e79aa3c0ed
Former-commit-id: a2155e9bd80020e49e72e86c44da02a8ac0e57a4
1426 lines
56 KiB
C#
1426 lines
56 KiB
C#
// ==++==
|
|
//
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
//
|
|
// ==--==
|
|
namespace System {
|
|
|
|
using System;
|
|
using System.Globalization;
|
|
///#if GENERICS_WORK
|
|
/// using System.Numerics;
|
|
///#endif
|
|
using System.Runtime.InteropServices;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Runtime.ConstrainedExecution;
|
|
using System.Runtime.Versioning;
|
|
using System.Runtime.Serialization;
|
|
using System.Diagnostics.Contracts;
|
|
|
|
// Implements the Decimal data type. The Decimal data type can
|
|
// represent values ranging from -79,228,162,514,264,337,593,543,950,335 to
|
|
// 79,228,162,514,264,337,593,543,950,335 with 28 significant digits. The
|
|
// Decimal data type is ideally suited to financial calculations that
|
|
// require a large number of significant digits and no round-off errors.
|
|
//
|
|
// The finite set of values of type Decimal are of the form m
|
|
// / 10e, where m is an integer such that
|
|
// -296 <; m <; 296, and e is an integer
|
|
// between 0 and 28 inclusive.
|
|
//
|
|
// Contrary to the float and double data types, decimal
|
|
// fractional numbers such as 0.1 can be represented exactly in the
|
|
// Decimal representation. In the float and double
|
|
// representations, such numbers are often infinite fractions, making those
|
|
// representations more prone to round-off errors.
|
|
//
|
|
// The Decimal class implements widening conversions from the
|
|
// ubyte, char, short, int, and long types
|
|
// to Decimal. These widening conversions never loose any information
|
|
// and never throw exceptions. The Decimal class also implements
|
|
// narrowing conversions from Decimal to ubyte, char,
|
|
// short, int, and long. These narrowing conversions round
|
|
// the Decimal value towards zero to the nearest integer, and then
|
|
// converts that integer to the destination type. An OverflowException
|
|
// is thrown if the result is not within the range of the destination type.
|
|
//
|
|
// The Decimal class provides a widening conversion from
|
|
// Currency to Decimal. This widening conversion never loses any
|
|
// information and never throws exceptions. The Currency class provides
|
|
// a narrowing conversion from Decimal to Currency. This
|
|
// narrowing conversion rounds the Decimal to four decimals and then
|
|
// converts that number to a Currency. An OverflowException
|
|
// is thrown if the result is not within the range of the Currency type.
|
|
//
|
|
// The Decimal class provides narrowing conversions to and from the
|
|
// float and double types. A conversion from Decimal to
|
|
// float or double may loose precision, but will not loose
|
|
// information about the overall magnitude of the numeric value, and will never
|
|
// throw an exception. A conversion from float or double to
|
|
// Decimal throws an OverflowException if the value is not within
|
|
// the range of the Decimal type.
|
|
[StructLayout(LayoutKind.Sequential)]
|
|
[Serializable]
|
|
[System.Runtime.InteropServices.ComVisible(true)]
|
|
[System.Runtime.Versioning.NonVersionable] // This only applies to field layout
|
|
#if GENERICS_WORK
|
|
public struct Decimal : IFormattable, IComparable, IConvertible, IDeserializationCallback
|
|
, IComparable<Decimal>, IEquatable<Decimal> {
|
|
/// , IArithmetic<Decimal>
|
|
#else
|
|
public struct Decimal : IFormattable, IComparable, IConvertible, IDeserializationCallback {
|
|
#endif
|
|
// Sign mask for the flags field. A value of zero in this bit indicates a
|
|
// positive Decimal value, and a value of one in this bit indicates a
|
|
// negative Decimal value.
|
|
//
|
|
// Look at OleAut's DECIMAL_NEG constant to check for negative values
|
|
// in native code.
|
|
private const int SignMask = unchecked((int)0x80000000);
|
|
private const byte DECIMAL_NEG = 0x80;
|
|
private const byte DECIMAL_ADD = 0x00;
|
|
|
|
// Scale mask for the flags field. This byte in the flags field contains
|
|
// the power of 10 to divide the Decimal value by. The scale byte must
|
|
// contain a value between 0 and 28 inclusive.
|
|
private const int ScaleMask = 0x00FF0000;
|
|
|
|
// Number of bits scale is shifted by.
|
|
private const int ScaleShift = 16;
|
|
|
|
// The maximum power of 10 that a 32 bit integer can store
|
|
private const Int32 MaxInt32Scale = 9;
|
|
|
|
// Fast access for 10^n where n is 0-9
|
|
private static UInt32[] Powers10 = new UInt32[] {
|
|
1,
|
|
10,
|
|
100,
|
|
1000,
|
|
10000,
|
|
100000,
|
|
1000000,
|
|
10000000,
|
|
100000000,
|
|
1000000000
|
|
};
|
|
|
|
// Constant representing the Decimal value 0.
|
|
public const Decimal Zero = 0m;
|
|
|
|
// Constant representing the Decimal value 1.
|
|
public const Decimal One = 1m;
|
|
|
|
// Constant representing the Decimal value -1.
