64ac736ec5
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
291 lines
10 KiB
C++
291 lines
10 KiB
C++
//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a Union-find algorithm to compute Minimum Spanning Tree
|
|
// for a given CFG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
|
|
#define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "cfgmst"
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief An union-find based Minimum Spanning Tree for CFG
|
|
///
|
|
/// Implements a Union-find algorithm to compute Minimum Spanning Tree
|
|
/// for a given CFG.
|
|
template <class Edge, class BBInfo> class CFGMST {
|
|
public:
|
|
Function &F;
|
|
|
|
// Store all the edges in CFG. It may contain some stale edges
|
|
// when Removed is set.
|
|
std::vector<std::unique_ptr<Edge>> AllEdges;
|
|
|
|
// This map records the auxiliary information for each BB.
|
|
DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
|
|
|
|
// Whehter the function has an exit block with no successors.
|
|
// (For function with an infinite loop, this block may be absent)
|
|
bool ExitBlockFound = false;
|
|
|
|
// Find the root group of the G and compress the path from G to the root.
|
|
BBInfo *findAndCompressGroup(BBInfo *G) {
|
|
if (G->Group != G)
|
|
G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
|
|
return static_cast<BBInfo *>(G->Group);
|
|
}
|
|
|
|
// Union BB1 and BB2 into the same group and return true.
|
|
// Returns false if BB1 and BB2 are already in the same group.
|
|
bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
|
|
BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
|
|
BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
|
|
|
|
if (BB1G == BB2G)
|
|
return false;
|
|
|
|
// Make the smaller rank tree a direct child or the root of high rank tree.
|
|
if (BB1G->Rank < BB2G->Rank)
|
|
BB1G->Group = BB2G;
|
|
else {
|
|
BB2G->Group = BB1G;
|
|
// If the ranks are the same, increment root of one tree by one.
|
|
if (BB1G->Rank == BB2G->Rank)
|
|
BB1G->Rank++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Give BB, return the auxiliary information.
|
|
BBInfo &getBBInfo(const BasicBlock *BB) const {
|
|
auto It = BBInfos.find(BB);
|
|
assert(It->second.get() != nullptr);
|
|
return *It->second.get();
|
|
}
|
|
|
|
// Give BB, return the auxiliary information if it's available.
|
|
BBInfo *findBBInfo(const BasicBlock *BB) const {
|
|
auto It = BBInfos.find(BB);
|
|
if (It == BBInfos.end())
|
|
return nullptr;
|
|
return It->second.get();
|
|
}
|
|
|
|
// Traverse the CFG using a stack. Find all the edges and assign the weight.
|
|
// Edges with large weight will be put into MST first so they are less likely
|
|
// to be instrumented.
|
|
void buildEdges() {
|
|
DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
|
|
|
|
const BasicBlock *Entry = &(F.getEntryBlock());
|
|
uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
|
|
Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
|
|
*ExitOutgoing = nullptr, *ExitIncoming = nullptr;
|
|
uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
|
|
|
|
// Add a fake edge to the entry.
|
|
EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
|
|
DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName()
|
|
<< " w = " << EntryWeight << "\n");
|
|
|
|
// Special handling for single BB functions.
|
|
if (succ_empty(Entry)) {
|
|
addEdge(Entry, nullptr, EntryWeight);
|
|
return;
|
|
}
|
|
|
|
static const uint32_t CriticalEdgeMultiplier = 1000;
|
|
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
uint64_t BBWeight =
|
|
(BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
|
|
uint64_t Weight = 2;
|
|
if (int successors = TI->getNumSuccessors()) {
|
|
for (int i = 0; i != successors; ++i) {
|
|
BasicBlock *TargetBB = TI->getSuccessor(i);
|
|
bool Critical = isCriticalEdge(TI, i);
|
|
uint64_t scaleFactor = BBWeight;
|
|
if (Critical) {
|
|
if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
|
|
scaleFactor *= CriticalEdgeMultiplier;
|
|
else
|
|
scaleFactor = UINT64_MAX;
|
|
}
|
|
if (BPI != nullptr)
|
|
Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
|
|
auto *E = &addEdge(&*BB, TargetBB, Weight);
|
|
E->IsCritical = Critical;
|
|
DEBUG(dbgs() << " Edge: from " << BB->getName() << " to "
|
|
<< TargetBB->getName() << " w=" << Weight << "\n");
|
|
|
|
// Keep track of entry/exit edges:
|
|
if (&*BB == Entry) {
|
|
if (Weight > MaxEntryOutWeight) {
|
|
MaxEntryOutWeight = Weight;
|
|
EntryOutgoing = E;
|
|
}
|
|
}
|
|
|
|
auto *TargetTI = TargetBB->getTerminator();
|
|
if (TargetTI && !TargetTI->getNumSuccessors()) {
|
|
if (Weight > MaxExitInWeight) {
|
|
MaxExitInWeight = Weight;
|
|
ExitIncoming = E;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
ExitBlockFound = true;
|
|
Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight);
|
|
if (BBWeight > MaxExitOutWeight) {
|
|
MaxExitOutWeight = BBWeight;
|
|
ExitOutgoing = ExitO;
|
|
}
|
|
DEBUG(dbgs() << " Edge: from " << BB->getName() << " to fake exit"
|
|
<< " w = " << BBWeight << "\n");
|
|
}
|
|
}
|
|
|
|
// Entry/exit edge adjustment heurisitic:
|
|
// prefer instrumenting entry edge over exit edge
|
|
// if possible. Those exit edges may never have a chance to be
|
|
// executed (for instance the program is an event handling loop)
|
|
// before the profile is asynchronously dumped.
