Xamarin Public Jenkins (auto-signing) 94b2861243 Imported Upstream version 4.8.0.309
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
2016-11-10 13:04:39 +00:00

361 lines
15 KiB
C#

//------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------
namespace System.ServiceModel.Security
{
using System.Collections;
using System.Collections.Generic;
using System.ServiceModel.Channels;
using System.ServiceModel;
using System.Reflection;
using System.Threading;
using System.IO;
using System.Runtime.InteropServices;
using System.IdentityModel.Tokens;
using System.Text;
using System.Xml;
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Security.Cryptography;
using Psha1DerivedKeyGenerator = System.IdentityModel.Psha1DerivedKeyGenerator;
using CryptoAlgorithms = System.IdentityModel.CryptoHelper;
static class CryptoHelper
{
static byte[] emptyBuffer;
static readonly RandomNumberGenerator random = new RNGCryptoServiceProvider();
enum CryptoAlgorithmType
{
Unknown,
Symmetric,
Asymmetric
}
internal static byte[] EmptyBuffer
{
get
{
if (emptyBuffer == null)
{
byte[] tmp = new byte[0];
emptyBuffer = tmp;
}
return emptyBuffer;
}
}
internal static HashAlgorithm NewSha1HashAlgorithm()
{
return CryptoHelper.CreateHashAlgorithm(SecurityAlgorithms.Sha1Digest);
}
internal static HashAlgorithm NewSha256HashAlgorithm()
{
return CryptoHelper.CreateHashAlgorithm(SecurityAlgorithms.Sha256Digest);
}
[SuppressMessage("Microsoft.Security.Cryptography", "CA5354:DoNotUseSHA1", Justification = "Cannot change. Required as SOAP spec requires supporting SHA1.")]
internal static HashAlgorithm CreateHashAlgorithm(string digestMethod)
{
object algorithmObject = CryptoAlgorithms.GetAlgorithmFromConfig(digestMethod);
if (algorithmObject != null)
{
HashAlgorithm hashAlgorithm = algorithmObject as HashAlgorithm;
if (hashAlgorithm != null)
return hashAlgorithm;
throw DiagnosticUtility.ExceptionUtility.ThrowHelperWarning(new MessageSecurityException(SR.GetString(SR.CustomCryptoAlgorithmIsNotValidHashAlgorithm, digestMethod)));
}
switch (digestMethod)
{
case SecurityAlgorithms.Sha1Digest:
if (SecurityUtilsEx.RequiresFipsCompliance)
return new SHA1CryptoServiceProvider();
else
return new SHA1Managed();
case SecurityAlgorithms.Sha256Digest:
if (SecurityUtilsEx.RequiresFipsCompliance)
return new SHA256CryptoServiceProvider();
else
return new SHA256Managed();
default:
throw DiagnosticUtility.ExceptionUtility.ThrowHelperWarning(new MessageSecurityException(SR.GetString(SR.UnsupportedCryptoAlgorithm, digestMethod)));
}
}
[SuppressMessage("Microsoft.Security.Cryptography", "CA5354:DoNotUseSHA1", Justification = "Cannot change. Required as SOAP spec requires supporting SHA1.")]
