Xamarin Public Jenkins (auto-signing) 468663ddbb Imported Upstream version 6.10.0.49
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
2020-01-16 16:38:04 +00:00

1829 lines
55 KiB
C

/*
* Copyright 2010-2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl/constraint.h>
#include <isl/ilp.h>
#include "gpu_array_tile.h"
#include "gpu_group.h"
#include "gpu_tree.h"
#include "schedule.h"
/* Print the name of the local copy of a given group of array references.
*/
__isl_give isl_printer *gpu_array_ref_group_print_name(
struct gpu_array_ref_group *group, __isl_take isl_printer *p)
{
int global = 0;
enum ppcg_group_access_type type;
type = gpu_array_ref_group_type(group);
if (type == ppcg_access_private)
p = isl_printer_print_str(p, "private_");
else if (type == ppcg_access_shared)
p = isl_printer_print_str(p, "shared_");
else
global = 1;
p = isl_printer_print_str(p, group->array->name);
if (!global && group->local_array->n_group > 1) {
p = isl_printer_print_str(p, "_");
p = isl_printer_print_int(p, group->nr);
}
return p;
}
/* Return the union of all read (read = 1) and/or write (write = 1)
* access relations in the group.
*/
__isl_give isl_union_map *gpu_array_ref_group_access_relation(
struct gpu_array_ref_group *group, int read, int write)
{
int i;
isl_union_map *access;
access = isl_union_map_empty(isl_map_get_space(group->access));
for (i = 0; i < group->n_ref; ++i) {
isl_map *map_i;
if (!((read && group->refs[i]->read) ||
(write && group->refs[i]->write)))
continue;
map_i = isl_map_copy(group->refs[i]->access);
access = isl_union_map_union(access,
isl_union_map_from_map(map_i));
}
return access;
}
/* Should this array reference group be mapped to private, shared or global
* memory?
* If we have computed both a private and a shared tile, then
* the tile with the smallest depth is used. If both have the same depth,
* then the private tile is used.
*/
enum ppcg_group_access_type gpu_array_ref_group_type(
struct gpu_array_ref_group *group)
{
if (group->private_tile && group->shared_tile &&
group->shared_tile->depth < group->private_tile->depth)
return ppcg_access_shared;
if (group->private_tile)
return ppcg_access_private;
if (group->shared_tile)
return ppcg_access_shared;
return ppcg_access_global;
}
/* Return the effective gpu_array_tile associated to "group" or
* NULL if there is no such gpu_array_tile.
*/
struct gpu_array_tile *gpu_array_ref_group_tile(
struct gpu_array_ref_group *group)
{
switch (gpu_array_ref_group_type(group)) {
case ppcg_access_global:
return NULL;
case ppcg_access_shared:
return group->shared_tile;
case ppcg_access_private:
return group->private_tile;
}
}
/* Does the tile associated to "group" require unrolling of the schedule
* dimensions mapped to threads?
* Note that this can only happen for private tiles.
*/
int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
{
struct gpu_array_tile *tile;
tile = gpu_array_ref_group_tile(group);
if (!tile)
return 0;
return tile->requires_unroll;
}
/* Given a constraint
*
* a(p,i) + j = g f(e)
*
* or -a(p,i) - j = g f(e) if sign < 0,
* store a(p,i) in bound->shift and g (stride) in bound->stride.
* a(p,i) is assumed to be an expression in only the parameters
* and the input dimensions.
*/
static void extract_stride(__isl_keep isl_constraint *c,
struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
{
int i;
isl_val *v;
isl_space *space;
unsigned nparam;
unsigned nvar;
isl_aff *aff;
isl_val_free(bound->stride);
bound->stride = isl_val_copy(stride);
space = isl_constraint_get_space(c);
space = isl_space_domain(space);
nparam = isl_space_dim(space, isl_dim_param);
nvar = isl_space_dim(space, isl_dim_set);
v = isl_constraint_get_constant_val(c);
if (sign < 0)
v = isl_val_neg(v);
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
aff = isl_aff_set_constant_val(aff, v);
for (i = 0; i < nparam; ++i) {
if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
continue;
v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
if (sign < 0)
v = isl_val_neg(v);
aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
}
for (i = 0; i < nvar; ++i) {
if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
continue;
v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
if (sign < 0)
v = isl_val_neg(v);
aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
}
bound->shift = aff;
}
/* Given an equality constraint of a map with a single output dimension j,
* check if the constraint is of the form
*
* a(p,i) + j = g f(e)
*
* with a(p,i) an expression in the parameters and input dimensions
* and f(e) an expression in the existentially quantified variables.
* If so, and if g is larger than any such g from a previously considered
* constraint, then call extract_stride to record the stride information
* in bound.
*/
static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
void *user)
{
int i;
isl_ctx *ctx;
isl_val *v;
unsigned n_div;
struct gpu_array_bound *bound = user;
ctx = isl_constraint_get_ctx(c);
n_div = isl_constraint_dim(c, isl_dim_div);
v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
int s = isl_val_sgn(v);
isl_val *stride = isl_val_zero(ctx);
isl_val_free(v);
for (i = 0; i < n_div; ++i) {
v = isl_constraint_get_coefficient_val(c,
isl_dim_div, i);
stride = isl_val_gcd(stride, v);
}
if (!isl_val_is_zero(stride) &&
isl_val_gt(stride, bound->stride))
extract_stride(c, bound, stride, s);
isl_val_free(stride);
} else
isl_val_free(v);
isl_constraint_free(c);
return isl_stat_ok;
}
/* Given contraints on an array index i, check if we can find
* a shift a(p) and a stride g such that
*
* a(p) + i = 0 mod g
*
* If so, record the information in bound and apply the mapping
* i -> (i + a(p))/g to the array index in bounds and return
* the new constraints.
* If not, simply return the original constraints.
*
* If bounds is a subset of the space
*
* D -> i
*
* then the bound recorded in bound->shift is of the form
*
* D -> s(D)
*
* with s(D) equal to a(p) above.
* Next, we construct a mapping of the form
*
* [D -> i] -> [D -> (i + S(D))/g]
*
* This mapping is computed as follows.