|
|
public const Decimal MinusOne = -1m;
|
|
|
|
// Constant representing the largest possible Decimal value. The value of
|
|
// this constant is 79,228,162,514,264,337,593,543,950,335.
|
|
public const Decimal MaxValue = 79228162514264337593543950335m;
|
|
|
|
// Constant representing the smallest possible Decimal value. The value of
|
|
// this constant is -79,228,162,514,264,337,593,543,950,335.
|
|
public const Decimal MinValue = -79228162514264337593543950335m;
|
|
|
|
|
|
// Constant representing the negative number that is the closest possible
|
|
// Decimal value to -0m.
|
|
private const Decimal NearNegativeZero = -0.000000000000000000000000001m;
|
|
|
|
// Constant representing the positive number that is the closest possible
|
|
// Decimal value to +0m.
|
|
private const Decimal NearPositiveZero = +0.000000000000000000000000001m;
|
|
|
|
// The lo, mid, hi, and flags fields contain the representation of the
|
|
// Decimal value. The lo, mid, and hi fields contain the 96-bit integer
|
|
// part of the Decimal. Bits 0-15 (the lower word) of the flags field are
|
|
// unused and must be zero; bits 16-23 contain must contain a value between
|
|
// 0 and 28, indicating the power of 10 to divide the 96-bit integer part
|
|
// by to produce the Decimal value; bits 24-30 are unused and must be zero;
|
|
// and finally bit 31 indicates the sign of the Decimal value, 0 meaning
|
|
// positive and 1 meaning negative.
|
|
//
|
|
// NOTE: Do not change the order in which these fields are declared. The
|
|
// native methods in this class rely on this particular order.
|
|
private int flags;
|
|
private int hi;
|
|
private int lo;
|
|
private int mid;
|
|
|
|
|
|
// Constructs a zero Decimal.
|
|
//public Decimal() {
|
|
// lo = 0;
|
|
// mid = 0;
|
|
// hi = 0;
|
|
// flags = 0;
|
|
//}
|
|
|
|
// Constructs a Decimal from an integer value.
|
|
//
|
|
public Decimal(int value) {
|
|
// JIT today can't inline methods that contains "starg" opcode.
|
|
// For more details, see DevDiv Bugs 81184: x86 JIT CQ: Removing the inline striction of "starg".
|
|
int value_copy = value;
|
|
if (value_copy >= 0) {
|
|
flags = 0;
|
|
}
|
|
else {
|
|
flags = SignMask;
|
|
value_copy = -value_copy;
|
|
}
|
|
lo = value_copy;
|
|
mid = 0;
|
|
hi = 0;
|
|
}
|
|
|
|
// Constructs a Decimal from an unsigned integer value.
|
|
//
|
|
[CLSCompliant(false)]
|
|
public Decimal(uint value) {
|
|
flags = 0;
|
|
lo = (int) value;
|
|
mid = 0;
|
|
hi = 0;
|
|
}
|
|
|
|
// Constructs a Decimal from a long value.
|
|
//
|
|
public Decimal(long value) {
|
|
// JIT today can't inline methods that contains "starg" opcode.
|
|
// For more details, see DevDiv Bugs 81184: x86 JIT CQ: Removing the inline striction of "starg".
|
|
long value_copy = value;
|
|
if (value_copy >= 0) {
|
|
flags = 0;
|
|
}
|
|
else {
|
|
flags = SignMask;
|
|
value_copy = -value_copy;
|
|
}
|
|
lo = (int)value_copy;
|
|
mid = (int)(value_copy >> 32);
|
|
hi = 0;
|
|
}
|
|
|
|
// Constructs a Decimal from an unsigned long value.
|
|
//
|
|
[CLSCompliant(false)]
|
|
public Decimal(ulong value) {
|
|
flags = 0;
|
|
lo = (int)value;
|
|
mid = (int)(value >> 32);
|
|
hi = 0;
|
|
}
|
|
|
|
// Constructs a Decimal from a float value.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
public extern Decimal(float value);
|
|
|
|
// Constructs a Decimal from a double value.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
public extern Decimal(double value);
|
|
|
|
#if MONO
|
|
public static long ToOACurrency (decimal value)
|
|
{
|
|
return (long) (value * 10000);
|
|
}
|
|
|
|
public static decimal FromOACurrency (long cy)
|
|
{
|
|
return (decimal)cy / (decimal)10000;
|
|
}
|
|
#else
|
|
// Constructs a Decimal from a Currency value.
