Xamarin Public Jenkins (auto-signing) 8e12397d70 Imported Upstream version 5.18.0.205
Former-commit-id: 7f59f7e792705db773f1caecdaa823092f4e2927
2018-11-16 08:20:38 +00:00

912 lines
37 KiB
C++

//===- MemorySSA.cpp - Unit tests for MemorySSA ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "gtest/gtest.h"
using namespace llvm;
const static char DLString[] = "e-i64:64-f80:128-n8:16:32:64-S128";
/// There's a lot of common setup between these tests. This fixture helps reduce
/// that. Tests should mock up a function, store it in F, and then call
/// setupAnalyses().
class MemorySSATest : public testing::Test {
protected:
// N.B. Many of these members depend on each other (e.g. the Module depends on
// the Context, etc.). So, order matters here (and in TestAnalyses).
LLVMContext C;
Module M;
IRBuilder<> B;
DataLayout DL;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
Function *F;
// Things that we need to build after the function is created.
struct TestAnalyses {
DominatorTree DT;
AssumptionCache AC;
AAResults AA;
BasicAAResult BAA;
// We need to defer MSSA construction until AA is *entirely* set up, which
// requires calling addAAResult. Hence, we just use a pointer here.
std::unique_ptr<MemorySSA> MSSA;
MemorySSAWalker *Walker;
TestAnalyses(MemorySSATest &Test)
: DT(*Test.F), AC(*Test.F), AA(Test.TLI),
BAA(Test.DL, Test.TLI, AC, &DT) {
AA.addAAResult(BAA);
MSSA = make_unique<MemorySSA>(*Test.F, &AA, &DT);
Walker = MSSA->getWalker();
}
};
std::unique_ptr<TestAnalyses> Analyses;
void setupAnalyses() {
assert(F);
Analyses.reset(new TestAnalyses(*this));
}
public:
MemorySSATest()
: M("MemorySSATest", C), B(C), DL(DLString), TLI(TLII), F(nullptr) {}
};
TEST_F(MemorySSATest, CreateALoad) {
// We create a diamond where there is a store on one side, and then after
// building MemorySSA, create a load after the merge point, and use it to test
// updating by creating an access for the load.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Add the load
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
// MemoryPHI should already exist.
MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
EXPECT_NE(MP, nullptr);
// Create the load memory acccess
MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LoadInst, MP, Merge, MemorySSA::Beginning));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, CreateLoadsAndStoreUpdater) {
// We create a diamond, then build memoryssa with no memory accesses, and
// incrementally update it by inserting a store in the, entry, a load in the
// merge point, then a store in the branch, another load in the merge point,
// and then a store in the entry.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left, Left->begin());
Argument *PointerArg = &*F->arg_begin();
B.SetInsertPoint(Left);
B.CreateBr(Merge);
B.SetInsertPoint(Right);
B.CreateBr(Merge);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Add the store
B.SetInsertPoint(Entry, Entry->begin());
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *EntryStoreAccess = Updater.createMemoryAccessInBB(
EntryStore, nullptr, Entry, MemorySSA::Beginning);
Updater.insertDef(cast<MemoryDef>(EntryStoreAccess));
// Add the load
B.SetInsertPoint(Merge, Merge->begin());
LoadInst *FirstLoad = B.CreateLoad(PointerArg);
// MemoryPHI should not already exist.
MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
EXPECT_EQ(MP, nullptr);
// Create the load memory access
MemoryUse *FirstLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
FirstLoad, nullptr, Merge, MemorySSA::Beginning));
Updater.insertUse(FirstLoadAccess);
// Should just have a load using the entry access, because it should discover
// the phi is trivial
EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), EntryStoreAccess);
// Create a store on the left
// Add the store
B.SetInsertPoint(Left, Left->begin());
StoreInst *LeftStore = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *LeftStoreAccess = Updater.createMemoryAccessInBB(
LeftStore, nullptr, Left, MemorySSA::Beginning);
Updater.insertDef(cast<MemoryDef>(LeftStoreAccess), false);
// We don't touch existing loads, so we need to create a new one to get a phi
// Add the second load
B.SetInsertPoint(Merge, Merge->begin());
LoadInst *SecondLoad = B.CreateLoad(PointerArg);
// MemoryPHI should not already exist.
