Xamarin Public Jenkins (auto-signing) e79aa3c0ed Imported Upstream version 4.6.0.125
Former-commit-id: a2155e9bd80020e49e72e86c44da02a8ac0e57a4
2016-08-03 10:59:49 +00:00

1426 lines
56 KiB
C#

// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
namespace System {
using System;
using System.Globalization;
///#if GENERICS_WORK
/// using System.Numerics;
///#endif
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using System.Runtime.Versioning;
using System.Runtime.Serialization;
using System.Diagnostics.Contracts;
// Implements the Decimal data type. The Decimal data type can
// represent values ranging from -79,228,162,514,264,337,593,543,950,335 to
// 79,228,162,514,264,337,593,543,950,335 with 28 significant digits. The
// Decimal data type is ideally suited to financial calculations that
// require a large number of significant digits and no round-off errors.
//
// The finite set of values of type Decimal are of the form m
// / 10e, where m is an integer such that
// -296 <; m <; 296, and e is an integer
// between 0 and 28 inclusive.
//
// Contrary to the float and double data types, decimal
// fractional numbers such as 0.1 can be represented exactly in the
// Decimal representation. In the float and double
// representations, such numbers are often infinite fractions, making those
// representations more prone to round-off errors.
//
// The Decimal class implements widening conversions from the
// ubyte, char, short, int, and long types
// to Decimal. These widening conversions never loose any information
// and never throw exceptions. The Decimal class also implements
// narrowing conversions from Decimal to ubyte, char,
// short, int, and long. These narrowing conversions round
// the Decimal value towards zero to the nearest integer, and then
// converts that integer to the destination type. An OverflowException
// is thrown if the result is not within the range of the destination type.
//
// The Decimal class provides a widening conversion from
// Currency to Decimal. This widening conversion never loses any
// information and never throws exceptions. The Currency class provides
// a narrowing conversion from Decimal to Currency. This
// narrowing conversion rounds the Decimal to four decimals and then
// converts that number to a Currency. An OverflowException
// is thrown if the result is not within the range of the Currency type.
//
// The Decimal class provides narrowing conversions to and from the
// float and double types. A conversion from Decimal to
// float or double may loose precision, but will not loose
// information about the overall magnitude of the numeric value, and will never
// throw an exception. A conversion from float or double to
// Decimal throws an OverflowException if the value is not within
// the range of the Decimal type.
[StructLayout(LayoutKind.Sequential)]
[Serializable]
[System.Runtime.InteropServices.ComVisible(true)]
[System.Runtime.Versioning.NonVersionable] // This only applies to field layout
#if GENERICS_WORK
public struct Decimal : IFormattable, IComparable, IConvertible, IDeserializationCallback
, IComparable<Decimal>, IEquatable<Decimal> {
/// , IArithmetic<Decimal>
#else
public struct Decimal : IFormattable, IComparable, IConvertible, IDeserializationCallback {
#endif
// Sign mask for the flags field. A value of zero in this bit indicates a
// positive Decimal value, and a value of one in this bit indicates a
// negative Decimal value.
//
// Look at OleAut's DECIMAL_NEG constant to check for negative values
// in native code.
private const int SignMask = unchecked((int)0x80000000);
private const byte DECIMAL_NEG = 0x80;
private const byte DECIMAL_ADD = 0x00;
// Scale mask for the flags field. This byte in the flags field contains
// the power of 10 to divide the Decimal value by. The scale byte must
// contain a value between 0 and 28 inclusive.
private const int ScaleMask = 0x00FF0000;
// Number of bits scale is shifted by.
private const int ScaleShift = 16;
// The maximum power of 10 that a 32 bit integer can store
private const Int32 MaxInt32Scale = 9;
// Fast access for 10^n where n is 0-9
private static UInt32[] Powers10 = new UInt32[] {
1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000
};
// Constant representing the Decimal value 0.
public const Decimal Zero = 0m;
// Constant representing the Decimal value 1.
public const Decimal One = 1m;
// Constant representing the Decimal value -1.
public const Decimal MinusOne = -1m;
// Constant representing the largest possible Decimal value. The value of
// this constant is 79,228,162,514,264,337,593,543,950,335.
public const Decimal MaxValue = 79228162514264337593543950335m;
// Constant representing the smallest possible Decimal value. The value of
// this constant is -79,228,162,514,264,337,593,543,950,335.
public const Decimal MinValue = -79228162514264337593543950335m;
// Constant representing the negative number that is the closest possible
// Decimal value to -0m.
private const Decimal NearNegativeZero = -0.000000000000000000000000001m;
// Constant representing the positive number that is the closest possible
// Decimal value to +0m.
private const Decimal NearPositiveZero = +0.000000000000000000000000001m;
// The lo, mid, hi, and flags fields contain the representation of the
// Decimal value. The lo, mid, and hi fields contain the 96-bit integer
// part of the Decimal. Bits 0-15 (the lower word) of the flags field are
// unused and must be zero; bits 16-23 contain must contain a value between
// 0 and 28, indicating the power of 10 to divide the 96-bit integer part
// by to produce the Decimal value; bits 24-30 are unused and must be zero;
// and finally bit 31 indicates the sign of the Decimal value, 0 meaning
// positive and 1 meaning negative.
