468663ddbb
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
1829 lines
55 KiB
C
1829 lines
55 KiB
C
/*
|
|
* Copyright 2010-2011 INRIA Saclay
|
|
* Copyright 2012-2014 Ecole Normale Superieure
|
|
* Copyright 2015 Sven Verdoolaege
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
|
* 91893 Orsay, France
|
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
|
*/
|
|
|
|
#include <isl/constraint.h>
|
|
#include <isl/ilp.h>
|
|
|
|
#include "gpu_array_tile.h"
|
|
#include "gpu_group.h"
|
|
#include "gpu_tree.h"
|
|
#include "schedule.h"
|
|
|
|
/* Print the name of the local copy of a given group of array references.
|
|
*/
|
|
__isl_give isl_printer *gpu_array_ref_group_print_name(
|
|
struct gpu_array_ref_group *group, __isl_take isl_printer *p)
|
|
{
|
|
int global = 0;
|
|
enum ppcg_group_access_type type;
|
|
|
|
type = gpu_array_ref_group_type(group);
|
|
if (type == ppcg_access_private)
|
|
p = isl_printer_print_str(p, "private_");
|
|
else if (type == ppcg_access_shared)
|
|
p = isl_printer_print_str(p, "shared_");
|
|
else
|
|
global = 1;
|
|
p = isl_printer_print_str(p, group->array->name);
|
|
if (!global && group->local_array->n_group > 1) {
|
|
p = isl_printer_print_str(p, "_");
|
|
p = isl_printer_print_int(p, group->nr);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Return the union of all read (read = 1) and/or write (write = 1)
|
|
* access relations in the group.
|
|
*/
|
|
__isl_give isl_union_map *gpu_array_ref_group_access_relation(
|
|
struct gpu_array_ref_group *group, int read, int write)
|
|
{
|
|
int i;
|
|
isl_union_map *access;
|
|
|
|
access = isl_union_map_empty(isl_map_get_space(group->access));
|
|
for (i = 0; i < group->n_ref; ++i) {
|
|
isl_map *map_i;
|
|
|
|
if (!((read && group->refs[i]->read) ||
|
|
(write && group->refs[i]->write)))
|
|
continue;
|
|
map_i = isl_map_copy(group->refs[i]->access);
|
|
access = isl_union_map_union(access,
|
|
isl_union_map_from_map(map_i));
|
|
}
|
|
|
|
return access;
|
|
}
|
|
|
|
/* Should this array reference group be mapped to private, shared or global
|
|
* memory?
|
|
* If we have computed both a private and a shared tile, then
|
|
* the tile with the smallest depth is used. If both have the same depth,
|
|
* then the private tile is used.
|
|
*/
|
|
enum ppcg_group_access_type gpu_array_ref_group_type(
|
|
struct gpu_array_ref_group *group)
|
|
{
|
|
if (group->private_tile && group->shared_tile &&
|
|
group->shared_tile->depth < group->private_tile->depth)
|
|
return ppcg_access_shared;
|
|
if (group->private_tile)
|
|
return ppcg_access_private;
|
|
if (group->shared_tile)
|
|
return ppcg_access_shared;
|
|
return ppcg_access_global;
|
|
}
|
|
|
|
|
|
/* Return the effective gpu_array_tile associated to "group" or
|
|
* NULL if there is no such gpu_array_tile.
|
|
*/
|
|
struct gpu_array_tile *gpu_array_ref_group_tile(
|
|
struct gpu_array_ref_group *group)
|
|
{
|
|
switch (gpu_array_ref_group_type(group)) {
|
|
case ppcg_access_global:
|
|
return NULL;
|
|
case ppcg_access_shared:
|
|
return group->shared_tile;
|
|
case ppcg_access_private:
|
|
return group->private_tile;
|
|
}
|
|
}
|
|
|
|
/* Does the tile associated to "group" require unrolling of the schedule
|
|
* dimensions mapped to threads?
|
|
* Note that this can only happen for private tiles.
|
|
*/
|
|
int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
|
|
{
|
|
struct gpu_array_tile *tile;
|
|
|
|
tile = gpu_array_ref_group_tile(group);
|
|
if (!tile)
|
|
return 0;
|
|
return tile->requires_unroll;
|
|
}
|
|
|
|
/* Given a constraint
|
|
*
|
|
* a(p,i) + j = g f(e)
|
|
*
|
|
* or -a(p,i) - j = g f(e) if sign < 0,
|
|
* store a(p,i) in bound->shift and g (stride) in bound->stride.
|
|
* a(p,i) is assumed to be an expression in only the parameters
|
|
* and the input dimensions.
|
|
*/
|
|
static void extract_stride(__isl_keep isl_constraint *c,
|
|
struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
|
|
{
|
|
int i;
|
|
isl_val *v;
|
|
isl_space *space;
|
|
unsigned nparam;
|
|
unsigned nvar;
|
|
isl_aff *aff;
|
|
|
|
isl_val_free(bound->stride);
|
|
bound->stride = isl_val_copy(stride);
|
|
|
|
space = isl_constraint_get_space(c);
|
|
space = isl_space_domain(space);
|
|
|
|
nparam = isl_space_dim(space, isl_dim_param);
|
|
nvar = isl_space_dim(space, isl_dim_set);
|
|
|
|
v = isl_constraint_get_constant_val(c);
|
|
if (sign < 0)
|
|
v = isl_val_neg(v);
|
|
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
|
|
aff = isl_aff_set_constant_val(aff, v);
|
|
|
|
for (i = 0; i < nparam; ++i) {
|
|
if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
|
|
continue;
|
|
v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
|
|
if (sign < 0)
|
|
v = isl_val_neg(v);
|
|
aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
|
|
}
|
|
|
|
for (i = 0; i < nvar; ++i) {
|
|
if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
|
|
continue;
|
|
v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
|
|
if (sign < 0)
|
|
v = isl_val_neg(v);
|
|
aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
|
|
}
|
|
|
|
bound->shift = aff;
|
|
}
|
|
|
|
/* Given an equality constraint of a map with a single output dimension j,
|
|
* check if the constraint is of the form
|
|
*
|
|
* a(p,i) + j = g f(e)
|
|
*
|
|
* with a(p,i) an expression in the parameters and input dimensions
|
|
* and f(e) an expression in the existentially quantified variables.
|
|
* If so, and if g is larger than any such g from a previously considered
|
|
* constraint, then call extract_stride to record the stride information
|
|
* in bound.
|
|
*/
|
|
static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
|
|
void *user)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_val *v;
|
|
unsigned n_div;
|
|
struct gpu_array_bound *bound = user;
|
|
|
|
ctx = isl_constraint_get_ctx(c);
|
|
n_div = isl_constraint_dim(c, isl_dim_div);
|
|
v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
|
|
|
|
if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
|
|
int s = isl_val_sgn(v);
|
|
isl_val *stride = isl_val_zero(ctx);
|
|
|
|
isl_val_free(v);
|
|
for (i = 0; i < n_div; ++i) {
|
|
v = isl_constraint_get_coefficient_val(c,
|
|
isl_dim_div, i);
|
|
stride = isl_val_gcd(stride, v);
|
|
}
|
|
if (!isl_val_is_zero(stride) &&
|
|
isl_val_gt(stride, bound->stride))
|
|
extract_stride(c, bound, stride, s);
|
|
|
|
isl_val_free(stride);
|
|
} else
|
|
isl_val_free(v);
|
|
|
|
isl_constraint_free(c);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Given contraints on an array index i, check if we can find
|
|
* a shift a(p) and a stride g such that
|
|
*
|
|
* a(p) + i = 0 mod g
|
|
*
|
|
* If so, record the information in bound and apply the mapping
|
|
* i -> (i + a(p))/g to the array index in bounds and return
|
|
* the new constraints.
|
|
* If not, simply return the original constraints.
|
|
*
|
|
* If bounds is a subset of the space
|
|
*
|
|
* D -> i
|
|
*
|
|
* then the bound recorded in bound->shift is of the form
|
|
*
|
|
* D -> s(D)
|
|
*
|
|
* with s(D) equal to a(p) above.
|
|
* Next, we construct a mapping of the form
|
|
*
|
|
* [D -> i] -> [D -> (i + S(D))/g]
|
|
*
|
|
* This mapping is computed as follows.