MP = MSSA.getMemoryAccess(Merge);
EXPECT_EQ(MP, nullptr);
// Create the load memory access
MemoryUse *SecondLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
SecondLoad, nullptr, Merge, MemorySSA::Beginning));
Updater.insertUse(SecondLoadAccess);
// Now the load should be a phi of the entry store and the left store
MemoryPhi *MergePhi =
dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
EXPECT_NE(MergePhi, nullptr);
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
// Now create a store below the existing one in the entry
B.SetInsertPoint(Entry, --Entry->end());
StoreInst *SecondEntryStore = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *SecondEntryStoreAccess = Updater.createMemoryAccessInBB(
SecondEntryStore, nullptr, Entry, MemorySSA::End);
// Insert it twice just to test renaming
Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess), false);
EXPECT_NE(FirstLoadAccess->getDefiningAccess(), MergePhi);
Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess), true);
EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), MergePhi);
// and make sure the phi below it got updated, despite being blocks away
MergePhi = dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
EXPECT_NE(MergePhi, nullptr);
EXPECT_EQ(MergePhi->getIncomingValue(0), SecondEntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, CreateALoadUpdater) {
// We create a diamond, then build memoryssa with no memory accesses, and
// incrementally update it by inserting a store in one of the branches, and a
// load in the merge point
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left, Left->begin());
Argument *PointerArg = &*F->arg_begin();
B.SetInsertPoint(Left);
B.CreateBr(Merge);
B.SetInsertPoint(Right);
B.CreateBr(Merge);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
B.SetInsertPoint(Left, Left->begin());
// Add the store
StoreInst *SI = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *StoreAccess =
Updater.createMemoryAccessInBB(SI, nullptr, Left, MemorySSA::Beginning);
Updater.insertDef(cast<MemoryDef>(StoreAccess));
// Add the load
B.SetInsertPoint(Merge, Merge->begin());
LoadInst *LoadInst = B.CreateLoad(PointerArg);
// MemoryPHI should not already exist.
MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
EXPECT_EQ(MP, nullptr);
// Create the load memory acccess
MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LoadInst, nullptr, Merge, MemorySSA::Beginning));
Updater.insertUse(LoadAccess);
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, SinkLoad) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left, Left->begin());
Argument *PointerArg = &*F->arg_begin();
B.SetInsertPoint(Left);
B.CreateBr(Merge);
B.SetInsertPoint(Right);
B.CreateBr(Merge);
// Load in left block
B.SetInsertPoint(Left, Left->begin());
LoadInst *LoadInst1 = B.CreateLoad(PointerArg);
// Store in merge block
B.SetInsertPoint(Merge, Merge->begin());
B.CreateStore(B.getInt8(16), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Mimic sinking of a load:
// - clone load
// - insert in "exit" block
// - insert in mssa
// - remove from original block
LoadInst *LoadInstClone = cast<LoadInst>(LoadInst1->clone());
Merge->getInstList().insert(Merge->begin(), LoadInstClone);
MemoryAccess * NewLoadAccess =
Updater.createMemoryAccessInBB(LoadInstClone, nullptr,
LoadInstClone->getParent(),
MemorySSA::Beginning);
Updater.insertUse(cast<MemoryUse>(NewLoadAccess));
MSSA.verifyMemorySSA();
Updater.removeMemoryAccess(MSSA.getMemoryAccess(LoadInst1));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStore) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block. This destroys the old
// access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
StoreInst *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
SideStore->moveBefore(Entry->getTerminator());
MemoryAccess *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
MemoryAccess *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
MemoryAccess *NewStoreAccess = Updater.createMemoryAccessAfter(
SideStore, EntryStoreAccess, EntryStoreAccess);
EntryStoreAccess->replaceAllUsesWith(NewStoreAccess);
Updater.removeMemoryAccess(SideStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStoreUpdater) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block. This destroys the old
// access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
auto *MergeLoad = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
SideStore->moveBefore(Entry->getTerminator());
auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
auto *NewStoreAccess = Updater.createMemoryAccessAfter(
SideStore, EntryStoreAccess, EntryStoreAccess);
// Before, the load will point to a phi of the EntryStore and SideStore.
auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
Updater.removeMemoryAccess(SideStoreAccess);
Updater.insertDef(cast<MemoryDef>(NewStoreAccess));
// After it's a phi of the new side store access.
EXPECT_EQ(MergePhi->getIncomingValue(0), NewStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), NewStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStoreUpdaterMove) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block. This does not destroy
// the old access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
auto *MergeLoad = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
// Before, the load will point to a phi of the EntryStore and SideStore.
auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
SideStore->moveBefore(*EntryStore->getParent(), ++EntryStore->getIterator());
Updater.moveAfter(SideStoreAccess, EntryStoreAccess);
// After, it's a phi of the side store.