* We first introduce "i" in the domain through precomposition
* with [D -> i] -> D obtaining
*
* [D -> i] -> s(D)
*
* Adding [D -> i] -> i produces
*
* [D -> i] -> i + s(D)
*
* and the domain product with [D -> i] -> D yields
*
* [D -> i] -> [D -> i + s(D)]
*
* Composition with [D -> i] -> [D -> i/g] gives the desired result.
*/
static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
__isl_take isl_basic_map *bounds)
{
isl_space *space;
isl_basic_map *hull;
isl_basic_map *shift, *id, *bmap, *scale;
isl_basic_set *bset;
isl_aff *aff;
bound->stride = NULL;
hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
isl_basic_map_free(hull);
if (!bound->stride)
return bounds;
shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
space = isl_basic_map_get_space(bounds);
bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
shift = isl_basic_map_apply_range(bmap, shift);
space = isl_basic_map_get_space(bounds);
id = isl_basic_map_range_map(isl_basic_map_universe(space));
shift = isl_basic_map_sum(id, shift);
space = isl_basic_map_get_space(bounds);
id = isl_basic_map_domain_map(isl_basic_map_universe(space));
shift = isl_basic_map_range_product(id, shift);
space = isl_space_domain(isl_basic_map_get_space(bounds));
id = isl_basic_map_identity(isl_space_map_from_set(space));
space = isl_space_range(isl_basic_map_get_space(bounds));
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
scale = isl_basic_map_from_aff(aff);
scale = isl_basic_map_product(id, scale);
bmap = isl_basic_map_apply_range(shift, scale);
bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
bounds = isl_basic_set_unwrap(bset);
return bounds;
}
/* Data used in compute_array_dim_size and compute_size_in_direction.
*
* pos is the position of the variable representing the array index,
* i.e., the variable for which want to compute the size. This variable
* is also the last variable in the set.
*/
struct gpu_size_info {
isl_basic_set *bset;
struct gpu_array_bound *bound;
int pos;
};
/* Given a constraint from the basic set describing the bounds on
* an array index, check if it is a lower bound, say m i >= b(x), and,
* if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
* upper bound. If so, and if this bound is smaller than any bound
* derived from earlier constraints, set the size to this bound on
* the expression and the lower bound to ceil(b(x)/m).
*/
static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
void *user)
{
struct gpu_size_info *size = user;
unsigned nparam;
unsigned n_div;
isl_val *v;
isl_aff *aff;
isl_aff *lb;
nparam = isl_basic_set_dim(size->bset, isl_dim_param);
n_div = isl_constraint_dim(c, isl_dim_div);
if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
!isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
isl_constraint_free(c);
return isl_stat_ok;
}
aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
aff = isl_aff_ceil(aff);
lb = isl_aff_copy(aff);
aff = isl_aff_neg(aff);
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
v = isl_basic_set_max_val(size->bset, aff);
isl_aff_free(aff);
if (isl_val_is_int(v)) {
v = isl_val_add_ui(v, 1);
if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
isl_val_free(size->bound->size);
size->bound->size = isl_val_copy(v);
lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
isl_aff_free(size->bound->lb);
size->bound->lb = isl_aff_copy(lb);
}
}
isl_val_free(v);
isl_aff_free(lb);
isl_constraint_free(c);
return isl_stat_ok;
}
/* Given a basic map "bounds" that maps parameters and input dimensions
* to a single output dimension, look for an expression in the parameters
* and input dimensions such that the range of the output dimension shifted
* by this expression is a constant.
*
* In particular, we currently only consider lower bounds on the output
* dimension as candidate expressions.
*/
static int compute_array_dim_size(struct gpu_array_bound *bound,
__isl_take isl_basic_map *bounds)
{
struct gpu_size_info size;
bounds = isl_basic_map_detect_equalities(bounds);
bounds = check_stride(bound, bounds);
bound->size = NULL;
bound->lb = NULL;
size.bound = bound;
size.pos = isl_basic_map_dim(bounds, isl_dim_in);
size.bset = isl_basic_map_wrap(bounds);
size.bset = isl_basic_set_flatten(size.bset);
size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
&size);
isl_basic_set_free(size.bset);
return bound->size ? 0 : -1;
}
/* Check if we can find a memory tile for the given array
* based on the given accesses, and if so, put the results in "tile".
*
* We project the accesses on each index in turn and look for a parametric
* offset such that the size is constant.
*
* tile->depth is initialized to the input dimension of the computed bounds.
*/
static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
{
int i;
tile->depth = isl_map_dim(access, isl_dim_in);
for (i = 0; i < tile->n; ++i) {
isl_map *access_i;
isl_basic_map *hull;
access_i = isl_map_copy(access);
access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
access_i = isl_map_project_out(access_i, isl_dim_out,
1, tile->n - (i + 1));
access_i = isl_map_compute_divs(access_i);
hull = isl_map_simple_hull(access_i);
if (compute_array_dim_size(&tile->bound[i], hull) < 0)
return 0;
}
return 1;
}
/* Internal data structure for gpu_group_references.
*
* scop represents the input scop.
* kernel_depth is the schedule depth where the kernel launch will
* be introduced, i.e., it is the depth of the band that is mapped
* to blocks.
* shared_depth is the schedule depth at which the copying to/from
* shared memory is computed. The copy operation may then
* later be hoisted to a higher level.
* thread_depth is the schedule depth where the thread mark is located,
* i.e., it is the depth of the band that is mapped to threads and also
* the schedule depth at which the copying to/from private memory
* is computed. The copy operation may then later be hoisted to
* a higher level.
* n_thread is the number of schedule dimensions in the band that
* is mapped to threads.
* privatization lives in the range of thread_sched (i.e., it is
* of dimension thread_depth + n_thread) and encodes the mapping
* to thread identifiers (as parameters).
* host_sched contains the kernel_depth dimensions of the host schedule.
* shared_sched contains the first shared_depth dimensions of the
* kernel schedule.
* copy_sched contains the first thread_depth dimensions of the
* kernel schedule.
* thread_sched contains the first (thread_depth + n_thread) dimensions
* of the kernel schedule.
* full_sched is a union_map representation of the entire kernel schedule.
* The schedules are all formulated in terms of the original statement
* instances, i.e., those that appear in the domains of the access
* relations.
