94b2861243
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
328 lines
12 KiB
C
328 lines
12 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/sha.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && \
|
|
(defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
|
|
defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
|
|
#define SHA256_ASM
|
|
#endif
|
|
|
|
int SHA224_Init(SHA256_CTX *sha) {
|
|
memset(sha, 0, sizeof(SHA256_CTX));
|
|
sha->h[0] = 0xc1059ed8UL;
|
|
sha->h[1] = 0x367cd507UL;
|
|
sha->h[2] = 0x3070dd17UL;
|
|
sha->h[3] = 0xf70e5939UL;
|
|
sha->h[4] = 0xffc00b31UL;
|
|
sha->h[5] = 0x68581511UL;
|
|
sha->h[6] = 0x64f98fa7UL;
|
|
sha->h[7] = 0xbefa4fa4UL;
|
|
sha->md_len = SHA224_DIGEST_LENGTH;
|
|
return 1;
|
|
}
|
|
|
|
int SHA256_Init(SHA256_CTX *sha) {
|
|
memset(sha, 0, sizeof(SHA256_CTX));
|
|
sha->h[0] = 0x6a09e667UL;
|
|
sha->h[1] = 0xbb67ae85UL;
|
|
sha->h[2] = 0x3c6ef372UL;
|
|
sha->h[3] = 0xa54ff53aUL;
|
|
sha->h[4] = 0x510e527fUL;
|
|
sha->h[5] = 0x9b05688cUL;
|
|
sha->h[6] = 0x1f83d9abUL;
|
|
sha->h[7] = 0x5be0cd19UL;
|
|
sha->md_len = SHA256_DIGEST_LENGTH;
|
|
return 1;
|
|
}
|
|
|
|
uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t *out) {
|
|
SHA256_CTX ctx;
|
|
static uint8_t buf[SHA224_DIGEST_LENGTH];
|
|
|
|
/* TODO(fork): remove this static buffer. */
|
|
if (out == NULL) {
|
|
out = buf;
|
|
}
|
|
SHA224_Init(&ctx);
|
|
SHA224_Update(&ctx, data, len);
|
|
SHA224_Final(out, &ctx);
|
|
OPENSSL_cleanse(&ctx, sizeof(ctx));
|
|
return out;
|
|
}
|
|
|
|
uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t *out) {
|
|
SHA256_CTX ctx;
|
|
static uint8_t buf[SHA256_DIGEST_LENGTH];
|
|
|
|
/* TODO(fork): remove this static buffer. */
|
|
if (out == NULL) {
|
|
out = buf;
|
|
}
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, data, len);
|
|
SHA256_Final(out, &ctx);
|
|
OPENSSL_cleanse(&ctx, sizeof(ctx));
|
|
return out;
|
|
}
|
|
|
|
int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) {
|
|
return SHA256_Update(ctx, data, len);
|
|
}
|
|
|
|
int SHA224_Final(uint8_t *md, SHA256_CTX *ctx) {
|
|
return SHA256_Final(md, ctx);
|
|
}
|
|
|
|
#define DATA_ORDER_IS_BIG_ENDIAN
|
|
|
|
#define HASH_CTX SHA256_CTX
|
|
#define HASH_CBLOCK 64
|
|
|
|
/* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
|
|
* default: case below covers for it. It's not clear however if it's permitted
|
|
* to truncate to amount of bytes not divisible by 4. I bet not, but if it is,
|
|
* then default: case shall be extended. For reference. Idea behind separate
|
|
* cases for pre-defined lenghts is to let the compiler decide if it's
|
|
* appropriate to unroll small loops.
|
|
*
|
|
* TODO(davidben): The small |md_len| case is one of the few places a low-level
|
|
* hash 'final' function can fail. This should never happen. */
|
|
#define HASH_MAKE_STRING(c, s) \
|
|
do { \
|
|
uint32_t ll; \
|
|
unsigned int nn; \
|
|
switch ((c)->md_len) { \
|
|
case SHA224_DIGEST_LENGTH: \
|
|
for (nn = 0; nn < SHA224_DIGEST_LENGTH / 4; nn++) { \
|
|
ll = (c)->h[nn]; \
|
|
HOST_l2c(ll, (s)); \
|
|
} \
|
|
break; \
|
|
case SHA256_DIGEST_LENGTH: \
|
|
for (nn = 0; nn < SHA256_DIGEST_LENGTH / 4; nn++) { \
|
|
ll = (c)->h[nn]; \
|
|
HOST_l2c(ll, (s)); \
|
|
} \
|
|
break; \
|
|
default: \
|
|
if ((c)->md_len > SHA256_DIGEST_LENGTH) { \
|
|
return 0; \
|
|
} \
|
|
for (nn = 0; nn < (c)->md_len / 4; nn++) { \
|
|
ll = (c)->h[nn]; \
|
|
HOST_l2c(ll, (s)); \
|
|
} \
|
|
break; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
#define HASH_UPDATE SHA256_Update
|
|
#define HASH_TRANSFORM SHA256_Transform
|
|
#define HASH_FINAL SHA256_Final
|
|
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
|
|
#ifndef SHA256_ASM
|
|
static
|
|
#endif
|
|
void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num);
|
|
|
|
#include "../digest/md32_common.h"
|
|
|
|
#ifndef SHA256_ASM
|
|
static const uint32_t K256[64] = {
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
|
|
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