|
|
* We first introduce "i" in the domain through precomposition
|
|
* with [D -> i] -> D obtaining
|
|
*
|
|
* [D -> i] -> s(D)
|
|
*
|
|
* Adding [D -> i] -> i produces
|
|
*
|
|
* [D -> i] -> i + s(D)
|
|
*
|
|
* and the domain product with [D -> i] -> D yields
|
|
*
|
|
* [D -> i] -> [D -> i + s(D)]
|
|
*
|
|
* Composition with [D -> i] -> [D -> i/g] gives the desired result.
|
|
*/
|
|
static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
|
|
__isl_take isl_basic_map *bounds)
|
|
{
|
|
isl_space *space;
|
|
isl_basic_map *hull;
|
|
isl_basic_map *shift, *id, *bmap, *scale;
|
|
isl_basic_set *bset;
|
|
isl_aff *aff;
|
|
|
|
bound->stride = NULL;
|
|
|
|
hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
|
|
|
|
isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
|
|
|
|
isl_basic_map_free(hull);
|
|
|
|
if (!bound->stride)
|
|
return bounds;
|
|
|
|
shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
|
|
space = isl_basic_map_get_space(bounds);
|
|
bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
|
|
shift = isl_basic_map_apply_range(bmap, shift);
|
|
space = isl_basic_map_get_space(bounds);
|
|
id = isl_basic_map_range_map(isl_basic_map_universe(space));
|
|
shift = isl_basic_map_sum(id, shift);
|
|
space = isl_basic_map_get_space(bounds);
|
|
id = isl_basic_map_domain_map(isl_basic_map_universe(space));
|
|
shift = isl_basic_map_range_product(id, shift);
|
|
|
|
space = isl_space_domain(isl_basic_map_get_space(bounds));
|
|
id = isl_basic_map_identity(isl_space_map_from_set(space));
|
|
space = isl_space_range(isl_basic_map_get_space(bounds));
|
|
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
|
|
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
|
|
aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
|
|
scale = isl_basic_map_from_aff(aff);
|
|
scale = isl_basic_map_product(id, scale);
|
|
|
|
bmap = isl_basic_map_apply_range(shift, scale);
|
|
bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
|
|
bounds = isl_basic_set_unwrap(bset);
|
|
|
|
return bounds;
|
|
}
|
|
|
|
/* Data used in compute_array_dim_size and compute_size_in_direction.
|
|
*
|
|
* pos is the position of the variable representing the array index,
|
|
* i.e., the variable for which want to compute the size. This variable
|
|
* is also the last variable in the set.
|
|
*/
|
|
struct gpu_size_info {
|
|
isl_basic_set *bset;
|
|
struct gpu_array_bound *bound;
|
|
int pos;
|
|
};
|
|
|
|
/* Given a constraint from the basic set describing the bounds on
|
|
* an array index, check if it is a lower bound, say m i >= b(x), and,
|
|
* if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
|
|
* upper bound. If so, and if this bound is smaller than any bound
|
|
* derived from earlier constraints, set the size to this bound on
|
|
* the expression and the lower bound to ceil(b(x)/m).
|
|
*/
|
|
static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
|
|
void *user)
|
|
{
|
|
struct gpu_size_info *size = user;
|
|
unsigned nparam;
|
|
unsigned n_div;
|
|
isl_val *v;
|
|
isl_aff *aff;
|
|
isl_aff *lb;
|
|
|
|
nparam = isl_basic_set_dim(size->bset, isl_dim_param);
|
|
n_div = isl_constraint_dim(c, isl_dim_div);
|
|
|
|
if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
|
|
!isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
|
|
isl_constraint_free(c);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
|
|
aff = isl_aff_ceil(aff);
|
|
|
|
lb = isl_aff_copy(aff);
|
|
|
|
aff = isl_aff_neg(aff);
|
|
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
|
|
|
|
v = isl_basic_set_max_val(size->bset, aff);
|
|
isl_aff_free(aff);
|
|
|
|
if (isl_val_is_int(v)) {
|
|
v = isl_val_add_ui(v, 1);
|
|
if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
|
|
isl_val_free(size->bound->size);
|
|
size->bound->size = isl_val_copy(v);
|
|
lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
|
|
isl_aff_free(size->bound->lb);
|
|
size->bound->lb = isl_aff_copy(lb);
|
|
}
|
|
}
|
|
isl_val_free(v);
|
|
isl_aff_free(lb);
|
|
|
|
isl_constraint_free(c);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Given a basic map "bounds" that maps parameters and input dimensions
|
|
* to a single output dimension, look for an expression in the parameters
|
|
* and input dimensions such that the range of the output dimension shifted
|
|
* by this expression is a constant.
|
|
*
|
|
* In particular, we currently only consider lower bounds on the output
|
|
* dimension as candidate expressions.
|
|
*/
|
|
static int compute_array_dim_size(struct gpu_array_bound *bound,
|
|
__isl_take isl_basic_map *bounds)
|
|
{
|
|
struct gpu_size_info size;
|
|
|
|
bounds = isl_basic_map_detect_equalities(bounds);
|
|
bounds = check_stride(bound, bounds);
|
|
|
|
bound->size = NULL;
|
|
bound->lb = NULL;
|
|
|
|
size.bound = bound;
|
|
size.pos = isl_basic_map_dim(bounds, isl_dim_in);
|
|
size.bset = isl_basic_map_wrap(bounds);
|
|
size.bset = isl_basic_set_flatten(size.bset);
|
|
size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
|
|
isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
|
|
&size);
|
|
isl_basic_set_free(size.bset);
|
|
|
|
return bound->size ? 0 : -1;
|
|
}
|
|
|
|
/* Check if we can find a memory tile for the given array
|
|
* based on the given accesses, and if so, put the results in "tile".
|
|
*
|
|
* We project the accesses on each index in turn and look for a parametric
|
|
* offset such that the size is constant.
|
|
*
|
|
* tile->depth is initialized to the input dimension of the computed bounds.
|
|
*/
|
|
static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
|
|
{
|
|
int i;
|
|
|
|
tile->depth = isl_map_dim(access, isl_dim_in);
|
|
|
|
for (i = 0; i < tile->n; ++i) {
|
|
isl_map *access_i;
|
|
isl_basic_map *hull;
|
|
|
|
access_i = isl_map_copy(access);
|
|
access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
|
|
access_i = isl_map_project_out(access_i, isl_dim_out,
|
|
1, tile->n - (i + 1));
|
|
access_i = isl_map_compute_divs(access_i);
|
|
hull = isl_map_simple_hull(access_i);
|
|
if (compute_array_dim_size(&tile->bound[i], hull) < 0)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Internal data structure for gpu_group_references.
|
|
*
|
|
* scop represents the input scop.
|
|
* kernel_depth is the schedule depth where the kernel launch will
|
|
* be introduced, i.e., it is the depth of the band that is mapped
|
|
* to blocks.
|
|
* shared_depth is the schedule depth at which the copying to/from
|
|
* shared memory is computed. The copy operation may then
|
|
* later be hoisted to a higher level.
|
|
* thread_depth is the schedule depth where the thread mark is located,
|
|
* i.e., it is the depth of the band that is mapped to threads and also
|
|
* the schedule depth at which the copying to/from private memory
|
|
* is computed. The copy operation may then later be hoisted to
|
|
* a higher level.
|
|
* n_thread is the number of schedule dimensions in the band that
|
|
* is mapped to threads.
|
|
* privatization lives in the range of thread_sched (i.e., it is
|
|
* of dimension thread_depth + n_thread) and encodes the mapping
|
|
* to thread identifiers (as parameters).
|
|
* host_sched contains the kernel_depth dimensions of the host schedule.
|
|
* shared_sched contains the first shared_depth dimensions of the
|
|
* kernel schedule.
|
|
* copy_sched contains the first thread_depth dimensions of the
|
|
* kernel schedule.
|
|
* thread_sched contains the first (thread_depth + n_thread) dimensions
|
|
* of the kernel schedule.
|
|
* full_sched is a union_map representation of the entire kernel schedule.
|
|
* The schedules are all formulated in terms of the original statement
|
|
* instances, i.e., those that appear in the domains of the access
|
|
* relations.