|
|
//
|
|
// If EntryIncoming and ExitOutgoing has similar weight, make sure
|
|
// ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
|
|
// and ExitIncoming has similar weight, make sure ExitIncoming becomes
|
|
// the min-edge.
|
|
uint64_t EntryInWeight = EntryWeight;
|
|
|
|
if (EntryInWeight >= MaxExitOutWeight &&
|
|
EntryInWeight * 2 < MaxExitOutWeight * 3) {
|
|
EntryIncoming->Weight = MaxExitOutWeight;
|
|
ExitOutgoing->Weight = EntryInWeight + 1;
|
|
}
|
|
|
|
if (MaxEntryOutWeight >= MaxExitInWeight &&
|
|
MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
|
|
EntryOutgoing->Weight = MaxExitInWeight;
|
|
ExitIncoming->Weight = MaxEntryOutWeight + 1;
|
|
}
|
|
}
|
|
|
|
// Sort CFG edges based on its weight.
|
|
void sortEdgesByWeight() {
|
|
std::stable_sort(AllEdges.begin(), AllEdges.end(),
|
|
[](const std::unique_ptr<Edge> &Edge1,
|
|
const std::unique_ptr<Edge> &Edge2) {
|
|
return Edge1->Weight > Edge2->Weight;
|
|
});
|
|
}
|
|
|
|
// Traverse all the edges and compute the Minimum Weight Spanning Tree
|
|
// using union-find algorithm.
|
|
void computeMinimumSpanningTree() {
|
|
// First, put all the critical edge with landing-pad as the Dest to MST.
|
|
// This works around the insufficient support of critical edges split
|
|
// when destination BB is a landing pad.
|
|
for (auto &Ei : AllEdges) {
|
|
if (Ei->Removed)
|
|
continue;
|
|
if (Ei->IsCritical) {
|
|
if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
|
|
if (unionGroups(Ei->SrcBB, Ei->DestBB))
|
|
Ei->InMST = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &Ei : AllEdges) {
|
|
if (Ei->Removed)
|
|
continue;
|
|
// If we detect infinite loops, force
|
|
// instrumenting the entry edge:
|
|
if (!ExitBlockFound && Ei->SrcBB == nullptr)
|
|
continue;
|
|
if (unionGroups(Ei->SrcBB, Ei->DestBB))
|
|
Ei->InMST = true;
|
|
}
|
|
}
|
|
|
|
// Dump the Debug information about the instrumentation.
|
|
void dumpEdges(raw_ostream &OS, const Twine &Message) const {
|
|
if (!Message.str().empty())
|
|
OS << Message << "\n";
|
|
OS << " Number of Basic Blocks: " << BBInfos.size() << "\n";
|
|
for (auto &BI : BBInfos) {
|
|
const BasicBlock *BB = BI.first;
|
|
OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " "
|
|
<< BI.second->infoString() << "\n";
|
|
}
|
|
|
|
OS << " Number of Edges: " << AllEdges.size()
|
|
<< " (*: Instrument, C: CriticalEdge, -: Removed)\n";
|
|
uint32_t Count = 0;
|
|
for (auto &EI : AllEdges)
|
|
OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
|
|
<< getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
|
|
}
|
|
|
|
// Add an edge to AllEdges with weight W.
|
|
Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
|
|
uint32_t Index = BBInfos.size();
|
|
auto Iter = BBInfos.end();
|
|
bool Inserted;
|
|
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
|
|
if (Inserted) {
|
|
// Newly inserted, update the real info.
|
|
Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
|
|
Index++;
|
|
}
|
|
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
|
|
if (Inserted)
|
|
// Newly inserted, update the real info.
|
|
Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
|
|
AllEdges.emplace_back(new Edge(Src, Dest, W));
|
|
return *AllEdges.back();
|
|
}
|
|
|
|
BranchProbabilityInfo *BPI;
|
|
BlockFrequencyInfo *BFI;
|
|
|
|
public:
|
|
CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
|
|
BlockFrequencyInfo *BFI_ = nullptr)
|
|
: F(Func), BPI(BPI_), BFI(BFI_) {
|
|
buildEdges();
|
|
sortEdgesByWeight();
|
|
computeMinimumSpanningTree();
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#undef DEBUG_TYPE // "cfgmst"
|
|
|
|
#endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
|