Xamarin Public Jenkins (auto-signing) 64ac736ec5 Imported Upstream version 6.0.0.172
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
2019-04-12 14:10:50 +00:00

419 lines
15 KiB
C++

//===- OrcMCJITReplacement.h - Orc based MCJIT replacement ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Orc based MCJIT replacement.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
namespace llvm {
class ObjectCache;
namespace orc {
class OrcMCJITReplacement : public ExecutionEngine {
// OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
// Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
// expecting - see finalizeMemory.
class MCJITReplacementMemMgr : public MCJITMemoryManager {
public:
MCJITReplacementMemMgr(OrcMCJITReplacement &M,
std::shared_ptr<MCJITMemoryManager> ClientMM)
: M(M), ClientMM(std::move(ClientMM)) {}
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override {
uint8_t *Addr =
ClientMM->allocateCodeSection(Size, Alignment, SectionID,
SectionName);
M.SectionsAllocatedSinceLastLoad.insert(Addr);
return Addr;
}
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override {
uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
SectionName, IsReadOnly);
M.SectionsAllocatedSinceLastLoad.insert(Addr);
return Addr;
}
void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
uintptr_t RODataSize, uint32_t RODataAlign,
uintptr_t RWDataSize,
uint32_t RWDataAlign) override {
return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign,
RODataSize, RODataAlign,
RWDataSize, RWDataAlign);
}
bool needsToReserveAllocationSpace() override {
return ClientMM->needsToReserveAllocationSpace();
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {
return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
}
void deregisterEHFrames() override {
return ClientMM->deregisterEHFrames();
}
void notifyObjectLoaded(RuntimeDyld &RTDyld,
const object::ObjectFile &O) override {
return ClientMM->notifyObjectLoaded(RTDyld, O);
}
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &O) override {
return ClientMM->notifyObjectLoaded(EE, O);
}
bool finalizeMemory(std::string *ErrMsg = nullptr) override {
// Each set of objects loaded will be finalized exactly once, but since
// symbol lookup during relocation may recursively trigger the
// loading/relocation of other modules, and since we're forwarding all
// finalizeMemory calls to a single underlying memory manager, we need to
// defer forwarding the call on until all necessary objects have been
// loaded. Otherwise, during the relocation of a leaf object, we will end
// up finalizing memory, causing a crash further up the stack when we
// attempt to apply relocations to finalized memory.
// To avoid finalizing too early, look at how many objects have been
// loaded but not yet finalized. This is a bit of a hack that relies on
// the fact that we're lazily emitting object files: The only way you can
// get more than one set of objects loaded but not yet finalized is if
// they were loaded during relocation of another set.
if (M.UnfinalizedSections.size() == 1)
return ClientMM->finalizeMemory(ErrMsg);
return false;
}
private:
OrcMCJITReplacement &M;
std::shared_ptr<MCJITMemoryManager> ClientMM;
};
class LinkingResolver : public JITSymbolResolver {
public:
LinkingResolver(OrcMCJITReplacement &M) : M(M) {}
JITSymbol findSymbol(const std::string &Name) override {
return M.ClientResolver->findSymbol(Name);
}
JITSymbol findSymbolInLogicalDylib(const std::string &Name) override {
if (auto Sym = M.findMangledSymbol(Name))
return Sym;
return M.ClientResolver->findSymbolInLogicalDylib(Name);
}
private:
OrcMCJITReplacement &M;
};
private:
static ExecutionEngine *
createOrcMCJITReplacement(std::string *ErrorMsg,
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<JITSymbolResolver> Resolver,
std::unique_ptr<TargetMachine> TM) {
return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
std::move(TM));
}
public:
OrcMCJITReplacement(
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<JITSymbolResolver> ClientResolver,
std::unique_ptr<TargetMachine> TM)
: ExecutionEngine(TM->createDataLayout()), TM(std::move(TM)),
MemMgr(std::make_shared<MCJITReplacementMemMgr>(*this,
std::move(MemMgr))),
Resolver(std::make_shared<LinkingResolver>(*this)),
ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this),
NotifyFinalized(*this),
ObjectLayer([this]() { return this->MemMgr; }, NotifyObjectLoaded,
NotifyFinalized),
CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)),
LazyEmitLayer(CompileLayer) {}
static void Register() {
OrcMCJITReplacementCtor = createOrcMCJITReplacement;
}
void addModule(std::unique_ptr<Module> M) override {
// If this module doesn't have a DataLayout attached then attach the
// default.
if (M->getDataLayout().isDefault()) {
M->setDataLayout(getDataLayout());
} else {
assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
}
auto *MPtr = M.release();
ShouldDelete[MPtr] = true;
auto Deleter = [this](Module *Mod) {
auto I = ShouldDelete.find(Mod);
if (I != ShouldDelete.end() && I->second)
delete Mod;
};
LocalModules.push_back(std::shared_ptr<Module>(MPtr, std::move(Deleter)));
cantFail(LazyEmitLayer.addModule(LocalModules.back(), Resolver));
}
void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
auto Obj =
std::make_shared<object::OwningBinary<object::ObjectFile>>(std::move(O),
nullptr);
cantFail(ObjectLayer.addObject(std::move(Obj), Resolver));
}
void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
auto Obj =
std::make_shared<object::OwningBinary<object::ObjectFile>>(std::move(O));
cantFail(ObjectLayer.addObject(std::move(Obj), Resolver));
}
void addArchive(object::OwningBinary<object::Archive> A) override {
Archives.push_back(std::move(A));
}
bool removeModule(Module *M) override {
for (auto I = LocalModules.begin(), E = LocalModules.end(); I != E; ++I) {
if (I->get() == M) {
ShouldDelete[M] = false;
LocalModules.erase(I);
return true;
}
}
return false;
}
uint64_t getSymbolAddress(StringRef Name) {
return cantFail(findSymbol(Name).getAddress());
}
JITSymbol findSymbol(StringRef Name) {
return findMangledSymbol(Mangle(Name));
}
void finalizeObject() override {
// This is deprecated - Aim to remove in ExecutionEngine.
// REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
}
void mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) override {
for (auto &P : UnfinalizedSections)
if (P.second.count(LocalAddress))
ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
}
uint64_t getGlobalValueAddress(const std::string &Name) override {
return getSymbolAddress(Name);
}
uint64_t getFunctionAddress(const std::string &Name) override {
return getSymbolAddress(Name);
}
void *getPointerToFunction(Function *F) override {
uint64_t FAddr = getSymbolAddress(F->getName());
return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
}
void *getPointerToNamedFunction(StringRef Name,
bool AbortOnFailure = true) override {
uint64_t Addr = getSymbolAddress(Name);
if (!Addr && AbortOnFailure)
llvm_unreachable("Missing symbol!");
return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
}
GenericValue runFunction(Function *F,
ArrayRef<GenericValue> ArgValues) override;
void setObjectCache(ObjectCache *NewCache) override {
CompileLayer.getCompiler().setObjectCache(NewCache);
}
void setProcessAllSections(bool ProcessAllSections) override {
ObjectLayer.setProcessAllSections(ProcessAllSections);
}
void runStaticConstructorsDestructors(bool isDtors) override;
private:
JITSymbol findMangledSymbol(StringRef Name) {
if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
return Sym;
if (auto Sym = ClientResolver->findSymbol(Name))
return Sym;
if (auto Sym = scanArchives(Name))
return Sym;
return nullptr;
}
JITSymbol scanArchives(StringRef Name) {
for (object::OwningBinary<object::Archive> &OB : Archives) {
object::Archive *A = OB.getBinary();
// Look for our symbols in each Archive
auto OptionalChildOrErr = A->findSym(Name);
if (!OptionalChildOrErr)
report_fatal_error(OptionalChildOrErr.takeError());
auto &OptionalChild = *OptionalChildOrErr;
if (OptionalChild) {
// FIXME: Support nested archives?
Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
OptionalChild->getAsBinary();
if (!ChildBinOrErr) {
// TODO: Actually report errors helpfully.
consumeError(ChildBinOrErr.takeError());
continue;
}
std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
if (ChildBin->isObject()) {
std::unique_ptr<object::ObjectFile> ChildObj(
static_cast<object::ObjectFile*>(ChildBinOrErr->release()));
auto Obj =
std::make_shared<object::OwningBinary<object::ObjectFile>>(
std::move(ChildObj), nullptr);
cantFail(ObjectLayer.addObject(std::move(Obj), Resolver));
if (auto Sym = ObjectLayer.findSymbol(Name, true))
return Sym;
}
}
}
return nullptr;
}
class NotifyObjectLoadedT {
public:
using LoadedObjInfoListT =
std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>;
NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
void operator()(RTDyldObjectLinkingLayerBase::ObjHandleT H,
const RTDyldObjectLinkingLayer::ObjectPtr &Obj,
const RuntimeDyld::LoadedObjectInfo &Info) const {
M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad);
M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
M.MemMgr->notifyObjectLoaded(&M, *Obj->getBinary());
}
private:
OrcMCJITReplacement &M;
};
class NotifyFinalizedT {
public:
NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
void operator()(RTDyldObjectLinkingLayerBase::ObjHandleT H) {
M.UnfinalizedSections.erase(H);
}
private:
OrcMCJITReplacement &M;
};
std::string Mangle(StringRef Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout());
}
return MangledName;
}
using ObjectLayerT = RTDyldObjectLinkingLayer;
using CompileLayerT = IRCompileLayer<ObjectLayerT, orc::SimpleCompiler>;
using LazyEmitLayerT = LazyEmittingLayer<CompileLayerT>;
std::unique_ptr<TargetMachine> TM;
std::shared_ptr<MCJITReplacementMemMgr> MemMgr;
std::shared_ptr<LinkingResolver> Resolver;
std::shared_ptr<JITSymbolResolver> ClientResolver;
Mangler Mang;
// IMPORTANT: ShouldDelete *must* come before LocalModules: The shared_ptr
// delete blocks in LocalModules refer to the ShouldDelete map, so
// LocalModules needs to be destructed before ShouldDelete.
std::map<Module*, bool> ShouldDelete;
std::vector<std::shared_ptr<Module>> LocalModules;
NotifyObjectLoadedT NotifyObjectLoaded;
NotifyFinalizedT NotifyFinalized;
ObjectLayerT ObjectLayer;
CompileLayerT CompileLayer;
LazyEmitLayerT LazyEmitLayer;
// We need to store ObjLayerT::ObjSetHandles for each of the object sets
// that have been emitted but not yet finalized so that we can forward the
// mapSectionAddress calls appropriately.
using SectionAddrSet = std::set<const void *>;
struct ObjHandleCompare {
bool operator()(ObjectLayerT::ObjHandleT H1,
ObjectLayerT::ObjHandleT H2) const {
return &*H1 < &*H2;
}
};
SectionAddrSet SectionsAllocatedSinceLastLoad;
std::map<ObjectLayerT::ObjHandleT, SectionAddrSet, ObjHandleCompare>
UnfinalizedSections;
std::vector<object::OwningBinary<object::Archive>> Archives;
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H