|
|
*/
|
|
struct gpu_group_data {
|
|
struct ppcg_scop *scop;
|
|
int kernel_depth;
|
|
int shared_depth;
|
|
int thread_depth;
|
|
int n_thread;
|
|
isl_set *privatization;
|
|
isl_union_map *host_sched;
|
|
isl_union_map *shared_sched;
|
|
isl_union_map *copy_sched;
|
|
isl_union_map *thread_sched;
|
|
isl_union_map *full_sched;
|
|
};
|
|
|
|
/* Construct a map from domain_space to domain_space that increments
|
|
* the dimension at position "pos" and leaves all other dimensions
|
|
* constant.
|
|
*/
|
|
static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
|
|
{
|
|
isl_space *space;
|
|
isl_aff *aff;
|
|
isl_multi_aff *next;
|
|
|
|
space = isl_space_map_from_set(domain_space);
|
|
next = isl_multi_aff_identity(space);
|
|
aff = isl_multi_aff_get_aff(next, pos);
|
|
aff = isl_aff_add_constant_si(aff, 1);
|
|
next = isl_multi_aff_set_aff(next, pos, aff);
|
|
|
|
return isl_map_from_multi_aff(next);
|
|
}
|
|
|
|
/* Check if the given access is coalesced (or if there is no point
|
|
* in trying to coalesce the access by mapping the array to shared memory).
|
|
* That is, check whether incrementing the dimension that will get
|
|
* wrapped over the last thread index results in incrementing
|
|
* the last array index.
|
|
*
|
|
* If no two consecutive array elements are ever accessed by "access",
|
|
* then mapping the corresponding array to shared memory will not
|
|
* improve coalescing. In fact, the copying will likely be performed
|
|
* by a single thread. Consider the access as coalesced such that
|
|
* the caller will not try and map the array to shared memory just
|
|
* to improve coalescing.
|
|
*
|
|
* This function is only called for access relations without reuse and
|
|
* kernels with at least one thread identifier.
|
|
*/
|
|
static int access_is_coalesced(struct gpu_group_data *data,
|
|
__isl_keep isl_union_map *access)
|
|
{
|
|
int dim;
|
|
isl_space *space;
|
|
isl_set *accessed;
|
|
isl_map *access_map;
|
|
isl_map *next_thread_x;
|
|
isl_map *next_element;
|
|
isl_map *map;
|
|
int coalesced, empty;
|
|
|
|
access = isl_union_map_copy(access);
|
|
access = isl_union_map_apply_domain(access,
|
|
isl_union_map_copy(data->full_sched));
|
|
access_map = isl_map_from_union_map(access);
|
|
|
|
space = isl_map_get_space(access_map);
|
|
space = isl_space_range(space);
|
|
dim = isl_space_dim(space, isl_dim_set);
|
|
if (dim == 0)
|
|
next_element = isl_map_empty(isl_space_map_from_set(space));
|
|
else
|
|
next_element = next(space, dim - 1);
|
|
|
|
accessed = isl_map_range(isl_map_copy(access_map));
|
|
map = isl_map_copy(next_element);
|
|
map = isl_map_intersect_domain(map, isl_set_copy(accessed));
|
|
map = isl_map_intersect_range(map, accessed);
|
|
empty = isl_map_is_empty(map);
|
|
isl_map_free(map);
|
|
|
|
if (empty < 0 || empty) {
|
|
isl_map_free(next_element);
|
|
isl_map_free(access_map);
|
|
return empty;
|
|
}
|
|
|
|
space = isl_map_get_space(access_map);
|
|
space = isl_space_domain(space);
|
|
next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
|
|
|
|
map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
|
|
map = isl_map_apply_range(map, access_map);
|
|
|
|
coalesced = isl_map_is_subset(map, next_element);
|
|
|
|
isl_map_free(next_element);
|
|
isl_map_free(map);
|
|
|
|
return coalesced;
|
|
}
|
|
|
|
/* Replace the host schedule dimensions in the access relation "access"
|
|
* by parameters, so that they are treated as fixed when checking for reuse
|
|
* (within a kernel) or whether two consecutive elements are accessed
|
|
* (within a kernel).
|
|
*/
|
|
static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
|
|
__isl_take isl_union_map *access)
|
|
{
|
|
int n;
|
|
isl_space *space;
|
|
isl_set *param;
|
|
isl_union_map *umap;
|
|
isl_id_list *ids;
|
|
|
|
umap = isl_union_map_copy(data->host_sched);
|
|
space = isl_union_map_get_space(umap);
|
|
n = data->kernel_depth;
|
|
ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
|
|
param = parametrization(space, n, 0, ids);
|
|
isl_id_list_free(ids);
|
|
umap = isl_union_map_intersect_range(umap,
|
|
isl_union_set_from_set(param));
|
|
access = isl_union_map_intersect_domain(access,
|
|
isl_union_map_domain(umap));
|
|
|
|
return access;
|
|
}
|
|
|
|
/* Given an access relation in terms of at least data->thread_depth initial
|
|
* dimensions of the computed schedule, check if it is bijective for
|
|
* fixed values of the first data->thread_depth dimensions.
|
|
* We perform this check by equating these dimensions to parameters.
|
|
*/
|
|
static int access_is_bijective(struct gpu_group_data *data,
|
|
__isl_keep isl_map *access)
|
|
{
|
|
int res;
|
|
int dim;
|
|
isl_set *par;
|
|
isl_space *space;
|
|
isl_id_list *ids;
|
|
|
|
access = isl_map_copy(access);
|
|
space = isl_space_params(isl_map_get_space(access));
|
|
ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
|
|
dim = isl_map_dim(access, isl_dim_in);
|
|
par = parametrization(space, dim, 0, ids);
|
|
isl_id_list_free(ids);
|
|
access = isl_map_intersect_domain(access, par);
|
|
res = isl_map_is_bijective(access);
|
|
isl_map_free(access);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Compute the number of outer schedule tile dimensions that affect
|
|
* the offset of "tile".
|
|
* If there is no such dimension, then return the index
|
|
* of the first kernel dimension, i.e., data->kernel_depth.
|
|
*/
|
|
static int compute_tile_depth(struct gpu_group_data *data,
|
|
struct gpu_array_tile *tile)
|
|
{
|
|
int i, j;
|
|
|
|
for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
|
|
for (i = 0; i < tile->n; ++i) {
|
|
isl_aff *lb;
|
|
isl_aff *shift;
|
|
|
|
lb = tile->bound[i].lb;
|
|
if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
|
|
break;
|
|
|
|
shift = tile->bound[i].shift;
|
|
if (!shift)
|
|
continue;
|
|
if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
|
|
break;
|
|
}
|
|
if (i < tile->n)
|
|
break;
|
|
}
|
|
|
|
return ++j;
|
|
}
|
|
|
|
/* Return the lowest depth between data->kernel_depth and data->thread_depth
|
|
* at which every array element accessed through "acc" is accessed
|
|
* by a single thread. The input dimension of "acc" is
|
|
* data->thread_depth + data->n_thread, where the final data->n_thread
|
|
* dimensions are those that will be mapped to threads.
|
|
* If the values for these dimensions are uniquely determined
|
|
* by the array index and a given number of outer dimensions, then
|
|
* there is only one thread accessing that array element within those
|
|
* outer dimensions.
|
|
*
|
|
* The input space of "acc" is first split up, such that it has the form
|
|
*
|
|
* [O -> T] -> A
|
|
*
|
|
* with O the outer dimensions, T the dimensions that will be mapped to threads
|
|
* and A the array index.
|
|
*
|
|
* Then the positions of T and A are interchanged to simplify the test
|
|
* whether T uniquely depends on O and A.
|
|
* In particular, the above access relation is first combined with
|
|
*
|
|
* [O -> T] -> T
|
|
*
|
|
* to form
|
|
*
|
|
* [O -> T] -> [A -> T]
|
|
*
|
|
* from which
|
|
*
|
|
* O -> [A -> T]
|
|
*
|
|
* is extracted, which is then uncurried to
|
|
*
|
|
* [O -> A] -> T
|
|
*
|
|
* Finally, the final dimensions of O are projected out one by one
|
|
* until T is no longer uniquely determined by A and the remaining
|
|
* dimensions in O. The value returned is that of the last dimension
|
|
* that was successfully projected out.
|
|
* Note that there is no need to test whether [O -> A] -> T itself
|
|
* is single-valued as that was already tested in access_is_bijective.