*/
struct gpu_group_data {
struct ppcg_scop *scop;
int kernel_depth;
int shared_depth;
int thread_depth;
int n_thread;
isl_set *privatization;
isl_union_map *host_sched;
isl_union_map *shared_sched;
isl_union_map *copy_sched;
isl_union_map *thread_sched;
isl_union_map *full_sched;
};
/* Construct a map from domain_space to domain_space that increments
* the dimension at position "pos" and leaves all other dimensions
* constant.
*/
static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
{
isl_space *space;
isl_aff *aff;
isl_multi_aff *next;
space = isl_space_map_from_set(domain_space);
next = isl_multi_aff_identity(space);
aff = isl_multi_aff_get_aff(next, pos);
aff = isl_aff_add_constant_si(aff, 1);
next = isl_multi_aff_set_aff(next, pos, aff);
return isl_map_from_multi_aff(next);
}
/* Check if the given access is coalesced (or if there is no point
* in trying to coalesce the access by mapping the array to shared memory).
* That is, check whether incrementing the dimension that will get
* wrapped over the last thread index results in incrementing
* the last array index.
*
* If no two consecutive array elements are ever accessed by "access",
* then mapping the corresponding array to shared memory will not
* improve coalescing. In fact, the copying will likely be performed
* by a single thread. Consider the access as coalesced such that
* the caller will not try and map the array to shared memory just
* to improve coalescing.
*
* This function is only called for access relations without reuse and
* kernels with at least one thread identifier.
*/
static int access_is_coalesced(struct gpu_group_data *data,
__isl_keep isl_union_map *access)
{
int dim;
isl_space *space;
isl_set *accessed;
isl_map *access_map;
isl_map *next_thread_x;
isl_map *next_element;
isl_map *map;
int coalesced, empty;
access = isl_union_map_copy(access);
access = isl_union_map_apply_domain(access,
isl_union_map_copy(data->full_sched));
access_map = isl_map_from_union_map(access);
space = isl_map_get_space(access_map);
space = isl_space_range(space);
dim = isl_space_dim(space, isl_dim_set);
if (dim == 0)
next_element = isl_map_empty(isl_space_map_from_set(space));
else
next_element = next(space, dim - 1);
accessed = isl_map_range(isl_map_copy(access_map));
map = isl_map_copy(next_element);
map = isl_map_intersect_domain(map, isl_set_copy(accessed));
map = isl_map_intersect_range(map, accessed);
empty = isl_map_is_empty(map);
isl_map_free(map);
if (empty < 0 || empty) {
isl_map_free(next_element);
isl_map_free(access_map);
return empty;
}
space = isl_map_get_space(access_map);
space = isl_space_domain(space);
next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
map = isl_map_apply_range(map, access_map);
coalesced = isl_map_is_subset(map, next_element);
isl_map_free(next_element);
isl_map_free(map);
return coalesced;
}
/* Replace the host schedule dimensions in the access relation "access"
* by parameters, so that they are treated as fixed when checking for reuse
* (within a kernel) or whether two consecutive elements are accessed
* (within a kernel).
*/
static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
__isl_take isl_union_map *access)
{
int n;
isl_space *space;
isl_set *param;
isl_union_map *umap;
isl_id_list *ids;
umap = isl_union_map_copy(data->host_sched);
space = isl_union_map_get_space(umap);
n = data->kernel_depth;
ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
param = parametrization(space, n, 0, ids);
isl_id_list_free(ids);
umap = isl_union_map_intersect_range(umap,
isl_union_set_from_set(param));
access = isl_union_map_intersect_domain(access,
isl_union_map_domain(umap));
return access;
}
/* Given an access relation in terms of at least data->thread_depth initial
* dimensions of the computed schedule, check if it is bijective for
* fixed values of the first data->thread_depth dimensions.
* We perform this check by equating these dimensions to parameters.
*/
static int access_is_bijective(struct gpu_group_data *data,
__isl_keep isl_map *access)
{
int res;
int dim;
isl_set *par;
isl_space *space;
isl_id_list *ids;
access = isl_map_copy(access);
space = isl_space_params(isl_map_get_space(access));
ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
dim = isl_map_dim(access, isl_dim_in);
par = parametrization(space, dim, 0, ids);
isl_id_list_free(ids);
access = isl_map_intersect_domain(access, par);
res = isl_map_is_bijective(access);
isl_map_free(access);
return res;
}
/* Compute the number of outer schedule tile dimensions that affect
* the offset of "tile".
* If there is no such dimension, then return the index
* of the first kernel dimension, i.e., data->kernel_depth.
*/
static int compute_tile_depth(struct gpu_group_data *data,
struct gpu_array_tile *tile)
{
int i, j;
for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
for (i = 0; i < tile->n; ++i) {
isl_aff *lb;
isl_aff *shift;
lb = tile->bound[i].lb;
if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
break;
shift = tile->bound[i].shift;
if (!shift)
continue;
if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
break;
}
if (i < tile->n)
break;
}
return ++j;
}
/* Return the lowest depth between data->kernel_depth and data->thread_depth
* at which every array element accessed through "acc" is accessed
* by a single thread. The input dimension of "acc" is
* data->thread_depth + data->n_thread, where the final data->n_thread
* dimensions are those that will be mapped to threads.
* If the values for these dimensions are uniquely determined
* by the array index and a given number of outer dimensions, then
* there is only one thread accessing that array element within those
* outer dimensions.
*
* The input space of "acc" is first split up, such that it has the form
*
* [O -> T] -> A
*
* with O the outer dimensions, T the dimensions that will be mapped to threads
* and A the array index.
*
* Then the positions of T and A are interchanged to simplify the test
* whether T uniquely depends on O and A.
* In particular, the above access relation is first combined with
*
* [O -> T] -> T
*
* to form
*
* [O -> T] -> [A -> T]
*
* from which
*
* O -> [A -> T]
*
* is extracted, which is then uncurried to
*
* [O -> A] -> T
*
* Finally, the final dimensions of O are projected out one by one
* until T is no longer uniquely determined by A and the remaining
* dimensions in O. The value returned is that of the last dimension
* that was successfully projected out.