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStoreAllAround) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block, then to the other side
// block, then to before the load. This does not destroy the old access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
auto *MergeLoad = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
// Before, the load will point to a phi of the EntryStore and SideStore.
auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
// Move the store before the entry store
SideStore->moveBefore(*EntryStore->getParent(), EntryStore->getIterator());
Updater.moveBefore(SideStoreAccess, EntryStoreAccess);
// After, it's a phi of the entry store.
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
MSSA.verifyMemorySSA();
// Now move the store to the right branch
SideStore->moveBefore(*Right, Right->begin());
Updater.moveToPlace(SideStoreAccess, Right, MemorySSA::Beginning);
MSSA.verifyMemorySSA();
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
// Now move it before the load
SideStore->moveBefore(MergeLoad);
Updater.moveBefore(SideStoreAccess, LoadAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveAPhi) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Before, the load will be a use of a phi<store, liveonentry>.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// Kill the store
Updater.removeMemoryAccess(StoreAccess);
MemoryPhi *MP = cast<MemoryPhi>(DefiningAccess);
// Verify the phi ended up as liveonentry, liveonentry
for (auto &Op : MP->incoming_values())
EXPECT_TRUE(MSSA.isLiveOnEntryDef(cast<MemoryAccess>(Op.get())));
// Replace the phi uses with the live on entry def
MP->replaceAllUsesWith(MSSA.getLiveOnEntryDef());
// Verify the load is now defined by liveOnEntryDef
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
// Remove the PHI
Updater.removeMemoryAccess(MP);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveMemoryAccess) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
// Before, the load will be a use of a phi<store, liveonentry>. It should be
// the same after.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// The load is currently clobbered by one of the phi arguments, so the walker
// should determine the clobbering access as the phi.
EXPECT_EQ(DefiningAccess, Walker->getClobberingMemoryAccess(LoadInst));
Updater.removeMemoryAccess(StoreAccess);
MSSA.verifyMemorySSA();
// After the removeaccess, let's see if we got the right accesses
// The load should still point to the phi ...
EXPECT_EQ(DefiningAccess, LoadAccess->getDefiningAccess());
// but we should now get live on entry for the clobbering definition of the
// load, since it will walk past the phi node since every argument is the
// same.
// XXX: This currently requires either removing the phi or resetting optimized
// on the load
EXPECT_FALSE(
MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
// If we reset optimized, we get live on entry.
LoadAccess->resetOptimized();
EXPECT_TRUE(
MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
// The phi should now be a two entry phi with two live on entry defs.
for (const auto &Op : DefiningAccess->operands()) {
MemoryAccess *Operand = cast<MemoryAccess>(&*Op);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Operand));
}
// Now we try to remove the single valued phi
Updater.removeMemoryAccess(DefiningAccess);
MSSA.verifyMemorySSA();
// Now the load should be a load of live on entry.
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
}
// We had a bug with caching where the walker would report MemoryDef#3's clobber
// (below) was MemoryDef#1.
//
// define void @F(i8*) {
// %A = alloca i8, i8 1
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %A
// ; 2 = MemoryDef(1)
// store i8 1, i8* %A
// ; 3 = MemoryDef(2)
// store i8 2, i8* %A
// }
TEST_F(MemorySSATest, TestTripleStore) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
StoreInst *S1 = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
StoreInst *S2 = B.CreateStore(ConstantInt::get(Int8, 1), Alloca);
StoreInst *S3 = B.CreateStore(ConstantInt::get(Int8, 2), Alloca);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
unsigned I = 0;
for (StoreInst *V : {S1, S2, S3}) {
// Everything should be clobbered by its defining access
MemoryAccess *DefiningAccess = MSSA.getMemoryAccess(V)->getDefiningAccess();
MemoryAccess *WalkerClobber = Walker->getClobberingMemoryAccess(V);
EXPECT_EQ(DefiningAccess, WalkerClobber)
<< "Store " << I << " doesn't have the correct clobbering access";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
// ...And fixing the above bug made it obvious that, when walking, MemorySSA's
// walker was caching the initial node it walked. This was fine (albeit
// mostly redundant) unless the initial node being walked is a clobber for the
// query. In that case, we'd cache that the node clobbered itself.
TEST_F(MemorySSATest, TestStoreAndLoad) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Instruction *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
Instruction *LI = B.CreateLoad(Alloca);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LI);
EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SI));
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SI)));
}
// Another bug (related to the above two fixes): It was noted that, given the
// following code:
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %1
//
// ...A query to getClobberingMemoryAccess(MemoryAccess*, MemoryLocation) would
// hand back the store (correctly). A later call to
// getClobberingMemoryAccess(const Instruction*) would also hand back the store
// (incorrectly; it should return liveOnEntry).