|
|
//
|
|
internal Decimal(Currency value) {
|
|
Decimal temp = Currency.ToDecimal(value);
|
|
this.lo = temp.lo;
|
|
this.mid = temp.mid;
|
|
this.hi = temp.hi;
|
|
this.flags = temp.flags;
|
|
}
|
|
|
|
// Don't remove these 2 methods below. They are required by the fx when the are dealing with Currency in their
|
|
// databases
|
|
public static long ToOACurrency(Decimal value)
|
|
{
|
|
return new Currency(value).ToOACurrency();
|
|
}
|
|
|
|
public static Decimal FromOACurrency(long cy)
|
|
{
|
|
return Currency.ToDecimal(Currency.FromOACurrency(cy));
|
|
}
|
|
#endif
|
|
|
|
// Constructs a Decimal from an integer array containing a binary
|
|
// representation. The bits argument must be a non-null integer
|
|
// array with four elements. bits[0], bits[1], and
|
|
// bits[2] contain the low, middle, and high 32 bits of the 96-bit
|
|
// integer part of the Decimal. bits[3] contains the scale factor
|
|
// and sign of the Decimal: bits 0-15 (the lower word) are unused and must
|
|
// be zero; bits 16-23 must contain a value between 0 and 28, indicating
|
|
// the power of 10 to divide the 96-bit integer part by to produce the
|
|
// Decimal value; bits 24-30 are unused and must be zero; and finally bit
|
|
// 31 indicates the sign of the Decimal value, 0 meaning positive and 1
|
|
// meaning negative.
|
|
//
|
|
// Note that there are several possible binary representations for the
|
|
// same numeric value. For example, the value 1 can be represented as {1,
|
|
// 0, 0, 0} (integer value 1 with a scale factor of 0) and equally well as
|
|
// {1000, 0, 0, 0x30000} (integer value 1000 with a scale factor of 3).
|
|
// The possible binary representations of a particular value are all
|
|
// equally valid, and all are numerically equivalent.
|
|
//
|
|
public Decimal(int[] bits) {
|
|
if (bits==null)
|
|
throw new ArgumentNullException("bits");
|
|
Contract.EndContractBlock();
|
|
if (bits.Length == 4) {
|
|
int f = bits[3];
|
|
if ((f & ~(SignMask | ScaleMask)) == 0 && (f & ScaleMask) <= (28 << 16)) {
|
|
lo = bits[0];
|
|
mid = bits[1];
|
|
hi = bits[2];
|
|
flags = f;
|
|
return;
|
|
}
|
|
}
|
|
throw new ArgumentException(Environment.GetResourceString("Arg_DecBitCtor"));
|
|
}
|
|
|
|
private void SetBits(int[] bits) {
|
|
if (bits==null)
|
|
throw new ArgumentNullException("bits");
|
|
Contract.EndContractBlock();
|
|
if (bits.Length == 4) {
|
|
int f = bits[3];
|
|
if ((f & ~(SignMask | ScaleMask)) == 0 && (f & ScaleMask) <= (28 << 16)) {
|
|
lo = bits[0];
|
|
mid = bits[1];
|
|
hi = bits[2];
|
|
flags = f;
|
|
return;
|
|
}
|
|
}
|
|
throw new ArgumentException(Environment.GetResourceString("Arg_DecBitCtor"));
|
|
}
|
|
|
|
// Constructs a Decimal from its constituent parts.
|
|
//
|
|
public Decimal(int lo, int mid, int hi, bool isNegative, byte scale) {
|
|
if (scale > 28)
|
|
throw new ArgumentOutOfRangeException("scale", Environment.GetResourceString("ArgumentOutOfRange_DecimalScale"));
|
|
Contract.EndContractBlock();
|
|
this.lo = lo;
|
|
this.mid = mid;
|
|
this.hi = hi;
|
|
this.flags = ((int)scale) << 16;
|
|
if (isNegative)
|
|
this.flags |= SignMask;
|
|
}
|
|
|
|
#if FEATURE_SERIALIZATION
|
|
[OnSerializing]
|
|
void OnSerializing(StreamingContext ctx) {
|
|
// OnSerializing is called before serialization of an object
|
|
try {
|
|
SetBits( GetBits(this) );
|
|
} catch (ArgumentException e) {
|
|
throw new SerializationException(Environment.GetResourceString("Overflow_Decimal"), e);
|
|
}
|
|
}
|
|
|
|
void IDeserializationCallback.OnDeserialization(Object sender) {
|
|
// OnDeserialization is called after each instance of this class is deserialized.
|
|
// This callback method performs decimal validation after being deserialized.
|
|
try {
|
|
SetBits( GetBits(this) );
|
|
} catch (ArgumentException e) {
|
|
throw new SerializationException(Environment.GetResourceString("Overflow_Decimal"), e);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Constructs a Decimal from its constituent parts.
|
|
private Decimal(int lo, int mid, int hi, int flags) {
|
|
if ((flags & ~(SignMask | ScaleMask)) == 0 && (flags & ScaleMask) <= (28 << 16)) {
|
|
this.lo = lo;
|
|
this.mid = mid;
|
|
this.hi = hi;
|
|
this.flags = flags;
|
|
return;
|
|
}
|
|
throw new ArgumentException(Environment.GetResourceString("Arg_DecBitCtor"));
|
|
}
|
|
|
|
// Returns the absolute value of the given Decimal. If d is
|
|
// positive, the result is d. If d is negative, the result
|
|
// is -d.
|
|
//
|
|
internal static Decimal Abs(Decimal d) {
|
|
return new Decimal(d.lo, d.mid, d.hi, d.flags & ~SignMask);
|
|
}
|
|
|
|
// Adds two Decimal values.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Add(Decimal d1, Decimal d2)
|
|
{
|
|
FCallAddSub (ref d1, ref d2, DECIMAL_ADD);
|
|
return d1;
|
|
}
|
|
|
|
// FCallAddSub adds or subtracts two decimal values. On return, d1 contains the result
|
|
// of the operation. Passing in DECIMAL_ADD or DECIMAL_NEG for bSign indicates
|
|
// addition or subtraction, respectively.