* Note that there is no need to test whether [O -> A] -> T itself
* is single-valued as that was already tested in access_is_bijective.
*/
static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
__isl_keep isl_map *acc)
{
int i;
isl_space *space;
isl_map *map;
isl_bool sv;
if (data->thread_depth == data->kernel_depth)
return data->thread_depth;
acc = isl_map_copy(acc);
space = isl_map_get_space(acc);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
space = isl_space_wrap(space);
map = isl_set_flatten_map(isl_set_universe(space));
acc = isl_map_apply_range(map, acc);
space = isl_space_domain(isl_map_get_space(acc));
map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
acc = isl_map_range_product(acc, map);
acc = isl_map_domain_factor_domain(acc);
acc = isl_map_uncurry(acc);
for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
acc = isl_map_project_out(acc, isl_dim_in, i, 1);
sv = isl_map_is_single_valued(acc);
if (sv < 0)
return -1;
if (!sv)
break;
}
isl_map_free(acc);
return ++i;
}
/* Adjust the fields of "tile" to reflect the new input dimension "depth".
* The dimension beyond "depth" are assumed not to affect the tile,
* so they can simply be dropped.
*/
static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
{
int i;
if (tile->depth == depth)
return 0;
for (i = 0; i < tile->n; ++i) {
tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
isl_dim_in, depth, tile->depth - depth);
if (!tile->bound[i].lb)
return -1;
if (!tile->bound[i].shift)
continue;
tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
isl_dim_in, depth, tile->depth - depth);
if (!tile->bound[i].shift)
return -1;
}
tile->depth = depth;
return 0;
}
/* Determine the number of schedule dimensions that affect the offset of the
* shared or private tile "tile" and store the result in tile->depth, with
* a lower bound of data->kernel_depth.
* Also adjust the fields of the tile to only refer to the tile->depth
* outer schedule dimensions.
*/
static isl_stat tile_set_depth(struct gpu_group_data *data,
struct gpu_array_tile *tile)
{
if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Determine the number of schedule dimensions that affect the offset of the
* shared tile and store the minimum of the private and shared tile depth
* in group->min_depth, with a lower bound of data->kernel_depth.
* If there is no tile defined on the array reference group,
* then set group->min_depth to data->thread_depth.
*/
static int set_depth(struct gpu_group_data *data,
struct gpu_array_ref_group *group)
{
group->min_depth = data->thread_depth;
if (group->private_tile) {
if (group->private_tile->depth < group->min_depth)
group->min_depth = group->private_tile->depth;
}
if (group->shared_tile) {
if (tile_set_depth(data, group->shared_tile) < 0)
return -1;
if (group->shared_tile->depth < group->min_depth)
group->min_depth = group->shared_tile->depth;
}
return 0;
}
/* Fill up the groups array with singleton groups, i.e., one group
* per reference, initializing the array, access, write, n_ref and refs fields.
* In particular the access field is initialized to the scheduled
* access relation of the array reference.
*
* Return the number of elements initialized, i.e., the number of
* active references in the current kernel.
*/
static int populate_array_references(struct gpu_local_array_info *local,
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
int i;
int n;
isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);
n = 0;
for (i = 0; i < local->array->n_ref; ++i) {
isl_union_map *umap;
isl_map *map;
struct gpu_array_ref_group *group;
struct gpu_stmt_access *access = local->array->refs[i];
map = isl_map_copy(access->access);
umap = isl_union_map_from_map(map);
umap = isl_union_map_apply_domain(umap,
isl_union_map_copy(data->copy_sched));
if (isl_union_map_is_empty(umap)) {
isl_union_map_free(umap);
continue;
}
map = isl_map_from_union_map(umap);
map = isl_map_detect_equalities(map);
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
if (!group)
return -1;
group->local_array = local;
group->array = local->array;
group->access = map;
group->write = access->write;
group->exact_write = access->exact_write;
group->slice = access->n_index < local->array->n_index;
group->refs = &local->array->refs[i];
group->n_ref = 1;
groups[n++] = group;
}
return n;
}
/* If group->n_ref == 1, then group->refs was set by
* populate_array_references to point directly into
* group->array->refs and should not be freed.
* If group->n_ref > 1, then group->refs was set by join_groups
* to point to a newly allocated array.
*/
struct gpu_array_ref_group *gpu_array_ref_group_free(
struct gpu_array_ref_group *group)
{
if (!group)
return NULL;
gpu_array_tile_free(group->shared_tile);
gpu_array_tile_free(group->private_tile);
isl_map_free(group->access);
if (group->n_ref > 1)
free(group->refs);
free(group);
return NULL;
}
/* Check if the access relations of group1 and group2 overlap within
* copy_sched.
*/
static int accesses_overlap(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int disjoint;
disjoint = isl_map_is_disjoint(group1->access, group2->access);
if (disjoint < 0)
return -1;
return !disjoint;
}
/* Combine the given two groups into a single group, containing
* the references of both groups.
*/
static struct gpu_array_ref_group *join_groups(
struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int i;
isl_ctx *ctx;
struct gpu_array_ref_group *group;
if (!group1 || !group2)
return NULL;
ctx = isl_map_get_ctx(group1->access);
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
if (!group)
return NULL;
group->local_array = group1->local_array;
group->array = group1->array;
group->access = isl_map_union(isl_map_copy(group1->access),
isl_map_copy(group2->access));
group->write = group1->write || group2->write;
group->exact_write = group1->exact_write && group2->exact_write;
group->slice = group1->slice || group2->slice;
group->n_ref = group1->n_ref + group2->n_ref;
group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
group->n_ref);
if (!group->refs)
return gpu_array_ref_group_free(group);
for (i = 0; i < group1->n_ref; ++i)
group->refs[i] = group1->refs[i];
for (i = 0; i < group2->n_ref; ++i)
group->refs[group1->n_ref + i] = group2->refs[i];
return group;
}
/* Combine the given two groups into a single group and free
* the original two groups.
*/
static struct gpu_array_ref_group *join_groups_and_free(
struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
struct gpu_array_ref_group *group;
group = join_groups(group1, group2);
gpu_array_ref_group_free(group1);
gpu_array_ref_group_free(group2);
return group;
}
/* Report that the array reference group with the given access relation
* is not mapped to shared memory in the given kernel because
* it does not exhibit any reuse and is considered to be coalesced.