//
// NOTE: Do not change the order in which these fields are declared. The
// native methods in this class rely on this particular order.
private int flags;
private int hi;
private int lo;
private int mid;
// Constructs a zero Decimal.
//public Decimal() {
// lo = 0;
// mid = 0;
// hi = 0;
// flags = 0;
//}
// Constructs a Decimal from an integer value.
//
public Decimal(int value) {
// JIT today can't inline methods that contains "starg" opcode.
// For more details, see DevDiv Bugs 81184: x86 JIT CQ: Removing the inline striction of "starg".
int value_copy = value;
if (value_copy >= 0) {
flags = 0;
}
else {
flags = SignMask;
value_copy = -value_copy;
}
lo = value_copy;
mid = 0;
hi = 0;
}
// Constructs a Decimal from an unsigned integer value.
//
[CLSCompliant(false)]
public Decimal(uint value) {
flags = 0;
lo = (int) value;
mid = 0;
hi = 0;
}
// Constructs a Decimal from a long value.
//
public Decimal(long value) {
// JIT today can't inline methods that contains "starg" opcode.
// For more details, see DevDiv Bugs 81184: x86 JIT CQ: Removing the inline striction of "starg".
long value_copy = value;
if (value_copy >= 0) {
flags = 0;
}
else {
flags = SignMask;
value_copy = -value_copy;
}
lo = (int)value_copy;
mid = (int)(value_copy >> 32);
hi = 0;
}
// Constructs a Decimal from an unsigned long value.
//
[CLSCompliant(false)]
public Decimal(ulong value) {
flags = 0;
lo = (int)value;
mid = (int)(value >> 32);
hi = 0;
}
// Constructs a Decimal from a float value.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public extern Decimal(float value);
// Constructs a Decimal from a double value.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public extern Decimal(double value);
#if MONO
public static long ToOACurrency (decimal value)
{
return (long) (value * 10000);
}
public static decimal FromOACurrency (long cy)
{
return (decimal)cy / (decimal)10000;
}
#else
// Constructs a Decimal from a Currency value.
//
internal Decimal(Currency value) {
Decimal temp = Currency.ToDecimal(value);
this.lo = temp.lo;
this.mid = temp.mid;
this.hi = temp.hi;
this.flags = temp.flags;
}
// Don't remove these 2 methods below. They are required by the fx when the are dealing with Currency in their
// databases
public static long ToOACurrency(Decimal value)
{
return new Currency(value).ToOACurrency();
}
public static Decimal FromOACurrency(long cy)
{
return Currency.ToDecimal(Currency.FromOACurrency(cy));
}
#endif
// Constructs a Decimal from an integer array containing a binary
// representation. The bits argument must be a non-null integer
// array with four elements. bits[0], bits[1], and
// bits[2] contain the low, middle, and high 32 bits of the 96-bit
// integer part of the Decimal. bits[3] contains the scale factor
// and sign of the Decimal: bits 0-15 (the lower word) are unused and must
// be zero; bits 16-23 must contain a value between 0 and 28, indicating
// the power of 10 to divide the 96-bit integer part by to produce the
// Decimal value; bits 24-30 are unused and must be zero; and finally bit
// 31 indicates the sign of the Decimal value, 0 meaning positive and 1
// meaning negative.
//
// Note that there are several possible binary representations for the
// same numeric value. For example, the value 1 can be represented as {1,
// 0, 0, 0} (integer value 1 with a scale factor of 0) and equally well as
// {1000, 0, 0, 0x30000} (integer value 1000 with a scale factor of 3).
// The possible binary representations of a particular value are all
// equally valid, and all are numerically equivalent.
//
public Decimal(int[] bits) {
if (bits==null)
throw new ArgumentNullException("bits");
Contract.EndContractBlock();
if (bits.Length == 4) {
int f = bits[3];
if ((f & ~(SignMask | ScaleMask)) == 0 && (f & ScaleMask) <= (28 << 16)) {
lo = bits[0];
mid = bits[1];
hi = bits[2];
flags = f;
return;
}
}
throw new ArgumentException(Environment.GetResourceString("Arg_DecBitCtor"));
}
private void SetBits(int[] bits) {
if (bits==null)
throw new ArgumentNullException("bits");
Contract.EndContractBlock();
if (bits.Length == 4) {
int f = bits[3];
if ((f & ~(SignMask | ScaleMask)) == 0 && (f & ScaleMask) <= (28 << 16)) {
lo = bits[0];
mid = bits[1];
hi = bits[2];
flags = f;
return;
}
}
throw new ArgumentException(Environment.GetResourceString("Arg_DecBitCtor"));
}
// Constructs a Decimal from its constituent parts.