|
|
//
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallAddSub(ref Decimal d1, ref Decimal d2, byte bSign);
|
|
|
|
//[System.Security.SecurityCritical] // auto-generated
|
|
//[ResourceExposure(ResourceScope.None)]
|
|
//[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
//private static extern void FCallAddSubOverflowed(ref Decimal d1, ref Decimal d2, byte bSign, ref bool overflowed);
|
|
|
|
// Rounds a Decimal to an integer value. The Decimal argument is rounded
|
|
// towards positive infinity.
|
|
public static Decimal Ceiling(Decimal d) {
|
|
return (-(Decimal.Floor(-d)));
|
|
}
|
|
|
|
// Compares two Decimal values, returning an integer that indicates their
|
|
// relationship.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
|
|
public static int Compare(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2);
|
|
}
|
|
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
|
|
private static extern int FCallCompare(ref Decimal d1, ref Decimal d2);
|
|
|
|
// Compares this object to another object, returning an integer that
|
|
// indicates the relationship.
|
|
// Returns a value less than zero if this object
|
|
// null is considered to be less than any instance.
|
|
// If object is not of type Decimal, this method throws an ArgumentException.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public int CompareTo(Object value)
|
|
{
|
|
if (value == null)
|
|
return 1;
|
|
if (!(value is Decimal))
|
|
throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDecimal"));
|
|
|
|
Decimal other = (Decimal)value;
|
|
return FCallCompare(ref this, ref other);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public int CompareTo(Decimal value)
|
|
{
|
|
return FCallCompare(ref this, ref value);
|
|
}
|
|
|
|
// Divides two Decimal values.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Divide(Decimal d1, Decimal d2)
|
|
{
|
|
FCallDivide (ref d1, ref d2);
|
|
return d1;
|
|
}
|
|
|
|
// FCallDivide divides two decimal values. On return, d1 contains the result
|
|
// of the operation.
|
|
//
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallDivide(ref Decimal d1, ref Decimal d2);
|
|
|
|
//[System.Security.SecurityCritical] // auto-generated
|
|
//[ResourceExposure(ResourceScope.None)]
|
|
//[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
//private static extern void FCallDivideOverflowed(ref Decimal d1, ref Decimal d2, ref bool overflowed);
|
|
|
|
// Checks if this Decimal is equal to a given object. Returns true
|
|
// if the given object is a boxed Decimal and its value is equal to the
|
|
// value of this Decimal. Returns false otherwise.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public override bool Equals(Object value) {
|
|
if (value is Decimal) {
|
|
Decimal other = (Decimal)value;
|
|
return FCallCompare(ref this, ref other) == 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public bool Equals(Decimal value)
|
|
{
|
|
return FCallCompare(ref this, ref value) == 0;
|
|
}
|
|
|
|
// Returns the hash code for this Decimal.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
public extern override int GetHashCode();
|
|
|
|
// Compares two Decimal values for equality. Returns true if the two
|
|
// Decimal values are equal, or false if they are not equal.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool Equals(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) == 0;
|
|
}
|
|
|
|
// Rounds a Decimal to an integer value. The Decimal argument is rounded
|
|
// towards negative infinity.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Floor(Decimal d)
|
|
{
|
|
FCallFloor (ref d);
|
|
return d;
|
|
}
|
|
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallFloor(ref Decimal d);
|
|
|
|
// Converts this Decimal to a string. The resulting string consists of an
|
|
// optional minus sign ("-") followed to a sequence of digits ("0" - "9"),
|
|
// optionally followed by a decimal point (".") and another sequence of
|
|
// digits.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public override String ToString() {
|
|
Contract.Ensures(Contract.Result<String>() != null);
|
|
return Number.FormatDecimal(this, null, NumberFormatInfo.CurrentInfo);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public String ToString(String format) {
|
|
Contract.Ensures(Contract.Result<String>() != null);
|
|
return Number.FormatDecimal(this, format, NumberFormatInfo.CurrentInfo);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public String ToString(IFormatProvider provider) {
|
|
Contract.Ensures(Contract.Result<String>() != null);
|
|
return Number.FormatDecimal(this, null, NumberFormatInfo.GetInstance(provider));
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public String ToString(String format, IFormatProvider provider) {
|
|
Contract.Ensures(Contract.Result<String>() != null);
|
|
return Number.FormatDecimal(this, format, NumberFormatInfo.GetInstance(provider));
|
|
}
|
|
|
|
|
|
// Converts a string to a Decimal. The string must consist of an optional
|
|
// minus sign ("-") followed by a sequence of digits ("0" - "9"). The
|
|
// sequence of digits may optionally contain a single decimal point (".")
|
|
// character. Leading and trailing whitespace characters are allowed.
|
|
// Parse also allows a currency symbol, a trailing negative sign, and
|
|
// parentheses in the number.