//
// This test checks that repeated calls to either function returns what they're
// meant to.
TEST_F(MemorySSATest, TestStoreDoubleQuery) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
StoreInst *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemoryAccess *StoreAccess = MSSA.getMemoryAccess(SI);
MemoryLocation StoreLoc = MemoryLocation::get(SI);
MemoryAccess *Clobber =
Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
MemoryAccess *LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
// Try again (with entries in the cache already) for good measure...
Clobber = Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
}
// Bug: During phi optimization, the walker wouldn't cache to the proper result
// in the farthest-walked BB.
//
// Specifically, it would assume that whatever we walked to was a clobber.
// "Whatever we walked to" isn't a clobber if we hit a cache entry.
//
// ...So, we need a test case that looks like:
// A
// / \
// B |
// \ /
// C
//
// Where, when we try to optimize a thing in 'C', a blocker is found in 'B'.
// The walk must determine that the blocker exists by using cache entries *while
// walking* 'B'.
TEST_F(MemorySSATest, PartialWalkerCacheWithPhis) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "A", F));
Type *Int8 = Type::getInt8Ty(C);
Constant *One = ConstantInt::get(Int8, 1);
Constant *Zero = ConstantInt::get(Int8, 0);
Value *AllocA = B.CreateAlloca(Int8, One, "a");
Value *AllocB = B.CreateAlloca(Int8, One, "b");
BasicBlock *IfThen = BasicBlock::Create(C, "B", F);
BasicBlock *IfEnd = BasicBlock::Create(C, "C", F);
B.CreateCondBr(UndefValue::get(Type::getInt1Ty(C)), IfThen, IfEnd);
B.SetInsertPoint(IfThen);
Instruction *FirstStore = B.CreateStore(Zero, AllocA);
B.CreateStore(Zero, AllocB);
Instruction *ALoad0 = B.CreateLoad(AllocA, "");
Instruction *BStore = B.CreateStore(Zero, AllocB);
// Due to use optimization/etc. we make a store to A, which is removed after
// we build MSSA. This helps keep the test case simple-ish.
Instruction *KillStore = B.CreateStore(Zero, AllocA);
Instruction *ALoad = B.CreateLoad(AllocA, "");
B.CreateBr(IfEnd);
B.SetInsertPoint(IfEnd);
Instruction *BelowPhi = B.CreateStore(Zero, AllocA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
// Kill `KillStore`; it exists solely so that the load after it won't be
// optimized to FirstStore.
Updater.removeMemoryAccess(MSSA.getMemoryAccess(KillStore));
KillStore->eraseFromParent();
auto *ALoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(ALoad));
EXPECT_EQ(ALoadMA->getDefiningAccess(), MSSA.getMemoryAccess(BStore));
// Populate the cache for the store to AllocB directly after FirstStore. It
// should point to something in block B (so something in D can't be optimized
// to it).
MemoryAccess *Load0Clobber = Walker->getClobberingMemoryAccess(ALoad0);
EXPECT_EQ(MSSA.getMemoryAccess(FirstStore), Load0Clobber);
// If the bug exists, this will introduce a bad cache entry for %a on BStore.
// It will point to the store to %b after FirstStore. This only happens during
// phi optimization.
MemoryAccess *BottomClobber = Walker->getClobberingMemoryAccess(BelowPhi);
MemoryAccess *Phi = MSSA.getMemoryAccess(IfEnd);
EXPECT_EQ(BottomClobber, Phi);
// This query will first check the cache for {%a, BStore}. It should point to
// FirstStore, not to the store after FirstStore.
MemoryAccess *UseClobber = Walker->getClobberingMemoryAccess(ALoad);
EXPECT_EQ(UseClobber, MSSA.getMemoryAccess(FirstStore));
}
// Test that our walker properly handles loads with the invariant group
// attribute. It's a bit hacky, since we add the invariant attribute *after*
// building MSSA. Otherwise, the use optimizer will optimize it for us, which
// isn't what we want.
// FIXME: It may be easier/cleaner to just add an 'optimize uses?' flag to MSSA.
TEST_F(MemorySSATest, WalkerInvariantLoadOpt) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Constant *One = ConstantInt::get(Int8, 1);
Value *AllocA = B.CreateAlloca(Int8, One, "");
Instruction *Store = B.CreateStore(One, AllocA);
Instruction *Load = B.CreateLoad(AllocA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
auto *LoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(Load));
auto *StoreMA = cast<MemoryDef>(MSSA.getMemoryAccess(Store));
EXPECT_EQ(LoadMA->getDefiningAccess(), StoreMA);
// ...At the time of writing, no cache should exist for LoadMA. Be a bit
// flexible to future changes.