|
|
*/
|
|
static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
|
|
__isl_keep isl_map *acc)
|
|
{
|
|
int i;
|
|
isl_space *space;
|
|
isl_map *map;
|
|
isl_bool sv;
|
|
|
|
if (data->thread_depth == data->kernel_depth)
|
|
return data->thread_depth;
|
|
|
|
acc = isl_map_copy(acc);
|
|
|
|
space = isl_map_get_space(acc);
|
|
space = isl_space_params(space);
|
|
space = isl_space_set_from_params(space);
|
|
space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
|
|
space = isl_space_from_domain(space);
|
|
space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
|
|
space = isl_space_wrap(space);
|
|
map = isl_set_flatten_map(isl_set_universe(space));
|
|
acc = isl_map_apply_range(map, acc);
|
|
|
|
space = isl_space_domain(isl_map_get_space(acc));
|
|
map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
|
|
acc = isl_map_range_product(acc, map);
|
|
acc = isl_map_domain_factor_domain(acc);
|
|
acc = isl_map_uncurry(acc);
|
|
|
|
for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
|
|
acc = isl_map_project_out(acc, isl_dim_in, i, 1);
|
|
sv = isl_map_is_single_valued(acc);
|
|
if (sv < 0)
|
|
return -1;
|
|
if (!sv)
|
|
break;
|
|
}
|
|
|
|
isl_map_free(acc);
|
|
|
|
return ++i;
|
|
}
|
|
|
|
/* Adjust the fields of "tile" to reflect the new input dimension "depth".
|
|
* The dimension beyond "depth" are assumed not to affect the tile,
|
|
* so they can simply be dropped.
|
|
*/
|
|
static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
|
|
{
|
|
int i;
|
|
|
|
if (tile->depth == depth)
|
|
return 0;
|
|
|
|
for (i = 0; i < tile->n; ++i) {
|
|
tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
|
|
isl_dim_in, depth, tile->depth - depth);
|
|
if (!tile->bound[i].lb)
|
|
return -1;
|
|
if (!tile->bound[i].shift)
|
|
continue;
|
|
tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
|
|
isl_dim_in, depth, tile->depth - depth);
|
|
if (!tile->bound[i].shift)
|
|
return -1;
|
|
}
|
|
|
|
tile->depth = depth;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the number of schedule dimensions that affect the offset of the
|
|
* shared or private tile "tile" and store the result in tile->depth, with
|
|
* a lower bound of data->kernel_depth.
|
|
* Also adjust the fields of the tile to only refer to the tile->depth
|
|
* outer schedule dimensions.
|
|
*/
|
|
static isl_stat tile_set_depth(struct gpu_group_data *data,
|
|
struct gpu_array_tile *tile)
|
|
{
|
|
if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Determine the number of schedule dimensions that affect the offset of the
|
|
* shared tile and store the minimum of the private and shared tile depth
|
|
* in group->min_depth, with a lower bound of data->kernel_depth.
|
|
* If there is no tile defined on the array reference group,
|
|
* then set group->min_depth to data->thread_depth.
|
|
*/
|
|
static int set_depth(struct gpu_group_data *data,
|
|
struct gpu_array_ref_group *group)
|
|
{
|
|
group->min_depth = data->thread_depth;
|
|
|
|
if (group->private_tile) {
|
|
if (group->private_tile->depth < group->min_depth)
|
|
group->min_depth = group->private_tile->depth;
|
|
}
|
|
if (group->shared_tile) {
|
|
if (tile_set_depth(data, group->shared_tile) < 0)
|
|
return -1;
|
|
if (group->shared_tile->depth < group->min_depth)
|
|
group->min_depth = group->shared_tile->depth;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fill up the groups array with singleton groups, i.e., one group
|
|
* per reference, initializing the array, access, write, n_ref and refs fields.
|
|
* In particular the access field is initialized to the scheduled
|
|
* access relation of the array reference.
|
|
*
|
|
* Return the number of elements initialized, i.e., the number of
|
|
* active references in the current kernel.
|
|
*/
|
|
static int populate_array_references(struct gpu_local_array_info *local,
|
|
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
|
|
{
|
|
int i;
|
|
int n;
|
|
isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);
|
|
|
|
n = 0;
|
|
for (i = 0; i < local->array->n_ref; ++i) {
|
|
isl_union_map *umap;
|
|
isl_map *map;
|
|
struct gpu_array_ref_group *group;
|
|
struct gpu_stmt_access *access = local->array->refs[i];
|
|
|
|
map = isl_map_copy(access->access);
|
|
umap = isl_union_map_from_map(map);
|
|
umap = isl_union_map_apply_domain(umap,
|
|
isl_union_map_copy(data->copy_sched));
|
|
|
|
if (isl_union_map_is_empty(umap)) {
|
|
isl_union_map_free(umap);
|
|
continue;
|
|
}
|
|
|
|
map = isl_map_from_union_map(umap);
|
|
map = isl_map_detect_equalities(map);
|
|
|
|
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
|
|
if (!group)
|
|
return -1;
|
|
group->local_array = local;
|
|
group->array = local->array;
|
|
group->access = map;
|
|
group->write = access->write;
|
|
group->exact_write = access->exact_write;
|
|
group->slice = access->n_index < local->array->n_index;
|
|
group->refs = &local->array->refs[i];
|
|
group->n_ref = 1;
|
|
|
|
groups[n++] = group;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* If group->n_ref == 1, then group->refs was set by
|
|
* populate_array_references to point directly into
|
|
* group->array->refs and should not be freed.
|
|
* If group->n_ref > 1, then group->refs was set by join_groups
|
|
* to point to a newly allocated array.
|
|
*/
|
|
struct gpu_array_ref_group *gpu_array_ref_group_free(
|
|
struct gpu_array_ref_group *group)
|
|
{
|
|
if (!group)
|
|
return NULL;
|
|
gpu_array_tile_free(group->shared_tile);
|
|
gpu_array_tile_free(group->private_tile);
|
|
isl_map_free(group->access);
|
|
if (group->n_ref > 1)
|
|
free(group->refs);
|
|
free(group);
|
|
return NULL;
|
|
}
|
|
|
|
/* Check if the access relations of group1 and group2 overlap within
|
|
* copy_sched.
|
|
*/
|
|
static int accesses_overlap(struct gpu_array_ref_group *group1,
|
|
struct gpu_array_ref_group *group2)
|
|
{
|
|
int disjoint;
|
|
|
|
disjoint = isl_map_is_disjoint(group1->access, group2->access);
|
|
if (disjoint < 0)
|
|
return -1;
|
|
|
|
return !disjoint;
|
|
}
|
|
|
|
/* Combine the given two groups into a single group, containing
|
|
* the references of both groups.
|
|
*/
|
|
static struct gpu_array_ref_group *join_groups(
|
|
struct gpu_array_ref_group *group1,
|
|
struct gpu_array_ref_group *group2)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
struct gpu_array_ref_group *group;
|
|
|
|
if (!group1 || !group2)
|
|
return NULL;
|
|
|
|
ctx = isl_map_get_ctx(group1->access);
|
|
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
|
|
if (!group)
|
|
return NULL;
|
|
group->local_array = group1->local_array;
|
|
group->array = group1->array;
|
|
group->access = isl_map_union(isl_map_copy(group1->access),
|
|
isl_map_copy(group2->access));
|
|
group->write = group1->write || group2->write;
|
|
group->exact_write = group1->exact_write && group2->exact_write;
|
|
group->slice = group1->slice || group2->slice;
|
|
group->n_ref = group1->n_ref + group2->n_ref;
|
|
group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
|
|
group->n_ref);
|
|
if (!group->refs)
|
|
return gpu_array_ref_group_free(group);
|
|
for (i = 0; i < group1->n_ref; ++i)
|
|
group->refs[i] = group1->refs[i];
|
|
for (i = 0; i < group2->n_ref; ++i)
|
|
group->refs[group1->n_ref + i] = group2->refs[i];
|
|
|
|
return group;
|
|
}
|
|
|
|
/* Combine the given two groups into a single group and free
|
|
* the original two groups.
|
|
*/
|
|
static struct gpu_array_ref_group *join_groups_and_free(
|
|
struct gpu_array_ref_group *group1,
|
|
struct gpu_array_ref_group *group2)
|
|
{
|
|
struct gpu_array_ref_group *group;
|
|
|
|
group = join_groups(group1, group2);
|
|
gpu_array_ref_group_free(group1);
|
|
gpu_array_ref_group_free(group2);
|
|
return group;
|
|
}
|
|
|
|
/* Report that the array reference group with the given access relation
|
|
* is not mapped to shared memory in the given kernel because
|
|
* it does not exhibit any reuse and is considered to be coalesced.