|
|
//
|
|
public static Decimal Parse(String s) {
|
|
return Number.ParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo);
|
|
}
|
|
|
|
public static Decimal Parse(String s, NumberStyles style) {
|
|
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
|
|
return Number.ParseDecimal(s, style, NumberFormatInfo.CurrentInfo);
|
|
}
|
|
|
|
public static Decimal Parse(String s, IFormatProvider provider) {
|
|
return Number.ParseDecimal(s, NumberStyles.Number, NumberFormatInfo.GetInstance(provider));
|
|
}
|
|
|
|
public static Decimal Parse(String s, NumberStyles style, IFormatProvider provider) {
|
|
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
|
|
return Number.ParseDecimal(s, style, NumberFormatInfo.GetInstance(provider));
|
|
}
|
|
|
|
public static Boolean TryParse(String s, out Decimal result) {
|
|
return Number.TryParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo, out result);
|
|
}
|
|
|
|
public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Decimal result) {
|
|
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
|
|
return Number.TryParseDecimal(s, style, NumberFormatInfo.GetInstance(provider), out result);
|
|
}
|
|
|
|
// Returns a binary representation of a Decimal. The return value is an
|
|
// integer array with four elements. Elements 0, 1, and 2 contain the low,
|
|
// middle, and high 32 bits of the 96-bit integer part of the Decimal.
|
|
// Element 3 contains the scale factor and sign of the Decimal: bits 0-15
|
|
// (the lower word) are unused; bits 16-23 contain a value between 0 and
|
|
// 28, indicating the power of 10 to divide the 96-bit integer part by to
|
|
// produce the Decimal value; bits 24-30 are unused; and finally bit 31
|
|
// indicates the sign of the Decimal value, 0 meaning positive and 1
|
|
// meaning negative.
|
|
//
|
|
public static int[] GetBits(Decimal d) {
|
|
return new int[] {d.lo, d.mid, d.hi, d.flags};
|
|
}
|
|
|
|
internal static void GetBytes(Decimal d, byte [] buffer) {
|
|
Contract.Requires((buffer != null && buffer.Length >= 16), "[GetBytes]buffer != null && buffer.Length >= 16");
|
|
buffer[0] = (byte) d.lo;
|
|
buffer[1] = (byte) (d.lo >> 8);
|
|
buffer[2] = (byte) (d.lo >> 16);
|
|
buffer[3] = (byte) (d.lo >> 24);
|
|
|
|
buffer[4] = (byte) d.mid;
|
|
buffer[5] = (byte) (d.mid >> 8);
|
|
buffer[6] = (byte) (d.mid >> 16);
|
|
buffer[7] = (byte) (d.mid >> 24);
|
|
|
|
buffer[8] = (byte) d.hi;
|
|
buffer[9] = (byte) (d.hi >> 8);
|
|
buffer[10] = (byte) (d.hi >> 16);
|
|
buffer[11] = (byte) (d.hi >> 24);
|
|
|
|
buffer[12] = (byte) d.flags;
|
|
buffer[13] = (byte) (d.flags >> 8);
|
|
buffer[14] = (byte) (d.flags >> 16);
|
|
buffer[15] = (byte) (d.flags >> 24);
|
|
}
|
|
|
|
internal static decimal ToDecimal(byte [] buffer) {
|
|
Contract.Requires((buffer != null && buffer.Length >= 16), "[ToDecimal]buffer != null && buffer.Length >= 16");
|
|
int lo = ((int)buffer[0]) | ((int)buffer[1] << 8) | ((int)buffer[2] << 16) | ((int)buffer[3] << 24);
|
|
int mid = ((int)buffer[4]) | ((int)buffer[5] << 8) | ((int)buffer[6] << 16) | ((int)buffer[7] << 24);
|
|
int hi = ((int)buffer[8]) | ((int)buffer[9] << 8) | ((int)buffer[10] << 16) | ((int)buffer[11] << 24);
|
|
int flags = ((int)buffer[12]) | ((int)buffer[13] << 8) | ((int)buffer[14] << 16) | ((int)buffer[15] << 24);
|
|
return new Decimal(lo,mid,hi,flags);
|
|
}
|
|
|
|
// This method does a 'raw' and 'unchecked' addition of a UInt32 to a Decimal in place.
|
|
// 'raw' means that it operates on the internal 96-bit unsigned integer value and
|
|
// ingores the sign and scale. This means that it is not equivalent to just adding
|
|
// that number, as the sign and scale are effectively applied to the UInt32 value also.
|
|
// 'unchecked' means that it does not fail if you overflow the 96 bit value.
|
|
private static void InternalAddUInt32RawUnchecked(ref Decimal value, UInt32 i) {
|
|
UInt32 v;
|
|
UInt32 sum;
|
|
v = (UInt32)value.lo;
|
|
sum = v + i;
|
|
value.lo = (Int32)sum;
|
|
if (sum < v || sum < i) {
|
|
v = (UInt32)value.mid;
|
|
sum = v + 1;
|
|
value.mid = (Int32)sum;
|
|
if (sum < v || sum < 1) {
|
|
value.hi = (Int32) ((UInt32)value.hi + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This method does an in-place division of a decimal by a UInt32, returning the remainder.
|
|
// Although it does not operate on the sign or scale, this does not result in any
|
|
// caveat for the result. It is equivalent to dividing by that number.