Walker->invalidateInfo(LoadMA);
Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(C, {}));
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LoadMA);
EXPECT_EQ(LoadClobber, MSSA.getLiveOnEntryDef());
}
// Test loads get reoptimized properly by the walker.
TEST_F(MemorySSATest, WalkerReopt) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *AllocaA = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Instruction *SIA = B.CreateStore(ConstantInt::get(Int8, 0), AllocaA);
Value *AllocaB = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
Instruction *SIB = B.CreateStore(ConstantInt::get(Int8, 0), AllocaB);
Instruction *LIA = B.CreateLoad(AllocaA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LIA);
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LIA));
EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SIA));
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SIA)));
Updater.removeMemoryAccess(LoadAccess);
// Create the load memory access pointing to an unoptimized place.
MemoryUse *NewLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LIA, MSSA.getMemoryAccess(SIB), LIA->getParent(), MemorySSA::End));
// This should it cause it to be optimized
EXPECT_EQ(Walker->getClobberingMemoryAccess(NewLoadAccess), LoadClobber);
EXPECT_EQ(NewLoadAccess->getDefiningAccess(), LoadClobber);
}
// Test out MemorySSAUpdater::moveBefore
TEST_F(MemorySSATest, MoveAboveMemoryDef) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *A = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Value *B_ = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
Value *C = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "C");
StoreInst *StoreA0 = B.CreateStore(ConstantInt::get(Int8, 0), A);
StoreInst *StoreB = B.CreateStore(ConstantInt::get(Int8, 0), B_);
LoadInst *LoadB = B.CreateLoad(B_);
StoreInst *StoreA1 = B.CreateStore(ConstantInt::get(Int8, 4), A);
StoreInst *StoreC = B.CreateStore(ConstantInt::get(Int8, 4), C);
StoreInst *StoreA2 = B.CreateStore(ConstantInt::get(Int8, 4), A);
LoadInst *LoadC = B.CreateLoad(C);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker &Walker = *Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
StoreC->moveBefore(StoreB);
Updater.moveBefore(cast<MemoryDef>(MSSA.getMemoryAccess(StoreC)),
cast<MemoryDef>(MSSA.getMemoryAccess(StoreB)));
MSSA.verifyMemorySSA();
EXPECT_EQ(MSSA.getMemoryAccess(StoreB)->getDefiningAccess(),
MSSA.getMemoryAccess(StoreC));
EXPECT_EQ(MSSA.getMemoryAccess(StoreC)->getDefiningAccess(),
MSSA.getMemoryAccess(StoreA0));
EXPECT_EQ(MSSA.getMemoryAccess(StoreA2)->getDefiningAccess(),
MSSA.getMemoryAccess(StoreA1));
EXPECT_EQ(Walker.getClobberingMemoryAccess(LoadB),
MSSA.getMemoryAccess(StoreB));
EXPECT_EQ(Walker.getClobberingMemoryAccess(LoadC),
MSSA.getMemoryAccess(StoreC));
// exercise block numbering
EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreC),
MSSA.getMemoryAccess(StoreB)));
EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreA1),
MSSA.getMemoryAccess(StoreA2)));
}
TEST_F(MemorySSATest, Irreducible) {
// Create the equivalent of
// x = something
// if (...)
// goto second_loop_entry
// while (...) {
// second_loop_entry:
// }
// use(x)
SmallVector<PHINode *, 8> Inserted;
IRBuilder<> B(C);
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Make blocks
BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
BasicBlock *LoopStartBB = BasicBlock::Create(C, "loopstart", F);
BasicBlock *LoopMainBB = BasicBlock::Create(C, "loopmain", F);
BasicBlock *AfterLoopBB = BasicBlock::Create(C, "afterloop", F);
B.SetInsertPoint(IfBB);
B.CreateCondBr(B.getTrue(), LoopMainBB, LoopStartBB);
B.SetInsertPoint(LoopStartBB);
B.CreateBr(LoopMainBB);
B.SetInsertPoint(LoopMainBB);
B.CreateCondBr(B.getTrue(), LoopStartBB, AfterLoopBB);
B.SetInsertPoint(AfterLoopBB);
Argument *FirstArg = &*F->arg_begin();
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Create the load memory acccess
LoadInst *LoadInst = B.CreateLoad(FirstArg);
MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LoadInst, nullptr, AfterLoopBB, MemorySSA::Beginning));
Updater.insertUse(LoadAccess);
MSSA.verifyMemorySSA();
}