|
|
*/
|
|
static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
|
|
__isl_keep isl_union_map *access)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_printer *p;
|
|
|
|
ctx = isl_union_map_get_ctx(access);
|
|
p = isl_printer_to_file(ctx, stdout);
|
|
p = isl_printer_print_str(p, "Array reference group ");
|
|
p = isl_printer_print_union_map(p, access);
|
|
p = isl_printer_print_str(p,
|
|
" not considered for mapping to shared memory in kernel");
|
|
p = isl_printer_print_int(p, kernel->id);
|
|
p = isl_printer_print_str(p,
|
|
" because it exhibits no reuse and is considered to be coalesced");
|
|
p = isl_printer_end_line(p);
|
|
isl_printer_free(p);
|
|
}
|
|
|
|
/* Given an access relation in terms of the data->thread_depth initial
|
|
* dimensions of the computed schedule and the thread identifiers
|
|
* (as parameters), check if the use of the corresponding private tile
|
|
* requires unrolling.
|
|
*
|
|
* If we are creating a private tile because we are forced to,
|
|
* then no unrolling is required.
|
|
* Otherwise we check if "access" is bijective and unrolling
|
|
* is required if it is not. Note that the access relation
|
|
* has already been determined to be bijective before the introduction
|
|
* of the thread identifiers and the removal of the schedule dimensions
|
|
* that are mapped to these threads. If the access relation is no longer
|
|
* bijective, then this means that more than one value of one of those
|
|
* schedule dimensions is mapped to the same thread and therefore
|
|
* unrolling is required.
|
|
*/
|
|
static int check_requires_unroll(struct gpu_group_data *data,
|
|
__isl_keep isl_map *access, int force_private)
|
|
{
|
|
int bijective;
|
|
|
|
if (force_private)
|
|
return 0;
|
|
bijective = access_is_bijective(data, access);
|
|
if (bijective < 0)
|
|
return -1;
|
|
return !bijective;
|
|
}
|
|
|
|
/* Map the domain of "access" to the outer data->shared_depth
|
|
* schedule dimensions. When data->shared_depth is equal to
|
|
* data->thread_depth, this result is already available in group->access.
|
|
*/
|
|
static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
|
|
__isl_keep isl_union_map *access, struct gpu_group_data *data)
|
|
{
|
|
isl_union_map *shared;
|
|
|
|
if (data->shared_depth == data->thread_depth)
|
|
return isl_map_copy(group->access);
|
|
|
|
shared = isl_union_map_copy(access);
|
|
shared = isl_union_map_apply_domain(shared,
|
|
isl_union_map_copy(data->shared_sched));
|
|
return isl_map_from_union_map(shared);
|
|
}
|
|
|
|
/* Compute the private and/or shared memory tiles for the array
|
|
* reference group "group" of array "array".
|
|
* Return 0 on success and -1 on error.
|
|
*
|
|
* If the array is a read-only scalar or if the user requested
|
|
* not to use shared or private memory, then we do not need to do anything.
|
|
*
|
|
* If any reference in the reference group accesses more than one element,
|
|
* then we would have to make sure that the layout in shared memory
|
|
* is the same as that in global memory. Since we do not handle this yet
|
|
* (and it may not even be possible), we refuse to map to private or
|
|
* shared memory in such cases.
|
|
*
|
|
* If the array group involves any may writes (that are not must writes),
|
|
* then we would have to make sure that we load the data into shared/private
|
|
* memory first in case the data is not written by the kernel
|
|
* (but still written back out to global memory).
|
|
* Since we don't have any such mechanism at the moment, we don't
|
|
* compute shared/private tiles for groups involving may writes.
|
|
*
|
|
* We only try to compute a shared memory tile if there is any reuse
|
|
* or if the access is not coalesced.
|
|
* Reuse and coalescing are checked within the given kernel.
|
|
*
|
|
* For computing a private memory tile, we also require that there is
|
|
* some reuse. Moreover, we require that the access is private
|
|
* to the thread. That is, we check that any given array element
|
|
* is only accessed by a single thread.
|
|
* We compute an access relation that maps the outer
|
|
* data->thread_depth + data->n_thread schedule dimensions.
|
|
* The latter data->n_thread will be mapped to thread identifiers.
|
|
* We actually check that those iterators that will be wrapped
|
|
* partition the array space. This check is stricter than necessary
|
|
* since several iterations may be mapped onto the same thread
|
|
* and then they could be allowed to access the same memory elements,
|
|
* but our check does not allow this situation.
|
|
*
|
|
* For private memory tiles, the number of schedule dimensions that
|
|
* affect the offset is computed and stored in tile->depth, with
|
|
* a lower bound of data->kernel_depth. If this depth is smaller
|
|
* than the minimal depth that still ensures that every element
|
|
* is accessed by a single thread, then the depth is raised
|
|
* to this minimal depth.
|
|
* The fields of the tile are then adjusted to only refer to the tile->depth
|
|
* outer schedule dimensions.
|
|
*
|
|
* We also check that the index expression only depends on parallel
|
|
* loops. That way, we can move those loops innermost and unroll them.
|
|
* Again, we use a test that is stricter than necessary.
|
|
* We actually check whether the index expression only depends
|
|
* on the iterators that are wrapped over the threads.
|
|
* These are necessarily parallel, but there may be more parallel loops.
|
|
*
|
|
* Combining the injectivity of the first test with the single-valuedness
|
|
* of the second test, we simply test for bijectivity.
|
|
*
|
|
* If the use of the private tile requires unrolling, but some
|
|
* of the other arrays are forcibly mapped to private memory,
|
|
* then we do not allow the use of this private tile since
|
|
* we cannot move the schedule dimensions that need to be unrolled down
|
|
* without performing some kind of expansion on those arrays
|
|
* that are forcibly mapped to private memory.
|
|
*
|
|
* If the array is marked force_private, then we bypass all checks
|
|
* and assume we can (and should) use registers only.
|
|
*
|
|
* If it turns out we can (or have to) use registers, we compute
|
|
* the private memory tile size using can_tile, after introducing a dependence
|
|
* on the thread indices.