//
public Decimal(int lo, int mid, int hi, bool isNegative, byte scale) {
if (scale > 28)
throw new ArgumentOutOfRangeException("scale", Environment.GetResourceString("ArgumentOutOfRange_DecimalScale"));
Contract.EndContractBlock();
this.lo = lo;
this.mid = mid;
this.hi = hi;
this.flags = ((int)scale) << 16;
if (isNegative)
this.flags |= SignMask;
}
#if FEATURE_SERIALIZATION
[OnSerializing]
void OnSerializing(StreamingContext ctx) {
// OnSerializing is called before serialization of an object
try {
SetBits( GetBits(this) );
} catch (ArgumentException e) {
throw new SerializationException(Environment.GetResourceString("Overflow_Decimal"), e);
}
}
void IDeserializationCallback.OnDeserialization(Object sender) {
// OnDeserialization is called after each instance of this class is deserialized.
// This callback method performs decimal validation after being deserialized.
try {
SetBits( GetBits(this) );
} catch (ArgumentException e) {
throw new SerializationException(Environment.GetResourceString("Overflow_Decimal"), e);
}
}
#endif
// Constructs a Decimal from its constituent parts.
private Decimal(int lo, int mid, int hi, int flags) {
if ((flags & ~(SignMask | ScaleMask)) == 0 && (flags & ScaleMask) <= (28 << 16)) {
this.lo = lo;
this.mid = mid;
this.hi = hi;
this.flags = flags;
return;
}
throw new ArgumentException(Environment.GetResourceString("Arg_DecBitCtor"));
}
// Returns the absolute value of the given Decimal. If d is
// positive, the result is d. If d is negative, the result
// is -d.
//
internal static Decimal Abs(Decimal d) {
return new Decimal(d.lo, d.mid, d.hi, d.flags & ~SignMask);
}
// Adds two Decimal values.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Add(Decimal d1, Decimal d2)
{
FCallAddSub (ref d1, ref d2, DECIMAL_ADD);
return d1;
}
// FCallAddSub adds or subtracts two decimal values. On return, d1 contains the result
// of the operation. Passing in DECIMAL_ADD or DECIMAL_NEG for bSign indicates
// addition or subtraction, respectively.
//
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallAddSub(ref Decimal d1, ref Decimal d2, byte bSign);
//[System.Security.SecurityCritical] // auto-generated
//[ResourceExposure(ResourceScope.None)]
//[MethodImplAttribute(MethodImplOptions.InternalCall)]
//private static extern void FCallAddSubOverflowed(ref Decimal d1, ref Decimal d2, byte bSign, ref bool overflowed);
// Rounds a Decimal to an integer value. The Decimal argument is rounded
// towards positive infinity.
public static Decimal Ceiling(Decimal d) {
return (-(Decimal.Floor(-d)));
}
// Compares two Decimal values, returning an integer that indicates their
// relationship.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
public static int Compare(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2);
}
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
private static extern int FCallCompare(ref Decimal d1, ref Decimal d2);
// Compares this object to another object, returning an integer that
// indicates the relationship.
// Returns a value less than zero if this object
// null is considered to be less than any instance.
// If object is not of type Decimal, this method throws an ArgumentException.
//
[System.Security.SecuritySafeCritical] // auto-generated
public int CompareTo(Object value)
{
if (value == null)
return 1;
if (!(value is Decimal))
throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDecimal"));
Decimal other = (Decimal)value;
return FCallCompare(ref this, ref other);
}
[System.Security.SecuritySafeCritical] // auto-generated
public int CompareTo(Decimal value)
{
return FCallCompare(ref this, ref value);
}
// Divides two Decimal values.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Divide(Decimal d1, Decimal d2)
{
FCallDivide (ref d1, ref d2);
return d1;
}
// FCallDivide divides two decimal values. On return, d1 contains the result
// of the operation.
//
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallDivide(ref Decimal d1, ref Decimal d2);
//[System.Security.SecurityCritical] // auto-generated
//[ResourceExposure(ResourceScope.None)]
//[MethodImplAttribute(MethodImplOptions.InternalCall)]
//private static extern void FCallDivideOverflowed(ref Decimal d1, ref Decimal d2, ref bool overflowed);
// Checks if this Decimal is equal to a given object. Returns true
// if the given object is a boxed Decimal and its value is equal to the
// value of this Decimal. Returns false otherwise.
//
[System.Security.SecuritySafeCritical] // auto-generated
public override bool Equals(Object value) {
if (value is Decimal) {
Decimal other = (Decimal)value;
return FCallCompare(ref this, ref other) == 0;
}
return false;
}
[System.Security.SecuritySafeCritical] // auto-generated
public bool Equals(Decimal value)
{
return FCallCompare(ref this, ref value) == 0;
}
// Returns the hash code for this Decimal.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public extern override int GetHashCode();
// Compares two Decimal values for equality. Returns true if the two
// Decimal values are equal, or false if they are not equal.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static bool Equals(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) == 0;
}
// Rounds a Decimal to an integer value. The Decimal argument is rounded
// towards negative infinity.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Floor(Decimal d)
{
FCallFloor (ref d);
return d;
}
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallFloor(ref Decimal d);
// Converts this Decimal to a string. The resulting string consists of an
// optional minus sign ("-") followed to a sequence of digits ("0" - "9"),
// optionally followed by a decimal point (".") and another sequence of
// digits.