|
|
private static UInt32 InternalDivRemUInt32(ref Decimal value, UInt32 divisor) {
|
|
UInt32 remainder = 0;
|
|
UInt64 n;
|
|
if (value.hi != 0) {
|
|
n = ((UInt32) value.hi);
|
|
value.hi = (Int32)((UInt32)(n / divisor));
|
|
remainder = (UInt32)(n % divisor);
|
|
}
|
|
if (value.mid != 0 || remainder != 0) {
|
|
n = ((UInt64)remainder << 32) | (UInt32) value.mid;
|
|
value.mid = (Int32)((UInt32)(n / divisor));
|
|
remainder = (UInt32)(n % divisor);
|
|
}
|
|
if (value.lo != 0 || remainder != 0) {
|
|
n = ((UInt64)remainder << 32) | (UInt32) value.lo;
|
|
value.lo = (Int32)((UInt32)(n / divisor));
|
|
remainder = (UInt32)(n % divisor);
|
|
}
|
|
return remainder;
|
|
}
|
|
|
|
// Does an in-place round the specified number of digits, rounding mid-point values
|
|
// away from zero
|
|
private static void InternalRoundFromZero(ref Decimal d, int decimalCount) {
|
|
Int32 scale = (d.flags & ScaleMask) >> ScaleShift;
|
|
Int32 scaleDifference = scale - decimalCount;
|
|
if (scaleDifference <= 0) {
|
|
return;
|
|
}
|
|
// Divide the value by 10^scaleDifference
|
|
UInt32 lastRemainder;
|
|
UInt32 lastDivisor;
|
|
do {
|
|
Int32 diffChunk = (scaleDifference > MaxInt32Scale) ? MaxInt32Scale : scaleDifference;
|
|
lastDivisor = Powers10[diffChunk];
|
|
lastRemainder = InternalDivRemUInt32(ref d, lastDivisor);
|
|
scaleDifference -= diffChunk;
|
|
} while (scaleDifference > 0);
|
|
|
|
// Round away from zero at the mid point
|
|
if (lastRemainder >= (lastDivisor >> 1)) {
|
|
InternalAddUInt32RawUnchecked(ref d, 1);
|
|
}
|
|
|
|
// the scale becomes the desired decimal count
|
|
d.flags = ((decimalCount << ScaleShift) & ScaleMask) | (d.flags & SignMask);
|
|
}
|
|
|
|
// Returns the larger of two Decimal values.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
|
|
internal static Decimal Max(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) >= 0? d1: d2;
|
|
}
|
|
|
|
// Returns the smaller of two Decimal values.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
|
|
internal static Decimal Min(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) < 0? d1: d2;
|
|
}
|
|
|
|
public static Decimal Remainder(Decimal d1, Decimal d2) {
|
|
// OleAut doesn't provide a VarDecMod.
|
|
|
|
// In the operation x % y the sign of y does not matter. Result will have the sign of x.
|
|
d2.flags = (d2.flags & ~SignMask) | (d1.flags & SignMask);
|
|
|
|
|
|
// This piece of code is to work around the fact that Dividing a decimal with 28 digits number by decimal which causes
|
|
// causes the result to be 28 digits, can cause to be incorrectly rounded up.
|
|
// eg. Decimal.MaxValue / 2 * Decimal.MaxValue will overflow since the division by 2 was rounded instead of being truncked.
|
|
if (Abs(d1) < Abs(d2)) {
|
|
return d1;
|
|
}
|
|
d1 -= d2;
|
|
|
|
if (d1 == 0) {
|
|
// The sign of D1 will be wrong here. Fall through so that we still get a DivideByZeroException
|
|
d1.flags = (d1.flags & ~SignMask) | (d2.flags & SignMask);
|
|
}
|
|
|
|
// Formula: d1 - (RoundTowardsZero(d1 / d2) * d2)
|
|
Decimal dividedResult = Truncate(d1/d2);
|
|
Decimal multipliedResult = dividedResult * d2;
|
|
Decimal result = d1 - multipliedResult;
|
|
// See if the result has crossed 0
|
|
if ((d1.flags & SignMask) != (result.flags & SignMask)) {
|
|
|
|
if (NearNegativeZero <= result && result <= NearPositiveZero) {
|
|
// Certain Remainder operations on decimals with 28 significant digits round
|
|
// to [+-]0.000000000000000000000000001m instead of [+-]0m during the intermediate calculations.
|
|
// 'zero' results just need their sign corrected.
|
|
result.flags = (result.flags & ~SignMask) | (d1.flags & SignMask);
|
|
}
|
|
else {
|
|
// If the division rounds up because it runs out of digits, the multiplied result can end up with a larger
|
|
// absolute value and the result of the formula crosses 0. To correct it can add the divisor back.
|
|
result += d2;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Multiplies two Decimal values.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Multiply(Decimal d1, Decimal d2)
|
|
{
|
|
FCallMultiply (ref d1, ref d2);
|
|
return d1;
|
|
}
|
|
|
|
// FCallMultiply multiples two decimal values. On return, d1 contains the result
|
|
// of the operation.