|
|
*/
|
|
static int compute_group_bounds_core(struct ppcg_kernel *kernel,
|
|
struct gpu_array_ref_group *group, struct gpu_group_data *data)
|
|
{
|
|
isl_ctx *ctx = isl_space_get_ctx(group->array->space);
|
|
isl_union_map *access, *local;
|
|
int n_index = group->array->n_index;
|
|
int no_reuse, coalesced;
|
|
isl_map *acc;
|
|
int force_private = group->local_array->force_private;
|
|
int use_shared = !force_private && kernel->options->use_shared_memory &&
|
|
data->n_thread > 0;
|
|
int use_private = force_private || kernel->options->use_private_memory;
|
|
int r = 0;
|
|
int requires_unroll;
|
|
int unique_depth;
|
|
|
|
if (!use_shared && !use_private)
|
|
return 0;
|
|
if (gpu_array_is_read_only_scalar(group->array))
|
|
return 0;
|
|
if (!force_private && !group->exact_write)
|
|
return 0;
|
|
if (group->slice)
|
|
return 0;
|
|
|
|
access = gpu_array_ref_group_access_relation(group, 1, 1);
|
|
local = localize_access(data, isl_union_map_copy(access));
|
|
no_reuse = isl_union_map_is_injective(local);
|
|
if (no_reuse < 0)
|
|
r = -1;
|
|
if (use_shared && no_reuse)
|
|
coalesced = access_is_coalesced(data, local);
|
|
isl_union_map_free(local);
|
|
|
|
if (r >= 0 && kernel->options->debug->verbose &&
|
|
use_shared && no_reuse && coalesced)
|
|
report_no_reuse_and_coalesced(kernel, access);
|
|
|
|
if (use_shared && (!no_reuse || !coalesced)) {
|
|
group->shared_tile = gpu_array_tile_create(ctx,
|
|
group->array->n_index);
|
|
acc = shared_access(group, access, data);
|
|
if (!group->shared_tile)
|
|
r = -1;
|
|
else if (!can_tile(acc, group->shared_tile))
|
|
group->shared_tile =
|
|
gpu_array_tile_free(group->shared_tile);
|
|
isl_map_free(acc);
|
|
}
|
|
|
|
if (r < 0 || (!force_private && (!use_private || no_reuse))) {
|
|
isl_union_map_free(access);
|
|
return r;
|
|
}
|
|
|
|
access = isl_union_map_apply_domain(access,
|
|
isl_union_map_copy(data->thread_sched));
|
|
|
|
acc = isl_map_from_union_map(access);
|
|
|
|
if (!force_private && !access_is_bijective(data, acc)) {
|
|
isl_map_free(acc);
|
|
return 0;
|
|
}
|
|
|
|
unique_depth = compute_accessed_by_single_thread_depth(data, acc);
|
|
|
|
acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
|
|
acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
|
|
data->n_thread);
|
|
requires_unroll = check_requires_unroll(data, acc, force_private);
|
|
if (unique_depth < 0 || requires_unroll < 0 ||
|
|
(requires_unroll && kernel->any_force_private)) {
|
|
isl_map_free(acc);
|
|
return requires_unroll < 0 ? -1 : 0;
|
|
}
|
|
|
|
group->private_tile = gpu_array_tile_create(ctx, n_index);
|
|
if (!group->private_tile) {
|
|
isl_map_free(acc);
|
|
return -1;
|
|
}
|
|
group->private_tile->requires_unroll = requires_unroll;
|
|
if (!can_tile(acc, group->private_tile))
|
|
group->private_tile = gpu_array_tile_free(group->private_tile);
|
|
|
|
isl_map_free(acc);
|
|
|
|
if (group->private_tile) {
|
|
struct gpu_array_tile *tile = group->private_tile;
|
|
int tile_depth = compute_tile_depth(data, tile);
|
|
if (tile_depth < unique_depth)
|
|
tile_depth = unique_depth;
|
|
if (tile_adjust_depth(tile, tile_depth) < 0)
|
|
return -1;
|
|
}
|
|
|
|
if (force_private && !group->private_tile)
|
|
isl_die(ctx, isl_error_internal,
|
|
"unable to map array reference group to registers",
|
|
return -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compute the private and/or shared memory tiles for the array
|
|
* reference group "group" of array "array" and set the tile depth.
|
|
* Return 0 on success and -1 on error.
|
|
*/
|
|
static int compute_group_bounds(struct ppcg_kernel *kernel,
|
|
struct gpu_array_ref_group *group, struct gpu_group_data *data)
|
|
{
|
|
if (!group)
|
|
return -1;
|
|
if (compute_group_bounds_core(kernel, group, data) < 0)
|
|
return -1;
|
|
if (set_depth(data, group) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If two groups have overlapping access relations (as determined by
|
|
* the "overlap" function) and if one of them involves a write,
|
|
* then merge the two groups into one.
|
|
* If "compute_bounds" is set, then call compute_group_bounds
|
|
* on the merged groups.
|
|
*
|
|
* Return the updated number of groups.
|
|
* Return -1 on error.
|
|
*/
|
|
static int group_writes(struct ppcg_kernel *kernel,
|
|
int n, struct gpu_array_ref_group **groups,
|
|
int (*overlap)(struct gpu_array_ref_group *group1,
|
|
struct gpu_array_ref_group *group2), int compute_bounds,
|
|
struct gpu_group_data *data)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
for (j = n - 1; j > i; --j) {
|
|
if (!groups[i]->write && !groups[j]->write)
|
|
continue;
|
|
|
|
if (!overlap(groups[i], groups[j]))
|
|
continue;
|
|
|
|
groups[i] = join_groups_and_free(groups[i], groups[j]);
|
|
if (j != n - 1)
|
|
groups[j] = groups[n - 1];
|
|
groups[n - 1] = NULL;
|
|
n--;
|
|
|
|
if (!groups[i])
|
|
return -1;
|
|
if (compute_bounds &&
|
|
compute_group_bounds(kernel, groups[i], data) < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* If two groups have overlapping access relations (within the innermost
|
|
* loop) and if one of them involves a write, then merge the two groups
|
|
* into one.
|
|
*
|
|
* Return the updated number of groups.
|
|
*/
|
|
static int group_overlapping_writes(struct ppcg_kernel *kernel,
|
|
int n, struct gpu_array_ref_group **groups,
|
|
struct gpu_group_data *data)
|
|
{
|
|
return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
|
|
}
|
|
|
|
/* Check if the access relations of group1 and group2 overlap within
|
|
* the outermost min(group1->min_depth, group2->min_depth) loops.
|
|
*/
|
|
static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
|
|
struct gpu_array_ref_group *group2)
|
|
{
|
|
int depth;
|
|
int dim;
|
|
int empty;
|
|
isl_map *map_i, *map_j, *map;
|
|
|
|
depth = group1->min_depth;
|
|
if (group2->min_depth < depth)
|
|
depth = group2->min_depth;
|
|
map_i = isl_map_copy(group1->access);
|
|
dim = isl_map_dim(map_i, isl_dim_in);
|
|
map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
|
|
map_j = isl_map_copy(group2->access);
|
|
map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
|
|
map = isl_map_intersect(map_i, map_j);
|
|
empty = isl_map_is_empty(map);
|
|
isl_map_free(map);
|
|
|
|
return !empty;
|
|
}
|
|
|
|
/* If two groups have overlapping access relations (within the outer
|
|
* depth loops) and if one of them involves a write,
|
|
* then merge the two groups into one.
|
|
*
|
|
* Return the updated number of groups.
|
|
*/
|
|
static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
|
|
int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
|
|
{
|
|
return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
|
|
data);
|
|
}
|
|
|
|
/* Is the size of the tile specified by "tile" smaller than the sum of
|
|
* the sizes of the tiles specified by "tile1" and "tile2"?
|
|
*/
|
|
static int smaller_tile(struct gpu_array_tile *tile,
|
|
struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
|
|
{
|
|
int smaller;
|
|
isl_val *size, *size1, *size2;
|
|
|
|
size = gpu_array_tile_size(tile);
|
|
size1 = gpu_array_tile_size(tile1);
|
|
size2 = gpu_array_tile_size(tile2);
|
|
|
|
size = isl_val_sub(size, size1);
|
|
size = isl_val_sub(size, size2);
|
|
smaller = isl_val_is_neg(size);
|
|
|
|
isl_val_free(size);
|
|
|
|
return smaller;
|
|
}
|
|
|
|
/* Given an initial grouping of array references and shared memory tiles
|
|
* for each group that allows for a shared memory tile, merge two groups
|
|
* if both have a shared memory tile, the merged group also has
|
|
* a shared memory tile and the size of the tile for the merge group
|
|
* is smaller than the sum of the tile sizes of the individual groups.
|
|
*
|
|
* If merging two groups decreases the depth of the tile of
|
|
* one or both of the two groups, then we need to check for overlapping
|
|
* writes again.
|
|
*
|
|
* Return the number of groups after merging.
|
|
* Return -1 on error.
|
|
*/
|
|
static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
|
|
struct gpu_array_info *array, int n,
|
|
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
|
|
{
|
|
int i, j;
|
|
int recompute_overlap = 0;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
if (!groups[i]->shared_tile)
|
|
continue;
|
|
for (j = n - 1; j > i; --j) {
|
|
struct gpu_array_ref_group *group;
|
|
|
|
if (!groups[j]->shared_tile)
|
|
continue;
|
|
|
|
if (!depth_accesses_overlap(groups[i], groups[j]))
|
|
continue;
|
|
|
|
group = join_groups(groups[i], groups[j]);
|
|
if (compute_group_bounds(kernel, group, data) < 0) {
|
|
gpu_array_ref_group_free(group);
|
|
return -1;
|
|
}
|
|
if (!group->shared_tile ||
|
|
!smaller_tile(group->shared_tile,
|
|
groups[i]->shared_tile,
|
|
groups[j]->shared_tile)) {
|
|
gpu_array_ref_group_free(group);
|
|
continue;
|
|
}
|
|
|
|
if (group->min_depth < groups[i]->min_depth ||
|
|
group->min_depth < groups[j]->min_depth)
|
|
recompute_overlap = 1;
|
|
gpu_array_ref_group_free(groups[i]);
|
|
gpu_array_ref_group_free(groups[j]);
|
|
groups[i] = group;
|
|
if (j != n - 1)
|
|
groups[j] = groups[n - 1];
|
|
n--;
|
|
}
|
|
}
|
|
|
|
if (recompute_overlap)
|
|
n = group_depth_overlapping_writes(kernel, n, groups, data);
|
|
return n;
|
|
}
|
|
|
|
/* Set array->n_group and array->groups to n and groups.