//
[System.Security.SecuritySafeCritical] // auto-generated
public override String ToString() {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDecimal(this, null, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDecimal(this, format, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDecimal(this, null, NumberFormatInfo.GetInstance(provider));
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format, IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDecimal(this, format, NumberFormatInfo.GetInstance(provider));
}
// Converts a string to a Decimal. The string must consist of an optional
// minus sign ("-") followed by a sequence of digits ("0" - "9"). The
// sequence of digits may optionally contain a single decimal point (".")
// character. Leading and trailing whitespace characters are allowed.
// Parse also allows a currency symbol, a trailing negative sign, and
// parentheses in the number.
//
public static Decimal Parse(String s) {
return Number.ParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo);
}
public static Decimal Parse(String s, NumberStyles style) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Number.ParseDecimal(s, style, NumberFormatInfo.CurrentInfo);
}
public static Decimal Parse(String s, IFormatProvider provider) {
return Number.ParseDecimal(s, NumberStyles.Number, NumberFormatInfo.GetInstance(provider));
}
public static Decimal Parse(String s, NumberStyles style, IFormatProvider provider) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Number.ParseDecimal(s, style, NumberFormatInfo.GetInstance(provider));
}
public static Boolean TryParse(String s, out Decimal result) {
return Number.TryParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo, out result);
}
public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Decimal result) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Number.TryParseDecimal(s, style, NumberFormatInfo.GetInstance(provider), out result);
}
// Returns a binary representation of a Decimal. The return value is an
// integer array with four elements. Elements 0, 1, and 2 contain the low,
// middle, and high 32 bits of the 96-bit integer part of the Decimal.
// Element 3 contains the scale factor and sign of the Decimal: bits 0-15
// (the lower word) are unused; bits 16-23 contain a value between 0 and
// 28, indicating the power of 10 to divide the 96-bit integer part by to
// produce the Decimal value; bits 24-30 are unused; and finally bit 31
// indicates the sign of the Decimal value, 0 meaning positive and 1
// meaning negative.
//
public static int[] GetBits(Decimal d) {
return new int[] {d.lo, d.mid, d.hi, d.flags};
}
internal static void GetBytes(Decimal d, byte [] buffer) {
Contract.Requires((buffer != null && buffer.Length >= 16), "[GetBytes]buffer != null && buffer.Length >= 16");
buffer[0] = (byte) d.lo;
buffer[1] = (byte) (d.lo >> 8);
buffer[2] = (byte) (d.lo >> 16);
buffer[3] = (byte) (d.lo >> 24);
buffer[4] = (byte) d.mid;
buffer[5] = (byte) (d.mid >> 8);
buffer[6] = (byte) (d.mid >> 16);
buffer[7] = (byte) (d.mid >> 24);
buffer[8] = (byte) d.hi;
buffer[9] = (byte) (d.hi >> 8);
buffer[10] = (byte) (d.hi >> 16);
buffer[11] = (byte) (d.hi >> 24);
buffer[12] = (byte) d.flags;
buffer[13] = (byte) (d.flags >> 8);
buffer[14] = (byte) (d.flags >> 16);
buffer[15] = (byte) (d.flags >> 24);
}
internal static decimal ToDecimal(byte [] buffer) {
Contract.Requires((buffer != null && buffer.Length >= 16), "[ToDecimal]buffer != null && buffer.Length >= 16");
int lo = ((int)buffer[0]) | ((int)buffer[1] << 8) | ((int)buffer[2] << 16) | ((int)buffer[3] << 24);
int mid = ((int)buffer[4]) | ((int)buffer[5] << 8) | ((int)buffer[6] << 16) | ((int)buffer[7] << 24);
int hi = ((int)buffer[8]) | ((int)buffer[9] << 8) | ((int)buffer[10] << 16) | ((int)buffer[11] << 24);
int flags = ((int)buffer[12]) | ((int)buffer[13] << 8) | ((int)buffer[14] << 16) | ((int)buffer[15] << 24);
return new Decimal(lo,mid,hi,flags);
}
// This method does a 'raw' and 'unchecked' addition of a UInt32 to a Decimal in place.
// 'raw' means that it operates on the internal 96-bit unsigned integer value and
// ingores the sign and scale. This means that it is not equivalent to just adding
// that number, as the sign and scale are effectively applied to the UInt32 value also.
// 'unchecked' means that it does not fail if you overflow the 96 bit value.
private static void InternalAddUInt32RawUnchecked(ref Decimal value, UInt32 i) {
UInt32 v;
UInt32 sum;
v = (UInt32)value.lo;
sum = v + i;
value.lo = (Int32)sum;
if (sum < v || sum < i) {
v = (UInt32)value.mid;
sum = v + 1;
value.mid = (Int32)sum;
if (sum < v || sum < 1) {
value.hi = (Int32) ((UInt32)value.hi + 1);
}
}
}
// This method does an in-place division of a decimal by a UInt32, returning the remainder.
