs() << "coalesced: " << L1 << "\n");
 | |
|   L1.verify();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Attempt to coalesce one of the source registers to a MUX instruction with
 | |
| /// the destination register. This could lead to having only one predicated
 | |
| /// instruction in the end instead of two.
 | |
| bool HexagonExpandCondsets::coalesceSegments(
 | |
|       const SmallVectorImpl<MachineInstr*> &Condsets,
 | |
|       std::set<unsigned> &UpdRegs) {
 | |
|   SmallVector<MachineInstr*,16> TwoRegs;
 | |
|   for (MachineInstr *MI : Condsets) {
 | |
|     MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
 | |
|     if (!S1.isReg() && !S2.isReg())
 | |
|       continue;
 | |
|     TwoRegs.push_back(MI);
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (MachineInstr *CI : TwoRegs) {
 | |
|     RegisterRef RD = CI->getOperand(0);
 | |
|     RegisterRef RP = CI->getOperand(1);
 | |
|     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
 | |
|     bool Done = false;
 | |
|     // Consider this case:
 | |
|     //   %1 = instr1 ...
 | |
|     //   %2 = instr2 ...
 | |
|     //   %0 = C2_mux ..., %1, %2
 | |
|     // If %0 was coalesced with %1, we could end up with the following
 | |
|     // code:
 | |
|     //   %0 = instr1 ...
 | |
|     //   %2 = instr2 ...
 | |
|     //   %0 = A2_tfrf ..., %2
 | |
|     // which will later become:
 | |
|     //   %0 = instr1 ...
 | |
|     //   %0 = instr2_cNotPt ...
 | |
|     // i.e. there will be an unconditional definition (instr1) of %0
 | |
|     // followed by a conditional one. The output dependency was there before
 | |
|     // and it unavoidable, but if instr1 is predicable, we will no longer be
 | |
|     // able to predicate it here.
 | |
|     // To avoid this scenario, don't coalesce the destination register with
 | |
|     // a source register that is defined by a predicable instruction.
 | |
|     if (S1.isReg()) {
 | |
|       RegisterRef RS = S1;
 | |
|       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
 | |
|       if (!RDef || !HII->isPredicable(*RDef)) {
 | |
|         Done = coalesceRegisters(RD, RegisterRef(S1));
 | |
|         if (Done) {
 | |
|           UpdRegs.insert(RD.Reg);
 | |
|           UpdRegs.insert(S1.getReg());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!Done && S2.isReg()) {
 | |
|       RegisterRef RS = S2;
 | |
|       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
 | |
|       if (!RDef || !HII->isPredicable(*RDef)) {
 | |
|         Done = coalesceRegisters(RD, RegisterRef(S2));
 | |
|         if (Done) {
 | |
|           UpdRegs.insert(RD.Reg);
 | |
|           UpdRegs.insert(S2.getReg());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     Changed |= Done;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   LIS = &getAnalysis<LiveIntervals>();
 | |
|   MRI = &MF.getRegInfo();
 | |
| 
 | |
|   DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
 | |
|                    MF.getFunction().getParent()));
 | |
| 
 | |
|   bool Changed = false;
 | |
|   std::set<unsigned> CoalUpd, PredUpd;
 | |
| 
 | |
|   SmallVector<MachineInstr*,16> Condsets;
 | |
|   for (auto &B : MF)
 | |
|     for (auto &I : B)
 | |
|       if (isCondset(I))
 | |
|         Condsets.push_back(&I);
 | |
| 
 | |
|   // Try to coalesce the target of a mux with one of its sources.
 | |
|   // This could eliminate a register copy in some circumstances.
 | |
|   Changed |= coalesceSegments(Condsets, CoalUpd);
 | |
| 
 | |
|   // Update kill flags on all source operands. This is done here because
 | |
|   // at this moment (when expand-condsets runs), there are no kill flags
 | |
|   // in the IR (they have been removed by live range analysis).
 | |
|   // Updating them right before we split is the easiest, because splitting
 | |
|   // adds definitions which would interfere with updating kills afterwards.
 | |
|   std::set<unsigned> KillUpd;
 | |
|   for (MachineInstr *MI : Condsets)
 | |
|     for (MachineOperand &Op : MI->operands())
 | |
|       if (Op.isReg() && Op.isUse())
 | |
|         if (!CoalUpd.count(Op.getReg()))
 | |
|           KillUpd.insert(Op.getReg());
 | |
|   updateLiveness(KillUpd, false, true, false);
 | |
|   DEBUG(LIS->print(dbgs() << "After coalescing\n",
 | |
|                    MF.getFunction().getParent()));
 | |
| 
 | |
|   // First, simply split all muxes into a pair of conditional transfers
 | |
|   // and update the live intervals to reflect the new arrangement. The
 | |
|   // goal is to update the kill flags, since predication will rely on
 | |
|   // them.
 | |
|   for (MachineInstr *MI : Condsets)
 | |
|     Changed |= split(*MI, PredUpd);
 | |
|   Condsets.clear(); // The contents of Condsets are invalid here anyway.
 | |
| 
 | |
|   // Do not update live ranges after splitting. Recalculation of live
 | |
|   // intervals removes kill flags, which were preserved by splitting on
 | |
|   // the source operands of condsets. These kill flags are needed by
 | |
|   // predication, and after splitting they are difficult to recalculate
 | |
|   // (because of predicated defs), so make sure they are left untouched.
 | |
|   // Predication does not use live intervals.
 | |
|   DEBUG(LIS->print(dbgs() << "After splitting\n",
 | |
|                    MF.getFunction().getParent()));
 | |
| 
 | |
|   // Traverse all blocks and collapse predicable instructions feeding
 | |
|   // conditional transfers into predicated instructions.
 | |
|   // Walk over all the instructions again, so we may catch pre-existing
 | |
|   // cases that were not created in the previous step.
 | |
|   for (auto &B : MF)
 | |
|     Changed |= predicateInBlock(B, PredUpd);
 | |
|   DEBUG(LIS->print(dbgs() << "After predicating\n",
 | |
|                    MF.getFunction().getParent()));
 | |
| 
 | |
|   PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
 | |
|   updateLiveness(PredUpd, true, true, true);
 | |
| 
 | |
|   DEBUG({
 | |
|     if (Changed)
 | |
|       LIS->print(dbgs() << "After expand-condsets\n",
 | |
|                  MF.getFunction().getParent());
 | |
|   });
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createHexagonExpandCondsets() {
 | |
|   return new HexagonExpandCondsets();
 | |
| }
 |