*/
static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
__isl_keep isl_union_map *access)
{
isl_ctx *ctx;
isl_printer *p;
ctx = isl_union_map_get_ctx(access);
p = isl_printer_to_file(ctx, stdout);
p = isl_printer_print_str(p, "Array reference group ");
p = isl_printer_print_union_map(p, access);
p = isl_printer_print_str(p,
" not considered for mapping to shared memory in kernel");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p,
" because it exhibits no reuse and is considered to be coalesced");
p = isl_printer_end_line(p);
isl_printer_free(p);
}
/* Given an access relation in terms of the data->thread_depth initial
* dimensions of the computed schedule and the thread identifiers
* (as parameters), check if the use of the corresponding private tile
* requires unrolling.
*
* If we are creating a private tile because we are forced to,
* then no unrolling is required.
* Otherwise we check if "access" is bijective and unrolling
* is required if it is not. Note that the access relation
* has already been determined to be bijective before the introduction
* of the thread identifiers and the removal of the schedule dimensions
* that are mapped to these threads. If the access relation is no longer
* bijective, then this means that more than one value of one of those
* schedule dimensions is mapped to the same thread and therefore
* unrolling is required.
*/
static int check_requires_unroll(struct gpu_group_data *data,
__isl_keep isl_map *access, int force_private)
{
int bijective;
if (force_private)
return 0;
bijective = access_is_bijective(data, access);
if (bijective < 0)
return -1;
return !bijective;
}
/* Map the domain of "access" to the outer data->shared_depth
* schedule dimensions. When data->shared_depth is equal to
* data->thread_depth, this result is already available in group->access.
*/
static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
__isl_keep isl_union_map *access, struct gpu_group_data *data)
{
isl_union_map *shared;
if (data->shared_depth == data->thread_depth)
return isl_map_copy(group->access);
shared = isl_union_map_copy(access);
shared = isl_union_map_apply_domain(shared,
isl_union_map_copy(data->shared_sched));
return isl_map_from_union_map(shared);
}
/* Compute the private and/or shared memory tiles for the array
* reference group "group" of array "array".
* Return 0 on success and -1 on error.
*
* If the array is a read-only scalar or if the user requested
* not to use shared or private memory, then we do not need to do anything.
*
* If any reference in the reference group accesses more than one element,
* then we would have to make sure that the layout in shared memory
* is the same as that in global memory. Since we do not handle this yet
* (and it may not even be possible), we refuse to map to private or
* shared memory in such cases.
*
* If the array group involves any may writes (that are not must writes),
* then we would have to make sure that we load the data into shared/private
* memory first in case the data is not written by the kernel
* (but still written back out to global memory).
* Since we don't have any such mechanism at the moment, we don't
* compute shared/private tiles for groups involving may writes.
*
* We only try to compute a shared memory tile if there is any reuse
* or if the access is not coalesced.
* Reuse and coalescing are checked within the given kernel.
*
* For computing a private memory tile, we also require that there is
* some reuse. Moreover, we require that the access is private
* to the thread. That is, we check that any given array element
* is only accessed by a single thread.
* We compute an access relation that maps the outer
* data->thread_depth + data->n_thread schedule dimensions.
* The latter data->n_thread will be mapped to thread identifiers.
* We actually check that those iterators that will be wrapped
* partition the array space. This check is stricter than necessary
* since several iterations may be mapped onto the same thread
* and then they could be allowed to access the same memory elements,
* but our check does not allow this situation.
*
* For private memory tiles, the number of schedule dimensions that
* affect the offset is computed and stored in tile->depth, with
* a lower bound of data->kernel_depth. If this depth is smaller
* than the minimal depth that still ensures that every element
* is accessed by a single thread, then the depth is raised
* to this minimal depth.
* The fields of the tile are then adjusted to only refer to the tile->depth
* outer schedule dimensions.
*
* We also check that the index expression only depends on parallel
* loops. That way, we can move those loops innermost and unroll them.
* Again, we use a test that is stricter than necessary.
* We actually check whether the index expression only depends
* on the iterators that are wrapped over the threads.
* These are necessarily parallel, but there may be more parallel loops.
*
* Combining the injectivity of the first test with the single-valuedness
* of the second test, we simply test for bijectivity.
*
* If the use of the private tile requires unrolling, but some
* of the other arrays are forcibly mapped to private memory,
* then we do not allow the use of this private tile since
* we cannot move the schedule dimensions that need to be unrolled down
* without performing some kind of expansion on those arrays
* that are forcibly mapped to private memory.
*
* If the array is marked force_private, then we bypass all checks
* and assume we can (and should) use registers only.
*
* If it turns out we can (or have to) use registers, we compute
* the private memory tile size using can_tile, after introducing a dependence
* on the thread indices.