// Although it does not operate on the sign or scale, this does not result in any
// caveat for the result. It is equivalent to dividing by that number.
private static UInt32 InternalDivRemUInt32(ref Decimal value, UInt32 divisor) {
UInt32 remainder = 0;
UInt64 n;
if (value.hi != 0) {
n = ((UInt32) value.hi);
value.hi = (Int32)((UInt32)(n / divisor));
remainder = (UInt32)(n % divisor);
}
if (value.mid != 0 || remainder != 0) {
n = ((UInt64)remainder << 32) | (UInt32) value.mid;
value.mid = (Int32)((UInt32)(n / divisor));
remainder = (UInt32)(n % divisor);
}
if (value.lo != 0 || remainder != 0) {
n = ((UInt64)remainder << 32) | (UInt32) value.lo;
value.lo = (Int32)((UInt32)(n / divisor));
remainder = (UInt32)(n % divisor);
}
return remainder;
}
// Does an in-place round the specified number of digits, rounding mid-point values
// away from zero
private static void InternalRoundFromZero(ref Decimal d, int decimalCount) {
Int32 scale = (d.flags & ScaleMask) >> ScaleShift;
Int32 scaleDifference = scale - decimalCount;
if (scaleDifference <= 0) {
return;
}
// Divide the value by 10^scaleDifference
UInt32 lastRemainder;
UInt32 lastDivisor;
do {
Int32 diffChunk = (scaleDifference > MaxInt32Scale) ? MaxInt32Scale : scaleDifference;
lastDivisor = Powers10[diffChunk];
lastRemainder = InternalDivRemUInt32(ref d, lastDivisor);
scaleDifference -= diffChunk;
} while (scaleDifference > 0);
// Round away from zero at the mid point
if (lastRemainder >= (lastDivisor >> 1)) {
InternalAddUInt32RawUnchecked(ref d, 1);
}
// the scale becomes the desired decimal count
d.flags = ((decimalCount << ScaleShift) & ScaleMask) | (d.flags & SignMask);
}
// Returns the larger of two Decimal values.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
internal static Decimal Max(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) >= 0? d1: d2;
}
// Returns the smaller of two Decimal values.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
internal static Decimal Min(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) < 0? d1: d2;
}
public static Decimal Remainder(Decimal d1, Decimal d2) {
// OleAut doesn't provide a VarDecMod.
// In the operation x % y the sign of y does not matter. Result will have the sign of x.
d2.flags = (d2.flags & ~SignMask) | (d1.flags & SignMask);
// This piece of code is to work around the fact that Dividing a decimal with 28 digits number by decimal which causes
// causes the result to be 28 digits, can cause to be incorrectly rounded up.
// eg. Decimal.MaxValue / 2 * Decimal.MaxValue will overflow since the division by 2 was rounded instead of being truncked.
if (Abs(d1) < Abs(d2)) {
return d1;
}
d1 -= d2;
if (d1 == 0) {
// The sign of D1 will be wrong here. Fall through so that we still get a DivideByZeroException
d1.flags = (d1.flags & ~SignMask) | (d2.flags & SignMask);
}
// Formula: d1 - (RoundTowardsZero(d1 / d2) * d2)
Decimal dividedResult = Truncate(d1/d2);
Decimal multipliedResult = dividedResult * d2;
Decimal result = d1 - multipliedResult;
// See if the result has crossed 0
if ((d1.flags & SignMask) != (result.flags & SignMask)) {
if (NearNegativeZero <= result && result <= NearPositiveZero) {
// Certain Remainder operations on decimals with 28 significant digits round
// to [+-]0.000000000000000000000000001m instead of [+-]0m during the intermediate calculations.
// 'zero' results just need their sign corrected.
result.flags = (result.flags & ~SignMask) | (d1.flags & SignMask);
}
else {
// If the division rounds up because it runs out of digits, the multiplied result can end up with a larger
// absolute value and the result of the formula crosses 0. To correct it can add the divisor back.
result += d2;
}
}
return result;
}
// Multiplies two Decimal values.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Multiply(Decimal d1, Decimal d2)
{
FCallMultiply (ref d1, ref d2);
return d1;
}
// FCallMultiply multiples two decimal values. On return, d1 contains the result
// of the operation.
//
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallMultiply(ref Decimal d1, ref Decimal d2);
//[System.Security.SecurityCritical] // auto-generated
//[ResourceExposure(ResourceScope.None)]
//[MethodImplAttribute(MethodImplOptions.InternalCall)]
//private static extern void FCallMultiplyOverflowed(ref Decimal d1, ref Decimal d2, ref bool overflowed);
// Returns the negated value of the given Decimal. If d is non-zero,
// the result is -d. If d is zero, the result is zero.
//
public static Decimal Negate(Decimal d) {
return new Decimal(d.lo, d.mid, d.hi, d.flags ^ SignMask);
}
// Rounds a Decimal value to a given number of decimal places. The value
// given by d is rounded to the number of decimal places given by
// decimals. The decimals argument must be an integer between
// 0 and 28 inclusive.
