297 lines
7.2 KiB
C#
297 lines
7.2 KiB
C#
using System;
|
|
using System.Reflection;
|
|
|
|
/*
|
|
* Regression tests for the mono JIT.
|
|
*
|
|
* Each test needs to be of the form:
|
|
*
|
|
* public static int test_<result>_<name> ();
|
|
*
|
|
* where <result> is an integer (the value that needs to be returned by
|
|
* the method to make it pass.
|
|
* <name> is a user-displayed name used to identify the test.
|
|
*
|
|
* The tests can be driven in two ways:
|
|
* *) running the program directly: Main() uses reflection to find and invoke
|
|
* the test methods (this is useful mostly to check that the tests are correct)
|
|
* *) with the --regression switch of the jit (this is the preferred way since
|
|
* all the tests will be run with optimizations on and off)
|
|
*
|
|
* The reflection logic could be moved to a .dll since we need at least another
|
|
* regression test file written in IL code to have better control on how
|
|
* the IL code looks.
|
|
*/
|
|
|
|
#if __MOBILE__
|
|
class MathTests
|
|
#else
|
|
class Tests
|
|
#endif
|
|
{
|
|
|
|
#if !__MOBILE__
|
|
public static int Main (string[] args) {
|
|
return TestDriver.RunTests (typeof (Tests), args);
|
|
}
|
|
#endif
|
|
|
|
public static int test_0_sin_precision () {
|
|
double d1 = Math.Sin (1);
|
|
double d2 = Math.Sin (1) - d1;
|
|
return (d2 == 0) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_cos_precision () {
|
|
double d1 = Math.Cos (1);
|
|
double d2 = Math.Cos (1) - d1;
|
|
return (d2 == 0) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_tan_precision () {
|
|
double d1 = Math.Tan (1);
|
|
double d2 = Math.Tan (1) - d1;
|
|
return (d2 == 0) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_atan_precision () {
|
|
double d1 = Math.Atan (double.NegativeInfinity);
|
|
double d2 = Math.Atan (double.NegativeInfinity) - d1;
|
|
return (d2 == 0) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_sqrt_precision () {
|
|
double d1 = Math.Sqrt (2);
|
|
double d2 = Math.Sqrt (2) - d1;
|
|
return (d2 == 0) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_2_sqrt () {
|
|
return (int) Math.Sqrt (4);
|
|
}
|
|
public static int test_0_sqrt_precision_and_not_spill () {
|
|
double expected = 0;
|
|
double[] operands = new double[3];
|
|
double[] temporaries = new double[3];
|
|
for (int i = 0; i < 3; i++) {
|
|
operands [i] = (i+1) * (i+1) * (i+1);
|
|
if (i == 0) {
|
|
expected = operands [0];
|
|
} else {
|
|
temporaries [i] = operands [i] / expected;
|
|
temporaries [i] = Math.Sqrt (temporaries [i]);
|
|
expected = temporaries [i];
|
|
}
|
|
|
|
//Console.Write( "{0}: {1}\n", i, temporaries [i] );
|
|
}
|
|
expected = temporaries [2];
|
|
|
|
double result = Math.Sqrt (operands [2] / Math.Sqrt (operands [1] / operands [0]));
|
|
|
|
//Console.Write( "result: {0,20:G}\n", result );
|
|
|
|
return (result == expected) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_sqrt_precision_and_spill () {
|
|
double expected = 0;
|
|
double[] operands = new double[9];
|
|
double[] temporaries = new double[9];
|
|
for (int i = 0; i < 9; i++) {
|
|
operands [i] = (i+1) * (i+1) * (i+1);
|
|
if (i == 0) {
|
|
expected = operands [0];
|
|
} else {
|
|
temporaries [i] = operands [i] / expected;
|
|
temporaries [i] = Math.Sqrt (temporaries [i]);
|
|
expected = temporaries [i];
|
|
}
|
|
|
|
//Console.Write( "{0}: {1}\n", i, temporaries [i] );
|
|
}
|
|
expected = temporaries [8];
|
|
|
|
double result = Math.Sqrt (operands [8] / Math.Sqrt (operands [7] / Math.Sqrt (operands [6] / Math.Sqrt (operands [5] / Math.Sqrt (operands [4] / Math.Sqrt (operands [3] / Math.Sqrt (operands [2] / Math.Sqrt (operands [1] / operands [0]))))))));
|
|
|
|
//Console.Write( "result: {0,20:G}\n", result );
|
|
|
|
return (result == expected) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_div_precision_and_spill () {
|
|
double expected = 0;
|
|
double[] operands = new double[9];
|
|
double[] temporaries = new double[9];
|
|
for (int i = 0; i < 9; i++) {
|
|
operands [i] = (i+1) * (i+1);