|
|
//
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallMultiply(ref Decimal d1, ref Decimal d2);
|
|
|
|
//[System.Security.SecurityCritical] // auto-generated
|
|
//[ResourceExposure(ResourceScope.None)]
|
|
//[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
//private static extern void FCallMultiplyOverflowed(ref Decimal d1, ref Decimal d2, ref bool overflowed);
|
|
|
|
// Returns the negated value of the given Decimal. If d is non-zero,
|
|
// the result is -d. If d is zero, the result is zero.
|
|
//
|
|
public static Decimal Negate(Decimal d) {
|
|
return new Decimal(d.lo, d.mid, d.hi, d.flags ^ SignMask);
|
|
}
|
|
|
|
// Rounds a Decimal value to a given number of decimal places. The value
|
|
// given by d is rounded to the number of decimal places given by
|
|
// decimals. The decimals argument must be an integer between
|
|
// 0 and 28 inclusive.
|
|
//
|
|
// By default a mid-point value is rounded to the nearest even number. If the mode is
|
|
// passed in, it can also round away from zero.
|
|
|
|
public static Decimal Round(Decimal d) {
|
|
return Round(d, 0);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Round(Decimal d, int decimals)
|
|
{
|
|
FCallRound (ref d, decimals);
|
|
return d;
|
|
}
|
|
|
|
public static Decimal Round(Decimal d, MidpointRounding mode) {
|
|
return Round(d, 0, mode);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Round(Decimal d, int decimals, MidpointRounding mode) {
|
|
if ((decimals < 0) || (decimals > 28))
|
|
throw new ArgumentOutOfRangeException("decimals", Environment.GetResourceString("ArgumentOutOfRange_DecimalRound"));
|
|
if (mode < MidpointRounding.ToEven || mode > MidpointRounding.AwayFromZero) {
|
|
throw new ArgumentException(Environment.GetResourceString("Argument_InvalidEnumValue", mode, "MidpointRounding"), "mode");
|
|
}
|
|
Contract.EndContractBlock();
|
|
|
|
if (mode == MidpointRounding.ToEven) {
|
|
FCallRound (ref d, decimals);
|
|
}
|
|
else {
|
|
InternalRoundFromZero(ref d, decimals);
|
|
}
|
|
return d;
|
|
}
|
|
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallRound(ref Decimal d, int decimals);
|
|
|
|
// Subtracts two Decimal values.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Subtract(Decimal d1, Decimal d2)
|
|
{
|
|
FCallAddSub(ref d1, ref d2, DECIMAL_NEG);
|
|
return d1;
|
|
}
|
|
|
|
// Converts a Decimal to an unsigned byte. The Decimal value is rounded
|
|
// towards zero to the nearest integer value, and the result of this
|
|
// operation is returned as a byte.
|
|
//
|
|
public static byte ToByte(Decimal value) {
|
|
uint temp;
|
|
try {
|
|
temp = ToUInt32(value);
|
|
}
|
|
catch (OverflowException e) {
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_Byte"), e);
|
|
}
|
|
if (temp < Byte.MinValue || temp > Byte.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_Byte"));
|
|
return (byte)temp;
|
|
|
|
}
|
|
|
|
// Converts a Decimal to a signed byte. The Decimal value is rounded
|
|
// towards zero to the nearest integer value, and the result of this
|
|
// operation is returned as a byte.
|
|
//
|
|
[CLSCompliant(false)]
|
|
public static sbyte ToSByte(Decimal value) {
|
|
int temp;
|
|
try {
|
|
temp = ToInt32(value);
|
|
}
|
|
catch (OverflowException e) {
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_SByte"), e);
|
|
}
|
|
if (temp < SByte.MinValue || temp > SByte.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_SByte"));
|
|
return (sbyte)temp;
|
|
}
|
|
|
|
// Converts a Decimal to a short. The Decimal value is
|
|
// rounded towards zero to the nearest integer value, and the result of
|
|
// this operation is returned as a short.
|
|
//
|
|
public static short ToInt16(Decimal value) {
|
|
int temp;
|
|
try {
|
|
temp = ToInt32(value);
|
|
}
|
|
catch (OverflowException e) {
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_Int16"), e);
|
|
}
|
|
if (temp < Int16.MinValue || temp > Int16.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_Int16"));
|
|
return (short)temp;
|
|
}
|
|
|
|
#if !MONO
|
|
// Converts a Decimal to a Currency. Since a Currency
|
|
// has fewer significant digits than a Decimal, this operation may
|
|
// produce round-off errors.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
internal static Currency ToCurrency(Decimal d)
|
|
{
|
|
Currency result = new Currency ();
|
|
FCallToCurrency (ref result, d);
|
|
return result;
|
|
}
|
|
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallToCurrency(ref Currency result, Decimal d);
|
|
#endif
|
|
|
|
// Converts a Decimal to a double. Since a double has fewer significant
|
|
// digits than a Decimal, this operation may produce round-off errors.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
public static extern double ToDouble(Decimal d);
|
|
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
internal static extern int FCallToInt32(Decimal d);
|
|
|
|
// Converts a Decimal to an integer. The Decimal value is rounded towards
|
|
// zero to the nearest integer value, and the result of this operation is
|
|
// returned as an integer.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static int ToInt32(Decimal d) {
|
|
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
|
|
if (d.hi == 0 && d.mid == 0) {
|
|
int i = d.lo;
|
|
if (d.flags >= 0) {
|
|
if (i >= 0) return i;
|
|
}
|
|
else {
|
|
i = -i;
|
|
if (i <= 0) return i;
|
|
}
|
|
}
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_Int32"));
|
|
}
|
|
|
|
// Converts a Decimal to a long. The Decimal value is rounded towards zero
|
|
// to the nearest integer value, and the result of this operation is
|
|
// returned as a long.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static long ToInt64(Decimal d) {
|
|
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
|
|
if (d.hi == 0) {
|
|
long l = d.lo & 0xFFFFFFFFL | (long)d.mid << 32;
|
|
if (d.flags >= 0) {
|
|
if (l >= 0) return l;
|
|
}
|
|
else {
|
|
l = -l;
|
|
if (l <= 0) return l;
|
|
}
|
|
}
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_Int64"));
|
|
}
|
|
|
|
// Converts a Decimal to an ushort. The Decimal
|
|
// value is rounded towards zero to the nearest integer value, and the
|
|
// result of this operation is returned as an ushort.