|
|
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
|
|
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
|
|
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
|
|
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
|
|
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
|
|
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
|
|
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
|
|
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};
|
|
|
|
#define ROTATE(a, n) (((a) << (n)) | ((a) >> (32 - (n))))
|
|
|
|
/* FIPS specification refers to right rotations, while our ROTATE macro
|
|
* is left one. This is why you might notice that rotation coefficients
|
|
* differ from those observed in FIPS document by 32-N... */
|
|
#define Sigma0(x) (ROTATE((x), 30) ^ ROTATE((x), 19) ^ ROTATE((x), 10))
|
|
#define Sigma1(x) (ROTATE((x), 26) ^ ROTATE((x), 21) ^ ROTATE((x), 7))
|
|
#define sigma0(x) (ROTATE((x), 25) ^ ROTATE((x), 14) ^ ((x) >> 3))
|
|
#define sigma1(x) (ROTATE((x), 15) ^ ROTATE((x), 13) ^ ((x) >> 10))
|
|
|
|
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
|
|
do { \
|
|
T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \
|
|
h = Sigma0(a) + Maj(a, b, c); \
|
|
d += T1; \
|
|
h += T1; \
|
|
} while (0)
|
|
|
|
#define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \
|
|
do { \
|
|
s0 = X[(i + 1) & 0x0f]; \
|
|
s0 = sigma0(s0); \
|
|
s1 = X[(i + 14) & 0x0f]; \
|
|
s1 = sigma1(s1); \
|
|
T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \
|
|
ROUND_00_15(i, a, b, c, d, e, f, g, h); \
|
|
} while (0)
|
|
|
|
static void sha256_block_data_order(uint32_t *state, const uint8_t *data,
|
|
size_t num) {
|
|
uint32_t a, b, c, d, e, f, g, h, s0, s1, T1;
|
|
uint32_t X[16];
|
|
int i;
|
|
|
|
while (num--) {
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
e = state[4];
|
|
f = state[5];
|
|
g = state[6];
|
|
h = state[7];
|
|
|
|
uint32_t l;
|
|
|
|
HOST_c2l(data, l);
|
|
T1 = X[0] = l;
|
|
ROUND_00_15(0, a, b, c, d, e, f, g, h);
|
|
HOST_c2l(data, l);
|
|
T1 = X[1] = l;
|
|
ROUND_00_15(1, h, a, b, c, d, e, f, g);
|
|
HOST_c2l(data, l);
|
|
T1 = X[2] = l;
|
|
ROUND_00_15(2, g, h, a, b, c, d, e, f);
|
|
HOST_c2l(data, l);
|
|
T1 = X[3] = l;
|
|
ROUND_00_15(3, f, g, h, a, b, c, d, e);
|
|
HOST_c2l(data, l);
|
|
T1 = X[4] = l;
|
|
ROUND_00_15(4, e, f, g, h, a, b, c, d);
|
|
HOST_c2l(data, l);
|
|
T1 = X[5] = l;
|
|
ROUND_00_15(5, d, e, f, g, h, a, b, c);
|
|
HOST_c2l(data, l);
|
|
T1 = X[6] = l;
|
|
ROUND_00_15(6, c, d, e, f, g, h, a, b);
|
|
HOST_c2l(data, l);
|
|
T1 = X[7] = l;
|
|
ROUND_00_15(7, b, c, d, e, f, g, h, a);
|
|
HOST_c2l(data, l);
|
|
T1 = X[8] = l;
|
|
ROUND_00_15(8, a, b, c, d, e, f, g, h);
|
|
HOST_c2l(data, l);
|
|
T1 = X[9] = l;
|
|
ROUND_00_15(9, h, a, b, c, d, e, f, g);
|
|
HOST_c2l(data, l);
|
|
T1 = X[10] = l;
|
|
ROUND_00_15(10, g, h, a, b, c, d, e, f);
|
|
HOST_c2l(data, l);
|
|
T1 = X[11] = l;
|
|
ROUND_00_15(11, f, g, h, a, b, c, d, e);
|
|
HOST_c2l(data, l);
|
|
T1 = X[12] = l;
|
|
ROUND_00_15(12, e, f, g, h, a, b, c, d);
|
|
HOST_c2l(data, l);
|
|
T1 = X[13] = l;
|
|
ROUND_00_15(13, d, e, f, g, h, a, b, c);
|
|
HOST_c2l(data, l);
|
|
T1 = X[14] = l;
|
|
ROUND_00_15(14, c, d, e, f, g, h, a, b);
|
|
HOST_c2l(data, l);
|
|
T1 = X[15] = l;
|
|
ROUND_00_15(15, b, c, d, e, f, g, h, a);
|
|
|
|
for (i = 16; i < 64; i += 8) {
|
|
ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
|
|
ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
|
|
ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
|
|
ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
|
|
ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
|
|
ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
|
|
ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
|
|
ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
|
|
}
|
|
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
state[4] += e;
|
|
state[5] += f;
|
|
state[6] += g;
|
|
state[7] += h;
|
|
}
|
|
}
|
|
|
|
#endif /* SHA256_ASM */
|