|
|
*
|
|
* Additionally, set the "nr" field of each group.
|
|
*/
|
|
static void set_array_groups(struct gpu_local_array_info *array,
|
|
int n, struct gpu_array_ref_group **groups)
|
|
{
|
|
int i;
|
|
|
|
array->n_group = n;
|
|
array->groups = groups;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
groups[i]->nr = i;
|
|
}
|
|
|
|
/* Combine all groups in "groups" into a single group and return
|
|
* the new number of groups (1 or 0 if there were no groups to start with).
|
|
*/
|
|
static int join_all_groups(int n, struct gpu_array_ref_group **groups)
|
|
{
|
|
int i;
|
|
|
|
for (i = n - 1; i > 0; --i) {
|
|
groups[0] = join_groups_and_free(groups[0], groups[i]);
|
|
groups[i] = NULL;
|
|
n--;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Group array references that should be considered together when
|
|
* deciding whether to access them from private, shared or global memory.
|
|
* Return -1 on error.
|
|
*
|
|
* In particular, if two array references overlap and if one of them
|
|
* is a write, then the two references are grouped together.
|
|
* We first perform an initial grouping based only on the access relation.
|
|
* After computing shared and private memory tiles, we check for
|
|
* overlapping writes again, but this time taking into account
|
|
* the depth of the effective tile.
|
|
*
|
|
* Furthermore, if two groups admit a shared memory tile and if the
|
|
* combination of the two also admits a shared memory tile, we merge
|
|
* the two groups.
|
|
*
|
|
* If the array contains structures, then we compute a single
|
|
* reference group without trying to find any tiles
|
|
* since we do not map such arrays to private or shared
|
|
* memory. The only exception is when those arrays of structures
|
|
* are required to be mapped to private memory.
|
|
*/
|
|
static int group_array_references(struct ppcg_kernel *kernel,
|
|
struct gpu_local_array_info *local, struct gpu_group_data *data)
|
|
{
|
|
int i;
|
|
int n;
|
|
isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
|
|
struct gpu_array_ref_group **groups;
|
|
|
|
groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
|
|
local->array->n_ref);
|
|
if (!groups)
|
|
return -1;
|
|
|
|
n = populate_array_references(local, groups, data);
|
|
|
|
if (local->array->has_compound_element && !local->force_private) {
|
|
n = join_all_groups(n, groups);
|
|
set_array_groups(local, n, groups);
|
|
return 0;
|
|
}
|
|
|
|
n = group_overlapping_writes(kernel, n, groups, data);
|
|
|
|
for (i = 0; i < n; ++i)
|
|
if (compute_group_bounds(kernel, groups[i], data) < 0)
|
|
n = -1;
|
|
|
|
n = group_depth_overlapping_writes(kernel, n, groups, data);
|
|
|
|
n = group_common_shared_memory_tile(kernel, local->array,
|
|
n, groups, data);
|
|
|
|
set_array_groups(local, n, groups);
|
|
|
|
if (n >= 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < local->array->n_ref; ++i)
|
|
gpu_array_ref_group_free(groups[i]);
|
|
return -1;
|
|
}
|
|
|
|
/* For each array in the input program that can be mapped to private memory,
|
|
* check if there are any order dependences active inside the current kernel,
|
|
* within the same iteration of the host schedule, i.e., the prefix
|
|
* schedule at "node".
|
|
* If so, mark the array as force_private so that its reference groups will be
|
|
* mapped to a registers.
|
|
*
|
|
* Note that the arrays that cannot be mapped to private memory have
|
|
* had their order dependences added to prog->array_order and
|
|
* subsequently to the coincidence constraints.
|
|
*/
|
|
static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
|
|
__isl_keep isl_schedule_node *node)
|
|
{
|
|
int i;
|
|
isl_union_set *domain;
|
|
isl_multi_union_pw_aff *prefix;
|
|
isl_union_pw_multi_aff *contraction;
|
|
|
|
if (!kernel->options->live_range_reordering)
|
|
return;
|
|
|
|
kernel->any_force_private = 0;
|
|
|
|
prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
|
|
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
|
|
prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
|
|
contraction);
|
|
domain = isl_union_set_copy(kernel->expanded_domain);
|
|
domain = isl_union_set_universe(domain);
|
|
|
|
for (i = 0; i < kernel->n_array; ++i) {
|
|
struct gpu_local_array_info *local = &kernel->array[i];
|
|
isl_union_map *order;
|
|
|
|
local->force_private = 0;
|
|
if (!gpu_array_can_be_private(local->array))
|
|
continue;
|
|
order = isl_union_map_copy(local->array->dep_order);
|
|
order = isl_union_map_intersect_domain(order,
|
|
isl_union_set_copy(domain));
|
|
order = isl_union_map_intersect_range(order,
|
|
isl_union_set_copy(domain));
|
|
order = isl_union_map_eq_at_multi_union_pw_aff(order,
|
|
isl_multi_union_pw_aff_copy(prefix));
|
|
if (!isl_union_map_is_empty(order)) {
|
|
local->force_private = 1;
|
|
kernel->any_force_private = 1;
|
|
}
|
|
isl_union_map_free(order);
|
|
}
|
|
|
|
isl_multi_union_pw_aff_free(prefix);
|
|
isl_union_set_free(domain);
|
|
}
|
|
|
|
/* Expand the domain of the schedule "s" by plugging in
|
|
* the contraction "contraction" and return the result.
|
|
*/
|
|
static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
|
|
__isl_keep isl_union_pw_multi_aff *contraction)
|
|
{
|
|
contraction = isl_union_pw_multi_aff_copy(contraction);
|
|
s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
|
|
return s;
|
|
}
|
|
|
|
/* Create a set of dimension data->thread_depth + data->n_thread
|
|
* that equates the residue of the final data->n_thread dimensions
|
|
* modulo the kernel->block_dim sizes to the thread identifiers.
|
|
* Store the computed set in data->privatization.
|
|
*
|
|
* The construction starts with the space of kernel->thread_filter,
|
|
* which is known to reference all thread identifiers.
|
|
*/
|
|
static void compute_privatization(struct gpu_group_data *data,
|
|
struct ppcg_kernel *kernel)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_space *space;
|
|
isl_local_space *ls;
|
|
isl_set *set;
|
|
|
|
ctx = isl_union_map_get_ctx(data->shared_sched);
|
|
space = isl_union_set_get_space(kernel->thread_filter);
|
|
space = isl_space_set_from_params(space);
|
|
space = isl_space_add_dims(space, isl_dim_set,
|
|
data->thread_depth + data->n_thread);
|
|
set = isl_set_universe(space);
|
|
space = isl_set_get_space(set);
|
|
ls = isl_local_space_from_space(space);
|
|
|
|
for (i = 0; i < data->n_thread; ++i) {
|
|
isl_aff *aff, *aff2;
|
|
isl_constraint *c;
|
|
isl_val *v;
|
|
isl_id *id;
|
|
int pos;
|
|
|
|
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
|
isl_dim_set, data->thread_depth + i);
|
|
v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
|
|
aff = isl_aff_mod_val(aff, v);
|
|
id = isl_id_list_get_id(kernel->thread_ids, i);
|
|
pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
|
|
isl_id_free(id);
|
|
aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
|
isl_dim_param, pos);
|
|
aff = isl_aff_sub(aff, aff2);
|
|
c = isl_equality_from_aff(aff);
|
|
set = isl_set_add_constraint(set, c);
|
|
}
|
|
|
|
isl_local_space_free(ls);
|
|
data->privatization = set;
|
|
}
|
|
|
|
/* Return the prefix schedule at "node" as a relation
|
|
* between domain elements and schedule dimensions after detecting
|
|
* equalities in this relation.