*/
static int compute_group_bounds_core(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
isl_ctx *ctx = isl_space_get_ctx(group->array->space);
isl_union_map *access, *local;
int n_index = group->array->n_index;
int no_reuse, coalesced;
isl_map *acc;
int force_private = group->local_array->force_private;
int use_shared = !force_private && kernel->options->use_shared_memory &&
data->n_thread > 0;
int use_private = force_private || kernel->options->use_private_memory;
int r = 0;
int requires_unroll;
int unique_depth;
if (!use_shared && !use_private)
return 0;
if (gpu_array_is_read_only_scalar(group->array))
return 0;
if (!force_private && !group->exact_write)
return 0;
if (group->slice)
return 0;
access = gpu_array_ref_group_access_relation(group, 1, 1);
local = localize_access(data, isl_union_map_copy(access));
no_reuse = isl_union_map_is_injective(local);
if (no_reuse < 0)
r = -1;
if (use_shared && no_reuse)
coalesced = access_is_coalesced(data, local);
isl_union_map_free(local);
if (r >= 0 && kernel->options->debug->verbose &&
use_shared && no_reuse && coalesced)
report_no_reuse_and_coalesced(kernel, access);
if (use_shared && (!no_reuse || !coalesced)) {
group->shared_tile = gpu_array_tile_create(ctx,
group->array->n_index);
acc = shared_access(group, access, data);
if (!group->shared_tile)
r = -1;
else if (!can_tile(acc, group->shared_tile))
group->shared_tile =
gpu_array_tile_free(group->shared_tile);
isl_map_free(acc);
}
if (r < 0 || (!force_private && (!use_private || no_reuse))) {
isl_union_map_free(access);
return r;
}
access = isl_union_map_apply_domain(access,
isl_union_map_copy(data->thread_sched));
acc = isl_map_from_union_map(access);
if (!force_private && !access_is_bijective(data, acc)) {
isl_map_free(acc);
return 0;
}
unique_depth = compute_accessed_by_single_thread_depth(data, acc);
acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
data->n_thread);
requires_unroll = check_requires_unroll(data, acc, force_private);
if (unique_depth < 0 || requires_unroll < 0 ||
(requires_unroll && kernel->any_force_private)) {
isl_map_free(acc);
return requires_unroll < 0 ? -1 : 0;
}
group->private_tile = gpu_array_tile_create(ctx, n_index);
if (!group->private_tile) {
isl_map_free(acc);
return -1;
}
group->private_tile->requires_unroll = requires_unroll;
if (!can_tile(acc, group->private_tile))
group->private_tile = gpu_array_tile_free(group->private_tile);
isl_map_free(acc);
if (group->private_tile) {
struct gpu_array_tile *tile = group->private_tile;
int tile_depth = compute_tile_depth(data, tile);
if (tile_depth < unique_depth)
tile_depth = unique_depth;
if (tile_adjust_depth(tile, tile_depth) < 0)
return -1;
}
if (force_private && !group->private_tile)
isl_die(ctx, isl_error_internal,
"unable to map array reference group to registers",
return -1);
return 0;
}
/* Compute the private and/or shared memory tiles for the array
* reference group "group" of array "array" and set the tile depth.
* Return 0 on success and -1 on error.
*/
static int compute_group_bounds(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
if (!group)
return -1;
if (compute_group_bounds_core(kernel, group, data) < 0)
return -1;
if (set_depth(data, group) < 0)
return -1;
return 0;
}
/* If two groups have overlapping access relations (as determined by
* the "overlap" function) and if one of them involves a write,
* then merge the two groups into one.
* If "compute_bounds" is set, then call compute_group_bounds
* on the merged groups.
*
* Return the updated number of groups.
* Return -1 on error.
*/
static int group_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups,
int (*overlap)(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2), int compute_bounds,
struct gpu_group_data *data)
{
int i, j;
for (i = 0; i < n; ++i) {
for (j = n - 1; j > i; --j) {
if (!groups[i]->write && !groups[j]->write)
continue;
if (!overlap(groups[i], groups[j]))
continue;
groups[i] = join_groups_and_free(groups[i], groups[j]);
if (j != n - 1)
groups[j] = groups[n - 1];
groups[n - 1] = NULL;
n--;
if (!groups[i])
return -1;
if (compute_bounds &&
compute_group_bounds(kernel, groups[i], data) < 0)
return -1;
}
}
return n;
}
/* If two groups have overlapping access relations (within the innermost
* loop) and if one of them involves a write, then merge the two groups
* into one.
*
* Return the updated number of groups.
*/
static int group_overlapping_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups,
struct gpu_group_data *data)
{
return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
}
/* Check if the access relations of group1 and group2 overlap within
* the outermost min(group1->min_depth, group2->min_depth) loops.
*/
static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int depth;
int dim;
int empty;
isl_map *map_i, *map_j, *map;
depth = group1->min_depth;
if (group2->min_depth < depth)
depth = group2->min_depth;
map_i = isl_map_copy(group1->access);
dim = isl_map_dim(map_i, isl_dim_in);
map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
map_j = isl_map_copy(group2->access);
map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
map = isl_map_intersect(map_i, map_j);
empty = isl_map_is_empty(map);
isl_map_free(map);
return !empty;
}
/* If two groups have overlapping access relations (within the outer
* depth loops) and if one of them involves a write,
* then merge the two groups into one.
*
* Return the updated number of groups.
*/
static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
data);
}
/* Is the size of the tile specified by "tile" smaller than the sum of
* the sizes of the tiles specified by "tile1" and "tile2"?
*/
static int smaller_tile(struct gpu_array_tile *tile,
struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
{
int smaller;
isl_val *size, *size1, *size2;
size = gpu_array_tile_size(tile);
size1 = gpu_array_tile_size(tile1);
size2 = gpu_array_tile_size(tile2);
size = isl_val_sub(size, size1);
size = isl_val_sub(size, size2);
smaller = isl_val_is_neg(size);
isl_val_free(size);
return smaller;
}
/* Given an initial grouping of array references and shared memory tiles
* for each group that allows for a shared memory tile, merge two groups
* if both have a shared memory tile, the merged group also has
* a shared memory tile and the size of the tile for the merge group
* is smaller than the sum of the tile sizes of the individual groups.
*
* If merging two groups decreases the depth of the tile of
* one or both of the two groups, then we need to check for overlapping
* writes again.
*
* Return the number of groups after merging.
* Return -1 on error.
*/
static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
struct gpu_array_info *array, int n,
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
int i, j;
int recompute_overlap = 0;
for (i = 0; i < n; ++i) {
if (!groups[i]->shared_tile)
continue;
for (j = n - 1; j > i; --j) {
struct gpu_array_ref_group *group;
if (!groups[j]->shared_tile)
continue;
if (!depth_accesses_overlap(groups[i], groups[j]))
continue;
group = join_groups(groups[i], groups[j]);
if (compute_group_bounds(kernel, group, data) < 0) {
gpu_array_ref_group_free(group);
return -1;
}
if (!group->shared_tile ||
!smaller_tile(group->shared_tile,
groups[i]->shared_tile,
groups[j]->shared_tile)) {
gpu_array_ref_group_free(group);
continue;
}
if (group->min_depth < groups[i]->min_depth ||
group->min_depth < groups[j]->min_depth)
recompute_overlap = 1;
gpu_array_ref_group_free(groups[i]);
gpu_array_ref_group_free(groups[j]);
groups[i] = group;
if (j != n - 1)
groups[j] = groups[n - 1];
n--;
}
}
if (recompute_overlap)
n = group_depth_overlapping_writes(kernel, n, groups, data);
return n;
}
/* Set array->n_group and array->groups to n and groups.