|
|
if (i == 0) {
|
|
expected = operands [0];
|
|
} else {
|
|
temporaries [i] = operands [i] / expected;
|
|
expected = temporaries [i];
|
|
}
|
|
|
|
//Console.Write( "{0}: {1}\n", i, temporaries [i] );
|
|
}
|
|
expected = temporaries [8];
|
|
|
|
double result = (operands [8] / (operands [7] / (operands [6] / (operands [5] / (operands [4] / (operands [3] / (operands [2] / (operands [1] / operands [0]))))))));
|
|
|
|
//Console.Write( "result: {0,20:G}\n", result );
|
|
|
|
return (result == expected) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_sqrt_nan () {
|
|
return Double.IsNaN (Math.Sqrt (Double.NaN)) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_sin_nan () {
|
|
return Double.IsNaN (Math.Sin (Double.NaN)) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_cos_nan () {
|
|
return Double.IsNaN (Math.Cos (Double.NaN)) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_tan_nan () {
|
|
return Double.IsNaN (Math.Tan (Double.NaN)) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_atan_nan () {
|
|
return Double.IsNaN (Math.Atan (Double.NaN)) ? 0 : 1;
|
|
}
|
|
|
|
public static int test_0_min () {
|
|
if (Math.Min (5, 6) != 5)
|
|
return 1;
|
|
if (Math.Min (6, 5) != 5)
|
|
return 2;
|
|
if (Math.Min (-100, -101) != -101)
|
|
return 3;
|
|
if (Math.Min ((long)5, (long)6) != 5)
|
|
return 4;
|
|
if (Math.Min ((long)6, (long)5) != 5)
|
|
return 5;
|
|
if (Math.Min ((long)-100, (long)-101) != -101)
|
|
return 6;
|
|
return 0;
|
|
}
|
|
|
|
public static int test_0_max () {
|
|
if (Math.Max (5, 6) != 6)
|
|
return 1;
|
|
if (Math.Max (6, 5) != 6)
|
|
return 2;
|
|
if (Math.Max (-100, -101) != -100)
|
|
return 3;
|
|
if (Math.Max ((long)5, (long)6) != 6)
|
|
return 4;
|
|
if (Math.Max ((long)6, (long)5) != 6)
|
|
return 5;
|
|
if (Math.Max ((long)-100, (long)-101) != -100)
|
|
return 6;
|
|
return 0;
|
|
}
|
|
|
|
public static int test_0_min_un () {
|
|
uint a = (uint)int.MaxValue + 10;
|
|
|
|
for (uint b = 7; b <= 10; ++b) {
|
|
if (Math.Min (a, b) != b)
|
|
return (int)b;
|
|
if (Math.Min (b, a) != b)
|
|
return (int)b;
|
|
}
|
|
|
|
if (Math.Min ((ulong)5, (ulong)6) != 5)
|
|
return 4;
|
|
if (Math.Min ((ulong)6, (ulong)5) != 5)
|
|
return 5;
|
|
|
|
ulong la = (ulong)long.MaxValue + 10;
|
|
|
|
for (ulong b = 7; b <= 10; ++b) {
|
|
if (Math.Min (la, b) != b)
|
|
return (int)b;
|
|
if (Math.Min (b, la) != b)
|
|
return (int)b;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
public static int test_0_max_un () {
|
|
uint a = (uint)int.MaxValue + 10;
|
|
|
|
for (uint b = 7; b <= 10; ++b) {
|
|
if (Math.Max (a, b) != a)
|
|
return (int)b;
|
|
if (Math.Max (b, a) != a)
|
|
return (int)b;
|
|
}
|
|
|
|
if (Math.Max ((ulong)5, (ulong)6) != 6)
|
|
return 4;
|
|
if (Math.Max ((ulong)6, (ulong)5) != 6)
|
|
return 5;
|
|
|
|
ulong la = (ulong)long.MaxValue + 10;
|
|
|
|
for (ulong b = 7; b <= 10; ++b) {
|
|
if (Math.Max (la, b) != la)
|
|
return (int)b;
|
|
if (Math.Max (b, la) != la)
|
|
return (int)b;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
public static int test_0_abs () {
|
|
double d = -5.0;
|
|
|
|
if (Math.Abs (d) != 5.0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
public static int test_0_round () {
|
|
if (Math.Round (5.0) != 5.0)
|
|
return 1;
|
|
|
|
if (Math.Round (5.000000000000001) != 5.0)
|
|
return 2;
|
|
|
|
if (Math.Round (5.499999999999999) != 5.0)
|
|
return 3;
|
|
|
|
if (Math.Round (5.5) != 6.0)
|
|
return 4;
|
|
|
|
if (Math.Round (5.999999999999999) != 6.0)
|
|
return 5;
|
|
|
|
if (Math.Round (Double.Epsilon) != 0)
|
|
return 6;
|
|
|
|
if (!Double.IsNaN (Math.Round (Double.NaN)))
|
|
return 7;
|
|
|
|
if (!Double.IsPositiveInfinity (Math.Round (Double.PositiveInfinity)))
|
|
return 8;
|
|
|
|
if (!Double.IsNegativeInfinity (Math.Round (Double.NegativeInfinity)))
|
|
return 9;
|
|
|
|
if (Math.Round (Double.MinValue) != Double.MinValue)
|
|
return 10;
|
|
|
|
if (Math.Round (Double.MaxValue) != Double.MaxValue)
|
|
return 11;
|
|
|
|
return 0;
|
|
}
|
|
}
|