//
// By default a mid-point value is rounded to the nearest even number. If the mode is
// passed in, it can also round away from zero.
public static Decimal Round(Decimal d) {
return Round(d, 0);
}
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Round(Decimal d, int decimals)
{
FCallRound (ref d, decimals);
return d;
}
public static Decimal Round(Decimal d, MidpointRounding mode) {
return Round(d, 0, mode);
}
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Round(Decimal d, int decimals, MidpointRounding mode) {
if ((decimals < 0) || (decimals > 28))
throw new ArgumentOutOfRangeException("decimals", Environment.GetResourceString("ArgumentOutOfRange_DecimalRound"));
if (mode < MidpointRounding.ToEven || mode > MidpointRounding.AwayFromZero) {
throw new ArgumentException(Environment.GetResourceString("Argument_InvalidEnumValue", mode, "MidpointRounding"), "mode");
}
Contract.EndContractBlock();
if (mode == MidpointRounding.ToEven) {
FCallRound (ref d, decimals);
}
else {
InternalRoundFromZero(ref d, decimals);
}
return d;
}
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallRound(ref Decimal d, int decimals);
// Subtracts two Decimal values.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Subtract(Decimal d1, Decimal d2)
{
FCallAddSub(ref d1, ref d2, DECIMAL_NEG);
return d1;
}
// Converts a Decimal to an unsigned byte. The Decimal value is rounded
// towards zero to the nearest integer value, and the result of this
// operation is returned as a byte.
//
public static byte ToByte(Decimal value) {
uint temp;
try {
temp = ToUInt32(value);
}
catch (OverflowException e) {
throw new OverflowException(Environment.GetResourceString("Overflow_Byte"), e);
}
if (temp < Byte.MinValue || temp > Byte.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_Byte"));
return (byte)temp;
}
// Converts a Decimal to a signed byte. The Decimal value is rounded
// towards zero to the nearest integer value, and the result of this
// operation is returned as a byte.
//
[CLSCompliant(false)]
public static sbyte ToSByte(Decimal value) {
int temp;
try {
temp = ToInt32(value);
}
catch (OverflowException e) {
throw new OverflowException(Environment.GetResourceString("Overflow_SByte"), e);
}
if (temp < SByte.MinValue || temp > SByte.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_SByte"));
return (sbyte)temp;
}
// Converts a Decimal to a short. The Decimal value is
// rounded towards zero to the nearest integer value, and the result of
// this operation is returned as a short.
//
public static short ToInt16(Decimal value) {
int temp;
try {
temp = ToInt32(value);
}
catch (OverflowException e) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int16"), e);
}
if (temp < Int16.MinValue || temp > Int16.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_Int16"));
return (short)temp;
}
#if !MONO
// Converts a Decimal to a Currency. Since a Currency
// has fewer significant digits than a Decimal, this operation may
// produce round-off errors.
//
[System.Security.SecuritySafeCritical] // auto-generated
internal static Currency ToCurrency(Decimal d)
{
Currency result = new Currency ();
FCallToCurrency (ref result, d);
return result;
}
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallToCurrency(ref Currency result, Decimal d);
#endif
// Converts a Decimal to a double. Since a double has fewer significant
// digits than a Decimal, this operation may produce round-off errors.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern double ToDouble(Decimal d);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
internal static extern int FCallToInt32(Decimal d);
// Converts a Decimal to an integer. The Decimal value is rounded towards
// zero to the nearest integer value, and the result of this operation is
// returned as an integer.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static int ToInt32(Decimal d) {
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
if (d.hi == 0 && d.mid == 0) {
int i = d.lo;
if (d.flags >= 0) {
if (i >= 0) return i;
}
else {
i = -i;
if (i <= 0) return i;
}
}
throw new OverflowException(Environment.GetResourceString("Overflow_Int32"));
}
// Converts a Decimal to a long. The Decimal value is rounded towards zero
// to the nearest integer value, and the result of this operation is
// returned as a long.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static long ToInt64(Decimal d) {
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
if (d.hi == 0) {
long l = d.lo & 0xFFFFFFFFL | (long)d.mid << 32;
if (d.flags >= 0) {
if (l >= 0) return l;
}
else {
l = -l;
if (l <= 0) return l;
}
}
throw new OverflowException(Environment.GetResourceString("Overflow_Int64"));
}
// Converts a Decimal to an ushort. The Decimal
// value is rounded towards zero to the nearest integer value, and the
// result of this operation is returned as an ushort.
//
[CLSCompliant(false)]
public static ushort ToUInt16(Decimal value) {
uint temp;
try {
temp = ToUInt32(value);
}
catch (OverflowException e) {
throw new OverflowException(Environment.GetResourceString("Overflow_UInt16"), e);
}
if (temp < UInt16.MinValue || temp > UInt16.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_UInt16"));
return (ushort)temp;
}
// Converts a Decimal to an unsigned integer. The Decimal
// value is rounded towards zero to the nearest integer value, and the
// result of this operation is returned as an unsigned integer.