|
|
*/
|
|
static __isl_give isl_union_map *prefix_with_equalities(
|
|
__isl_keep isl_schedule_node *node)
|
|
{
|
|
isl_union_map *schedule;
|
|
|
|
schedule = isl_schedule_node_get_prefix_schedule_relation(node);
|
|
schedule = isl_union_map_detect_equalities(schedule);
|
|
|
|
return schedule;
|
|
}
|
|
|
|
/* Group references of all arrays in "kernel".
|
|
* "node" points to the kernel mark.
|
|
* The mapping to shared memory in computed at the "shared" mark.
|
|
*
|
|
* We first extract all required schedule information into
|
|
* a gpu_group_data structure and then consider each array
|
|
* in turn.
|
|
*/
|
|
int gpu_group_references(struct ppcg_kernel *kernel,
|
|
__isl_keep isl_schedule_node *node)
|
|
{
|
|
int i;
|
|
int r = 0;
|
|
isl_union_pw_multi_aff *contraction;
|
|
struct gpu_group_data data;
|
|
|
|
check_can_be_private_live_ranges(kernel, node);
|
|
|
|
data.scop = kernel->prog->scop;
|
|
|
|
data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
|
|
data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
|
|
|
|
node = isl_schedule_node_copy(node);
|
|
node = gpu_tree_move_down_to_shared(node, kernel->core);
|
|
data.shared_depth = isl_schedule_node_get_schedule_depth(node);
|
|
data.shared_sched = prefix_with_equalities(node);
|
|
|
|
node = gpu_tree_move_down_to_thread(node, kernel->core);
|
|
node = isl_schedule_node_child(node, 0);
|
|
data.thread_depth = isl_schedule_node_get_schedule_depth(node);
|
|
data.n_thread = isl_schedule_node_band_n_member(node);
|
|
if (data.thread_depth == data.shared_depth)
|
|
data.copy_sched = isl_union_map_copy(data.shared_sched);
|
|
else
|
|
data.copy_sched = prefix_with_equalities(node);
|
|
data.thread_sched = isl_union_map_copy(data.copy_sched);
|
|
data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
|
|
isl_schedule_node_band_get_partial_schedule_union_map(node));
|
|
data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
|
|
|
|
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
|
|
data.host_sched = expand(data.host_sched, contraction);
|
|
data.shared_sched = expand(data.shared_sched, contraction);
|
|
if (data.thread_depth == data.shared_depth) {
|
|
isl_union_map_free(data.copy_sched);
|
|
data.copy_sched = isl_union_map_copy(data.shared_sched);
|
|
} else {
|
|
data.copy_sched = expand(data.copy_sched, contraction);
|
|
}
|
|
data.thread_sched = expand(data.thread_sched, contraction);
|
|
isl_union_pw_multi_aff_free(contraction);
|
|
|
|
node = isl_schedule_node_child(node, 0);
|
|
data.full_sched = isl_union_map_copy(data.thread_sched);
|
|
data.full_sched = isl_union_map_flat_range_product(data.full_sched,
|
|
isl_schedule_node_get_subtree_schedule_union_map(node));
|
|
isl_schedule_node_free(node);
|
|
|
|
compute_privatization(&data, kernel);
|
|
|
|
for (i = 0; i < kernel->n_array; ++i) {
|
|
r = group_array_references(kernel, &kernel->array[i], &data);
|
|
if (r < 0)
|
|
break;
|
|
}
|
|
|
|
isl_union_map_free(data.host_sched);
|
|
isl_union_map_free(data.shared_sched);
|
|
isl_union_map_free(data.copy_sched);
|
|
isl_union_map_free(data.thread_sched);
|
|
isl_union_map_free(data.full_sched);
|
|
isl_set_free(data.privatization);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Given a description of an array tile "tile" and the "space"
|
|
*
|
|
* { D -> A }
|
|
*
|
|
* where D represents the first tile->depth schedule dimensions
|
|
* and A represents the array, construct an isl_multi_aff
|
|
*
|
|
* { [D[i] -> A[a]] -> A'[a'] }
|
|
*
|
|
* with A' a scaled down copy of A according to the shifts and strides
|
|
* in "tile". In particular,
|
|
*
|
|
* a' = (a + shift(i))/stride
|
|
*
|
|
* "insert_array" represents
|
|
*
|
|
* { [D -> A] -> D }
|
|
*
|
|
* and is used to insert A into the domain of functions that only
|
|
* reference D.
|
|
*/
|
|
static __isl_give isl_multi_aff *strided_tile(
|
|
struct gpu_array_tile *tile, __isl_keep isl_space *space,
|
|
__isl_keep isl_multi_aff *insert_array)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_multi_aff *shift;
|
|
isl_multi_val *stride;
|
|
isl_space *space2;
|
|
isl_local_space *ls;
|
|
isl_multi_aff *tiling;
|
|
|
|
ctx = isl_space_get_ctx(space);
|
|
space2 = isl_space_domain(isl_space_copy(space));
|
|
ls = isl_local_space_from_space(space2);
|
|
space2 = isl_space_range(isl_space_copy(space));
|
|
stride = isl_multi_val_zero(space2);
|
|
shift = isl_multi_aff_zero(isl_space_copy(space));
|
|
|
|
for (i = 0; i < tile->n; ++i) {
|
|
struct gpu_array_bound *bound = &tile->bound[i];
|
|
isl_val *stride_i;
|
|
isl_aff *shift_i;
|
|
|
|
if (tile->bound[i].shift) {
|
|
stride_i = isl_val_copy(bound->stride);
|
|
shift_i = isl_aff_copy(bound->shift);
|
|
} else {
|
|
stride_i = isl_val_one(ctx);
|
|
shift_i = isl_aff_zero_on_domain(
|
|
isl_local_space_copy(ls));
|
|
}
|
|
|
|
stride = isl_multi_val_set_val(stride, i, stride_i);
|
|
shift = isl_multi_aff_set_aff(shift, i, shift_i);
|
|
}
|
|
isl_local_space_free(ls);
|
|
|
|
shift = isl_multi_aff_pullback_multi_aff(shift,
|
|
isl_multi_aff_copy(insert_array));
|
|
|
|
tiling = isl_multi_aff_range_map(isl_space_copy(space));
|
|
tiling = isl_multi_aff_add(tiling, shift);
|
|
tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
|
|
|
|
return tiling;
|
|
}
|
|
|
|
/* Compute a tiling for the array reference group "group".
|
|
*
|
|
* The tiling is of the form
|
|
*
|
|
* { [D[i] -> A[a]] -> T[t] }
|
|
*
|
|
* where D represents the first tile->depth schedule dimensions,
|
|
* A represents the global array and T represents the shared or
|
|
* private memory tile. The name of T is the name of the local
|
|
* array.
|
|
*
|
|
* If there is any stride in the accesses, then the mapping is
|
|
*
|
|
* t = (a + shift(i))/stride - lb(i)
|
|
*
|
|
* otherwise, it is simply
|
|
*
|
|
* t = a - lb(i)
|
|
*/
|
|
void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
|
|
{
|
|
int i;
|
|
struct gpu_array_tile *tile;
|
|
isl_space *space;
|
|
isl_multi_aff *tiling, *lb, *insert_array;
|
|
isl_printer *p;
|
|
char *local_name;
|
|
|
|
tile = gpu_array_ref_group_tile(group);
|
|
if (!tile)
|
|
return;
|
|
|
|
space = isl_map_get_space(group->access);
|
|
space = isl_space_from_range(isl_space_range(space));
|
|
space = isl_space_add_dims(space, isl_dim_in, tile->depth);
|
|
insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
|
|
|
|
for (i = 0; i < tile->n; ++i)
|
|
if (tile->bound[i].shift)
|
|
break;
|
|
|
|
if (i < tile->n)
|
|
tiling = strided_tile(tile, space, insert_array);
|
|
else
|
|
tiling = isl_multi_aff_range_map(isl_space_copy(space));
|
|
|
|
lb = isl_multi_aff_zero(space);
|
|
for (i = 0; i < tile->n; ++i) {
|
|
isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
|
|
lb = isl_multi_aff_set_aff(lb, i, lb_i);
|
|
}
|
|
lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
|
|
|
|
tiling = isl_multi_aff_sub(tiling, lb);
|
|
|
|
p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
|
|
p = gpu_array_ref_group_print_name(group, p);
|
|
local_name = isl_printer_get_str(p);
|
|
isl_printer_free(p);
|
|
tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
|
|
free(local_name);
|
|
|
|
tile->tiling = tiling;
|
|
}
|