*
* Additionally, set the "nr" field of each group.
*/
static void set_array_groups(struct gpu_local_array_info *array,
int n, struct gpu_array_ref_group **groups)
{
int i;
array->n_group = n;
array->groups = groups;
for (i = 0; i < n; ++i)
groups[i]->nr = i;
}
/* Combine all groups in "groups" into a single group and return
* the new number of groups (1 or 0 if there were no groups to start with).
*/
static int join_all_groups(int n, struct gpu_array_ref_group **groups)
{
int i;
for (i = n - 1; i > 0; --i) {
groups[0] = join_groups_and_free(groups[0], groups[i]);
groups[i] = NULL;
n--;
}
return n;
}
/* Group array references that should be considered together when
* deciding whether to access them from private, shared or global memory.
* Return -1 on error.
*
* In particular, if two array references overlap and if one of them
* is a write, then the two references are grouped together.
* We first perform an initial grouping based only on the access relation.
* After computing shared and private memory tiles, we check for
* overlapping writes again, but this time taking into account
* the depth of the effective tile.
*
* Furthermore, if two groups admit a shared memory tile and if the
* combination of the two also admits a shared memory tile, we merge
* the two groups.
*
* If the array contains structures, then we compute a single
* reference group without trying to find any tiles
* since we do not map such arrays to private or shared
* memory. The only exception is when those arrays of structures
* are required to be mapped to private memory.
*/
static int group_array_references(struct ppcg_kernel *kernel,
struct gpu_local_array_info *local, struct gpu_group_data *data)
{
int i;
int n;
isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
struct gpu_array_ref_group **groups;
groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
local->array->n_ref);
if (!groups)
return -1;
n = populate_array_references(local, groups, data);
if (local->array->has_compound_element && !local->force_private) {
n = join_all_groups(n, groups);
set_array_groups(local, n, groups);
return 0;
}
n = group_overlapping_writes(kernel, n, groups, data);
for (i = 0; i < n; ++i)
if (compute_group_bounds(kernel, groups[i], data) < 0)
n = -1;
n = group_depth_overlapping_writes(kernel, n, groups, data);
n = group_common_shared_memory_tile(kernel, local->array,
n, groups, data);
set_array_groups(local, n, groups);
if (n >= 0)
return 0;
for (i = 0; i < local->array->n_ref; ++i)
gpu_array_ref_group_free(groups[i]);
return -1;
}
/* For each array in the input program that can be mapped to private memory,
* check if there are any order dependences active inside the current kernel,
* within the same iteration of the host schedule, i.e., the prefix
* schedule at "node".
* If so, mark the array as force_private so that its reference groups will be
* mapped to a registers.
*
* Note that the arrays that cannot be mapped to private memory have
* had their order dependences added to prog->array_order and
* subsequently to the coincidence constraints.
*/
static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
__isl_keep isl_schedule_node *node)
{
int i;
isl_union_set *domain;
isl_multi_union_pw_aff *prefix;
isl_union_pw_multi_aff *contraction;
if (!kernel->options->live_range_reordering)
return;
kernel->any_force_private = 0;
prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
contraction);
domain = isl_union_set_copy(kernel->expanded_domain);
domain = isl_union_set_universe(domain);
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
isl_union_map *order;
local->force_private = 0;
if (!gpu_array_can_be_private(local->array))
continue;
order = isl_union_map_copy(local->array->dep_order);
order = isl_union_map_intersect_domain(order,
isl_union_set_copy(domain));
order = isl_union_map_intersect_range(order,
isl_union_set_copy(domain));
order = isl_union_map_eq_at_multi_union_pw_aff(order,
isl_multi_union_pw_aff_copy(prefix));
if (!isl_union_map_is_empty(order)) {
local->force_private = 1;
kernel->any_force_private = 1;
}
isl_union_map_free(order);
}
isl_multi_union_pw_aff_free(prefix);
isl_union_set_free(domain);
}
/* Expand the domain of the schedule "s" by plugging in
* the contraction "contraction" and return the result.
*/
static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
__isl_keep isl_union_pw_multi_aff *contraction)
{
contraction = isl_union_pw_multi_aff_copy(contraction);
s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
return s;
}
/* Create a set of dimension data->thread_depth + data->n_thread
* that equates the residue of the final data->n_thread dimensions
* modulo the kernel->block_dim sizes to the thread identifiers.
* Store the computed set in data->privatization.
*
* The construction starts with the space of kernel->thread_filter,
* which is known to reference all thread identifiers.
*/
static void compute_privatization(struct gpu_group_data *data,
struct ppcg_kernel *kernel)
{
int i;
isl_ctx *ctx;
isl_space *space;
isl_local_space *ls;
isl_set *set;
ctx = isl_union_map_get_ctx(data->shared_sched);
space = isl_union_set_get_space(kernel->thread_filter);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set,
data->thread_depth + data->n_thread);
set = isl_set_universe(space);
space = isl_set_get_space(set);
ls = isl_local_space_from_space(space);
for (i = 0; i < data->n_thread; ++i) {
isl_aff *aff, *aff2;
isl_constraint *c;
isl_val *v;
isl_id *id;
int pos;
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_set, data->thread_depth + i);
v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
aff = isl_aff_mod_val(aff, v);
id = isl_id_list_get_id(kernel->thread_ids, i);
pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
isl_id_free(id);
aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_param, pos);
aff = isl_aff_sub(aff, aff2);
c = isl_equality_from_aff(aff);
set = isl_set_add_constraint(set, c);
}
isl_local_space_free(ls);
data->privatization = set;
}
/* Return the prefix schedule at "node" as a relation
* between domain elements and schedule dimensions after detecting
* equalities in this relation.
*/
static __isl_give isl_union_map *prefix_with_equalities(
__isl_keep isl_schedule_node *node)
{
isl_union_map *schedule;
schedule = isl_schedule_node_get_prefix_schedule_relation(node);
schedule = isl_union_map_detect_equalities(schedule);
return schedule;
}
/* Group references of all arrays in "kernel".