internal static HashAlgorithm CreateHashForAsymmetricSignature(string signatureMethod)
{
object algorithmObject = CryptoAlgorithms.GetAlgorithmFromConfig(signatureMethod);
if (algorithmObject != null)
{
HashAlgorithm hashAlgorithm;
SignatureDescription signatureDescription = algorithmObject as SignatureDescription;
if (signatureDescription != null)
{
hashAlgorithm = signatureDescription.CreateDigest();
if (hashAlgorithm != null)
return hashAlgorithm;
}
hashAlgorithm = algorithmObject as HashAlgorithm;
if (hashAlgorithm != null)
return hashAlgorithm;
throw DiagnosticUtility.ExceptionUtility.ThrowHelperWarning(new MessageSecurityException(SR.GetString(SR.CustomCryptoAlgorithmIsNotValidAsymmetricSignature, signatureMethod)));
}
switch (signatureMethod)
{
case SecurityAlgorithms.RsaSha1Signature:
case SecurityAlgorithms.DsaSha1Signature:
if (SecurityUtilsEx.RequiresFipsCompliance)
return new SHA1CryptoServiceProvider();
else
return new SHA1Managed();
case SecurityAlgorithms.RsaSha256Signature:
if (SecurityUtilsEx.RequiresFipsCompliance)
return new SHA256CryptoServiceProvider();
else
return new SHA256Managed();
default:
throw DiagnosticUtility.ExceptionUtility.ThrowHelperWarning(new MessageSecurityException(SR.GetString(SR.UnsupportedCryptoAlgorithm, signatureMethod)));
}
}
internal static byte[] ExtractIVAndDecrypt(SymmetricAlgorithm algorithm, byte[] cipherText, int offset, int count)
{
if (cipherText == null)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperArgumentNull("cipherText");
}
if (count < 0 || count > cipherText.Length)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("count", SR.GetString(SR.ValueMustBeInRange, 0, cipherText.Length)));
}
if (offset < 0 || offset > cipherText.Length - count)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("offset", SR.GetString(SR.ValueMustBeInRange, 0, cipherText.Length - count)));
}
int ivSize = algorithm.BlockSize / 8;
byte[] iv = new byte[ivSize];
Buffer.BlockCopy(cipherText, offset, iv, 0, iv.Length);
algorithm.Padding = PaddingMode.ISO10126;
algorithm.Mode = CipherMode.CBC;
try
{
using (ICryptoTransform decrTransform = algorithm.CreateDecryptor(algorithm.Key, iv))
{
return decrTransform.TransformFinalBlock(cipherText, offset + iv.Length, count - iv.Length);
}
}
catch (CryptographicException ex)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new MessageSecurityException(SR.GetString(SR.DecryptionFailed), ex));
}
}
internal static void FillRandomBytes(byte[] buffer)
{
random.GetBytes(buffer);
}
static CryptoAlgorithmType GetAlgorithmType(string algorithm)
{
object algorithmObject = null;
try
{
algorithmObject = CryptoAlgorithms.GetAlgorithmFromConfig(algorithm);
}
catch (InvalidOperationException)
{
algorithmObject = null;
// We ---- the exception and continue.
}
if (algorithmObject != null)
{
SymmetricAlgorithm symmetricAlgorithm = algorithmObject as SymmetricAlgorithm;
KeyedHashAlgorithm keyedHashAlgorithm = algorithmObject as KeyedHashAlgorithm;
if (symmetricAlgorithm != null || keyedHashAlgorithm != null)
return CryptoAlgorithmType.Symmetric;
// NOTE: A KeyedHashAlgorithm is symmetric in nature.
AsymmetricAlgorithm asymmetricAlgorithm = algorithmObject as AsymmetricAlgorithm;
SignatureDescription signatureDescription = algorithmObject as SignatureDescription;
if (asymmetricAlgorithm != null || signatureDescription != null)
return CryptoAlgorithmType.Asymmetric;
return CryptoAlgorithmType.Unknown;
}
switch (algorithm)
{
case SecurityAlgorithms.DsaSha1Signature:
case SecurityAlgorithms.RsaSha1Signature:
case SecurityAlgorithms.RsaSha256Signature:
case SecurityAlgorithms.RsaOaepKeyWrap:
case SecurityAlgorithms.RsaV15KeyWrap:
return CryptoAlgorithmType.Asymmetric;
case SecurityAlgorithms.HmacSha1Signature:
case SecurityAlgorithms.HmacSha256Signature:
case SecurityAlgorithms.Aes128Encryption:
case SecurityAlgorithms.Aes192Encryption:
case SecurityAlgorithms.Aes256Encryption:
case SecurityAlgorithms.TripleDesEncryption:
case SecurityAlgorithms.Aes128KeyWrap:
case SecurityAlgorithms.Aes192KeyWrap:
case SecurityAlgorithms.Aes256KeyWrap:
case SecurityAlgorithms.TripleDesKeyWrap:
case SecurityAlgorithms.Psha1KeyDerivation:
case SecurityAlgorithms.Psha1KeyDerivationDec2005:
return CryptoAlgorithmType.Symmetric;
default:
return CryptoAlgorithmType.Unknown;
}
}
internal static byte[] GenerateIVAndEncrypt(SymmetricAlgorithm algorithm, byte[] plainText, int offset, int count)
{
byte[] iv;
byte[] cipherText;
GenerateIVAndEncrypt(algorithm, new ArraySegment<byte>(plainText, offset, count), out iv, out cipherText);
byte[] output = DiagnosticUtility.Utility.AllocateByteArray(checked(iv.Length + cipherText.Length));
Buffer.BlockCopy(iv, 0, output, 0, iv.Length);
Buffer.BlockCopy(cipherText, 0, output, iv.Length, cipherText.Length);
return output;
}
internal static void GenerateIVAndEncrypt(SymmetricAlgorithm algorithm, ArraySegment<byte> plainText, out byte[] iv, out byte[] cipherText)
{
int ivSize = algorithm.BlockSize / 8;
iv = new byte[ivSize];
FillRandomBytes(iv);
algorithm.Padding = PaddingMode.PKCS7;
algorithm.Mode = CipherMode.CBC;
using (ICryptoTransform encrTransform = algorithm.CreateEncryptor(algorithm.Key, iv))
{
cipherText = encrTransform.TransformFinalBlock(plainText.Array, plainText.Offset, plainText.Count);
}
}
internal static bool IsEqual(byte[] a, byte[] b)
{
if (a == null || b == null || a.Length != b.Length)
{
return false;
}
for (int i = 0; i < a.Length; i++)
{
if (a[i] != b[i])
{
return false;
}
}
return true;
}
internal static bool IsSymmetricAlgorithm(string algorithm)
{
return GetAlgorithmType(algorithm) == CryptoAlgorithmType.Symmetric;
}
internal static bool IsSymmetricSupportedAlgorithm(string algorithm, int keySize)
{
bool found = false;
object algorithmObject = null;
try
{
algorithmObject = CryptoAlgorithms.GetAlgorithmFromConfig(algorithm);
}
catch (InvalidOperationException)
{
algorithmObject = null;
// We ---- the exception and continue.
}
if (algorithmObject != null)
{
SymmetricAlgorithm symmetricAlgorithm = algorithmObject as SymmetricAlgorithm;
KeyedHashAlgorithm keyedHashAlgorithm = algorithmObject as KeyedHashAlgorithm;
if (symmetricAlgorithm != null || keyedHashAlgorithm != null)
found = true;
}
switch (algorithm)
{
case SecurityAlgorithms.DsaSha1Signature:
case SecurityAlgorithms.RsaSha1Signature:
case SecurityAlgorithms.RsaSha256Signature:
case SecurityAlgorithms.RsaOaepKeyWrap:
case SecurityAlgorithms.RsaV15KeyWrap:
return false;
case SecurityAlgorithms.HmacSha1Signature:
case SecurityAlgorithms.HmacSha256Signature:
case SecurityAlgorithms.Psha1KeyDerivation:
case SecurityAlgorithms.Psha1KeyDerivationDec2005:
return true;
case SecurityAlgorithms.Aes128Encryption:
case SecurityAlgorithms.Aes128KeyWrap:
return keySize == 128;
case SecurityAlgorithms.Aes192Encryption:
case SecurityAlgorithms.Aes192KeyWrap:
return keySize == 192;
case SecurityAlgorithms.Aes256Encryption:
case SecurityAlgorithms.Aes256KeyWrap:
return keySize == 256;
case SecurityAlgorithms.TripleDesEncryption:
case SecurityAlgorithms.TripleDesKeyWrap:
return keySize == 128 || keySize == 192;
default:
if (found)
return true;
return false;
}
}
internal static void ValidateBufferBounds(Array buffer, int offset, int count)
{
if (buffer == null)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentNullException("buffer"));
}
if (count < 0 || count > buffer.Length)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("count", SR.GetString(SR.ValueMustBeInRange, 0, buffer.Length)));
}
if (offset < 0 || offset > buffer.Length - count)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("offset", SR.GetString(SR.ValueMustBeInRange, 0, buffer.Length - count)));
}
}
internal static void ValidateSymmetricKeyLength(int keyLength, SecurityAlgorithmSuite algorithmSuite)
{
if (!algorithmSuite.IsSymmetricKeyLengthSupported(keyLength))
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperWarning(new ArgumentOutOfRangeException("algorithmSuite",
SR.GetString(SR.UnsupportedKeyLength, keyLength, algorithmSuite.ToString())));
}
if (keyLength % 8 != 0)
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperWarning(new ArgumentOutOfRangeException("algorithmSuite",
SR.GetString(SR.KeyLengthMustBeMultipleOfEight, keyLength)));
}
}
}
}