//
[System.Security.SecuritySafeCritical] // auto-generated
[CLSCompliant(false)]
public static uint ToUInt32(Decimal d) {
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
if (d.hi == 0 && d.mid == 0) {
uint i = (uint) d.lo;
if (d.flags >= 0 || i == 0)
return i;
}
throw new OverflowException(Environment.GetResourceString("Overflow_UInt32"));
}
// Converts a Decimal to an unsigned long. The Decimal
// value is rounded towards zero to the nearest integer value, and the
// result of this operation is returned as a long.
//
[System.Security.SecuritySafeCritical] // auto-generated
[CLSCompliant(false)]
public static ulong ToUInt64(Decimal d) {
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
if (d.hi == 0) {
ulong l = ((ulong)(uint)d.lo) | ((ulong)(uint)d.mid << 32);
if (d.flags >= 0 || l == 0)
return l;
}
throw new OverflowException(Environment.GetResourceString("Overflow_UInt64"));
}
// Converts a Decimal to a float. Since a float has fewer significant
// digits than a Decimal, this operation may produce round-off errors.
//
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern float ToSingle(Decimal d);
// Truncates a Decimal to an integer value. The Decimal argument is rounded
// towards zero to the nearest integer value, corresponding to removing all
// digits after the decimal point.
//
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal Truncate(Decimal d)
{
FCallTruncate (ref d);
return d;
}
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern void FCallTruncate(ref Decimal d);
public static implicit operator Decimal(byte value) {
return new Decimal(value);
}
[CLSCompliant(false)]
public static implicit operator Decimal(sbyte value) {
return new Decimal(value);
}
public static implicit operator Decimal(short value) {
return new Decimal(value);
}
[CLSCompliant(false)]
public static implicit operator Decimal(ushort value) {
return new Decimal(value);
}
public static implicit operator Decimal(char value) {
return new Decimal(value);
}
public static implicit operator Decimal(int value) {
return new Decimal(value);
}
[CLSCompliant(false)]
public static implicit operator Decimal(uint value) {
return new Decimal(value);
}
public static implicit operator Decimal(long value) {
return new Decimal(value);
}
[CLSCompliant(false)]
public static implicit operator Decimal(ulong value) {
return new Decimal(value);
}
public static explicit operator Decimal(float value) {
return new Decimal(value);
}
public static explicit operator Decimal(double value) {
return new Decimal(value);
}
public static explicit operator byte(Decimal value) {
return ToByte(value);
}
[CLSCompliant(false)]
public static explicit operator sbyte(Decimal value) {
return ToSByte(value);
}
public static explicit operator char(Decimal value) {
UInt16 temp;
try {
temp = ToUInt16(value);
}
catch (OverflowException e) {
throw new OverflowException(Environment.GetResourceString("Overflow_Char"), e);
}
return (char)temp;
}
public static explicit operator short(Decimal value) {
return ToInt16(value);
}
[CLSCompliant(false)]
public static explicit operator ushort(Decimal value) {
return ToUInt16(value);
}
public static explicit operator int(Decimal value) {
return ToInt32(value);
}
[CLSCompliant(false)]
public static explicit operator uint(Decimal value) {
return ToUInt32(value);
}
public static explicit operator long(Decimal value) {
return ToInt64(value);
}
[CLSCompliant(false)]
public static explicit operator ulong(Decimal value) {
return ToUInt64(value);
}
public static explicit operator float(Decimal value) {
return ToSingle(value);
}
public static explicit operator double(Decimal value) {
return ToDouble(value);
}
public static Decimal operator +(Decimal d) {
return d;
}
public static Decimal operator -(Decimal d) {
return Negate(d);
}
public static Decimal operator ++(Decimal d) {
return Add(d, One);
}
public static Decimal operator --(Decimal d) {
return Subtract(d, One);
}
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal operator +(Decimal d1, Decimal d2) {
FCallAddSub(ref d1, ref d2, DECIMAL_ADD);
return d1;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal operator -(Decimal d1, Decimal d2) {
FCallAddSub(ref d1, ref d2, DECIMAL_NEG);
return d1;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal operator *(Decimal d1, Decimal d2) {
FCallMultiply (ref d1, ref d2);
return d1;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static Decimal operator /(Decimal d1, Decimal d2) {
FCallDivide (ref d1, ref d2);
return d1;
}
public static Decimal operator %(Decimal d1, Decimal d2) {
return Remainder(d1, d2);
}
[System.Security.SecuritySafeCritical] // auto-generated
public static bool operator ==(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) == 0;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static bool operator !=(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) != 0;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static bool operator <(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) < 0;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static bool operator <=(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) <= 0;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static bool operator >(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) > 0;