* "node" points to the kernel mark.
* The mapping to shared memory in computed at the "shared" mark.
*
* We first extract all required schedule information into
* a gpu_group_data structure and then consider each array
* in turn.
*/
int gpu_group_references(struct ppcg_kernel *kernel,
__isl_keep isl_schedule_node *node)
{
int i;
int r = 0;
isl_union_pw_multi_aff *contraction;
struct gpu_group_data data;
check_can_be_private_live_ranges(kernel, node);
data.scop = kernel->prog->scop;
data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
node = isl_schedule_node_copy(node);
node = gpu_tree_move_down_to_shared(node, kernel->core);
data.shared_depth = isl_schedule_node_get_schedule_depth(node);
data.shared_sched = prefix_with_equalities(node);
node = gpu_tree_move_down_to_thread(node, kernel->core);
node = isl_schedule_node_child(node, 0);
data.thread_depth = isl_schedule_node_get_schedule_depth(node);
data.n_thread = isl_schedule_node_band_n_member(node);
if (data.thread_depth == data.shared_depth)
data.copy_sched = isl_union_map_copy(data.shared_sched);
else
data.copy_sched = prefix_with_equalities(node);
data.thread_sched = isl_union_map_copy(data.copy_sched);
data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
isl_schedule_node_band_get_partial_schedule_union_map(node));
data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
data.host_sched = expand(data.host_sched, contraction);
data.shared_sched = expand(data.shared_sched, contraction);
if (data.thread_depth == data.shared_depth) {
isl_union_map_free(data.copy_sched);
data.copy_sched = isl_union_map_copy(data.shared_sched);
} else {
data.copy_sched = expand(data.copy_sched, contraction);
}
data.thread_sched = expand(data.thread_sched, contraction);
isl_union_pw_multi_aff_free(contraction);
node = isl_schedule_node_child(node, 0);
data.full_sched = isl_union_map_copy(data.thread_sched);
data.full_sched = isl_union_map_flat_range_product(data.full_sched,
isl_schedule_node_get_subtree_schedule_union_map(node));
isl_schedule_node_free(node);
compute_privatization(&data, kernel);
for (i = 0; i < kernel->n_array; ++i) {
r = group_array_references(kernel, &kernel->array[i], &data);
if (r < 0)
break;
}
isl_union_map_free(data.host_sched);
isl_union_map_free(data.shared_sched);
isl_union_map_free(data.copy_sched);
isl_union_map_free(data.thread_sched);
isl_union_map_free(data.full_sched);
isl_set_free(data.privatization);
return r;
}
/* Given a description of an array tile "tile" and the "space"
*
* { D -> A }
*
* where D represents the first tile->depth schedule dimensions
* and A represents the array, construct an isl_multi_aff
*
* { [D[i] -> A[a]] -> A'[a'] }
*
* with A' a scaled down copy of A according to the shifts and strides
* in "tile". In particular,
*
* a' = (a + shift(i))/stride
*
* "insert_array" represents
*
* { [D -> A] -> D }
*
* and is used to insert A into the domain of functions that only
* reference D.
*/
static __isl_give isl_multi_aff *strided_tile(
struct gpu_array_tile *tile, __isl_keep isl_space *space,
__isl_keep isl_multi_aff *insert_array)
{
int i;
isl_ctx *ctx;
isl_multi_aff *shift;
isl_multi_val *stride;
isl_space *space2;
isl_local_space *ls;
isl_multi_aff *tiling;
ctx = isl_space_get_ctx(space);
space2 = isl_space_domain(isl_space_copy(space));
ls = isl_local_space_from_space(space2);
space2 = isl_space_range(isl_space_copy(space));
stride = isl_multi_val_zero(space2);
shift = isl_multi_aff_zero(isl_space_copy(space));
for (i = 0; i < tile->n; ++i) {
struct gpu_array_bound *bound = &tile->bound[i];
isl_val *stride_i;
isl_aff *shift_i;
if (tile->bound[i].shift) {
stride_i = isl_val_copy(bound->stride);
shift_i = isl_aff_copy(bound->shift);
} else {
stride_i = isl_val_one(ctx);
shift_i = isl_aff_zero_on_domain(
isl_local_space_copy(ls));
}
stride = isl_multi_val_set_val(stride, i, stride_i);
shift = isl_multi_aff_set_aff(shift, i, shift_i);
}
isl_local_space_free(ls);
shift = isl_multi_aff_pullback_multi_aff(shift,
isl_multi_aff_copy(insert_array));
tiling = isl_multi_aff_range_map(isl_space_copy(space));
tiling = isl_multi_aff_add(tiling, shift);
tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
return tiling;
}
/* Compute a tiling for the array reference group "group".
*
* The tiling is of the form
*
* { [D[i] -> A[a]] -> T[t] }
*
* where D represents the first tile->depth schedule dimensions,
* A represents the global array and T represents the shared or
* private memory tile. The name of T is the name of the local
* array.
*
* If there is any stride in the accesses, then the mapping is
*
* t = (a + shift(i))/stride - lb(i)
*
* otherwise, it is simply
*
* t = a - lb(i)
*/
void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
{
int i;
struct gpu_array_tile *tile;
isl_space *space;
isl_multi_aff *tiling, *lb, *insert_array;
isl_printer *p;
char *local_name;
tile = gpu_array_ref_group_tile(group);
if (!tile)
return;
space = isl_map_get_space(group->access);
space = isl_space_from_range(isl_space_range(space));
space = isl_space_add_dims(space, isl_dim_in, tile->depth);
insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
for (i = 0; i < tile->n; ++i)
if (tile->bound[i].shift)
break;
if (i < tile->n)
tiling = strided_tile(tile, space, insert_array);
else
tiling = isl_multi_aff_range_map(isl_space_copy(space));
lb = isl_multi_aff_zero(space);
for (i = 0; i < tile->n; ++i) {
isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
lb = isl_multi_aff_set_aff(lb, i, lb_i);
}
lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
tiling = isl_multi_aff_sub(tiling, lb);
p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
p = gpu_array_ref_group_print_name(group, p);
local_name = isl_printer_get_str(p);
isl_printer_free(p);
tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
free(local_name);
tile->tiling = tiling;
}