}
[System.Security.SecuritySafeCritical] // auto-generated
public static bool operator >=(Decimal d1, Decimal d2) {
return FCallCompare(ref d1, ref d2) >= 0;
}
//
// IConvertible implementation
//
public TypeCode GetTypeCode() {
return TypeCode.Decimal;
}
/// <internalonly/>
bool IConvertible.ToBoolean(IFormatProvider provider) {
return Convert.ToBoolean(this);
}
/// <internalonly/>
char IConvertible.ToChar(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Decimal", "Char"));
}
/// <internalonly/>
sbyte IConvertible.ToSByte(IFormatProvider provider) {
return Convert.ToSByte(this);
}
/// <internalonly/>
byte IConvertible.ToByte(IFormatProvider provider) {
return Convert.ToByte(this);
}
/// <internalonly/>
short IConvertible.ToInt16(IFormatProvider provider) {
return Convert.ToInt16(this);
}
/// <internalonly/>
ushort IConvertible.ToUInt16(IFormatProvider provider) {
return Convert.ToUInt16(this);
}
/// <internalonly/>
int IConvertible.ToInt32(IFormatProvider provider) {
return Convert.ToInt32(this);
}
/// <internalonly/>
uint IConvertible.ToUInt32(IFormatProvider provider) {
return Convert.ToUInt32(this);
}
/// <internalonly/>
long IConvertible.ToInt64(IFormatProvider provider) {
return Convert.ToInt64(this);
}
/// <internalonly/>
ulong IConvertible.ToUInt64(IFormatProvider provider) {
return Convert.ToUInt64(this);
}
/// <internalonly/>
float IConvertible.ToSingle(IFormatProvider provider) {
return Convert.ToSingle(this);
}
/// <internalonly/>
double IConvertible.ToDouble(IFormatProvider provider) {
return Convert.ToDouble(this);
}
/// <internalonly/>
Decimal IConvertible.ToDecimal(IFormatProvider provider) {
return this;
}
/// <internalonly/>
DateTime IConvertible.ToDateTime(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Decimal", "DateTime"));
}
/// <internalonly/>
Object IConvertible.ToType(Type type, IFormatProvider provider) {
return Convert.DefaultToType((IConvertible)this, type, provider);
}
///#if GENERICS_WORK
/// //
/// // IArithmetic<Decimal> implementation
/// //
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.AbsoluteValue(out bool overflowed) {
/// overflowed = false;
/// return new Decimal(this.lo, this.mid, this.hi, this.flags & ~SignMask);
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Negate(out bool overflowed) {
/// overflowed = false;
/// return new Decimal(this.lo, this.mid, this.hi, this.flags ^ SignMask);
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Sign(out bool overflowed) {
/// overflowed = false;
/// Decimal zero = Decimal.Zero;
/// return FCallCompare(ref this, ref zero);
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Add(Decimal addend, out bool overflowed) {
/// Decimal result = this;
/// overflowed = false;
/// FCallAddSubOverflowed(ref result, ref addend, DECIMAL_ADD, ref overflowed);
/// return result;
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Subtract(Decimal subtrahend, out bool overflowed) {
/// Decimal result = this;
/// overflowed = false;
/// FCallAddSubOverflowed(ref result, ref subtrahend, DECIMAL_NEG, ref overflowed);
/// return result;
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Multiply(Decimal multiplier, out bool overflowed) {
/// Decimal result = this;
/// overflowed = false;
/// FCallMultiplyOverflowed(ref result, ref multiplier, ref overflowed);
/// return result;
/// }
///
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Divide(Decimal divisor, out bool overflowed) {
/// Decimal result = this;
/// overflowed = false;
/// FCallDivideOverflowed(ref result, ref divisor, ref overflowed);
/// return result;
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.DivideRemainder(Decimal divisor, out Decimal remainder, out bool overflowed) {
/// Decimal result = this;
/// overflowed = false;
/// FCallDivideOverflowed(ref result, ref divisor, ref overflowed);
/// try {
/// remainder = Decimal.Remainder(this, divisor);
/// }
/// catch (OverflowException) {
/// overflowed = true;
/// remainder = this;
/// }
///
/// return result;
/// }
///
/// /// <internalonly/>
/// Decimal IArithmetic<Decimal>.Remainder(Decimal divisor, out bool overflowed) {
/// overflowed = false;
///
/// try {
/// return Decimal.Remainder(this, divisor);
/// }
/// catch (OverflowException) {
/// overflowed = true;
/// return this;
/// }
/// }
///
/// /// <internalonly/>
/// ArithmeticDescriptor<Decimal> IArithmetic<Decimal>.GetDescriptor() {
/// if (s_descriptor == null) {
/// s_descriptor = new DecimalArithmeticDescriptor( ArithmeticCapabilities.One
/// | ArithmeticCapabilities.Zero
/// | ArithmeticCapabilities.MaxValue
/// | ArithmeticCapabilities.MinValue);
/// }
/// return s_descriptor;
/// }
///
/// private static DecimalArithmeticDescriptor s_descriptor;
///
/// class DecimalArithmeticDescriptor : ArithmeticDescriptor<Decimal> {
/// public DecimalArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///
/// public override Decimal One {
/// get {
/// return (Decimal) 1;
/// }
/// }
///
/// public override Decimal Zero {
/// get {
/// return (Decimal) 0;
/// }
/// }
///
/// public override Decimal MinValue {
/// get {
/// return Decimal.MinValue;
/// }
/// }
///
/// public override Decimal MaxValue {
/// get {
/// return Decimal.MaxValue;
/// }
/// }
/// }
///#endif // #if GENERICS_WORK
}
}