|
|
//
|
|
[CLSCompliant(false)]
|
|
public static ushort ToUInt16(Decimal value) {
|
|
uint temp;
|
|
try {
|
|
temp = ToUInt32(value);
|
|
}
|
|
catch (OverflowException e) {
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_UInt16"), e);
|
|
}
|
|
if (temp < UInt16.MinValue || temp > UInt16.MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_UInt16"));
|
|
return (ushort)temp;
|
|
}
|
|
|
|
// Converts a Decimal to an unsigned integer. The Decimal
|
|
// value is rounded towards zero to the nearest integer value, and the
|
|
// result of this operation is returned as an unsigned integer.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[CLSCompliant(false)]
|
|
public static uint ToUInt32(Decimal d) {
|
|
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
|
|
if (d.hi == 0 && d.mid == 0) {
|
|
uint i = (uint) d.lo;
|
|
if (d.flags >= 0 || i == 0)
|
|
return i;
|
|
}
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_UInt32"));
|
|
}
|
|
|
|
// Converts a Decimal to an unsigned long. The Decimal
|
|
// value is rounded towards zero to the nearest integer value, and the
|
|
// result of this operation is returned as a long.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[CLSCompliant(false)]
|
|
public static ulong ToUInt64(Decimal d) {
|
|
if ((d.flags & ScaleMask) != 0) FCallTruncate (ref d);
|
|
if (d.hi == 0) {
|
|
ulong l = ((ulong)(uint)d.lo) | ((ulong)(uint)d.mid << 32);
|
|
if (d.flags >= 0 || l == 0)
|
|
return l;
|
|
}
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_UInt64"));
|
|
}
|
|
|
|
// Converts a Decimal to a float. Since a float has fewer significant
|
|
// digits than a Decimal, this operation may produce round-off errors.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
public static extern float ToSingle(Decimal d);
|
|
|
|
// Truncates a Decimal to an integer value. The Decimal argument is rounded
|
|
// towards zero to the nearest integer value, corresponding to removing all
|
|
// digits after the decimal point.
|
|
//
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal Truncate(Decimal d)
|
|
{
|
|
FCallTruncate (ref d);
|
|
return d;
|
|
}
|
|
|
|
|
|
[System.Security.SecurityCritical] // auto-generated
|
|
[ResourceExposure(ResourceScope.None)]
|
|
[MethodImplAttribute(MethodImplOptions.InternalCall)]
|
|
private static extern void FCallTruncate(ref Decimal d);
|
|
|
|
|
|
public static implicit operator Decimal(byte value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static implicit operator Decimal(sbyte value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
public static implicit operator Decimal(short value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static implicit operator Decimal(ushort value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
public static implicit operator Decimal(char value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
public static implicit operator Decimal(int value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static implicit operator Decimal(uint value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
public static implicit operator Decimal(long value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static implicit operator Decimal(ulong value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
|
|
public static explicit operator Decimal(float value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
public static explicit operator Decimal(double value) {
|
|
return new Decimal(value);
|
|
}
|
|
|
|
public static explicit operator byte(Decimal value) {
|
|
return ToByte(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static explicit operator sbyte(Decimal value) {
|
|
return ToSByte(value);
|
|
}
|
|
|
|
public static explicit operator char(Decimal value) {
|
|
UInt16 temp;
|
|
try {
|
|
temp = ToUInt16(value);
|
|
}
|
|
catch (OverflowException e) {
|
|
throw new OverflowException(Environment.GetResourceString("Overflow_Char"), e);
|
|
}
|
|
return (char)temp;
|
|
}
|
|
|
|
public static explicit operator short(Decimal value) {
|
|
return ToInt16(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static explicit operator ushort(Decimal value) {
|
|
return ToUInt16(value);
|
|
}
|
|
|
|
public static explicit operator int(Decimal value) {
|
|
return ToInt32(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static explicit operator uint(Decimal value) {
|
|
return ToUInt32(value);
|
|
}
|
|
|
|
public static explicit operator long(Decimal value) {
|
|
return ToInt64(value);
|
|
}
|
|
|
|
[CLSCompliant(false)]
|
|
public static explicit operator ulong(Decimal value) {
|
|
return ToUInt64(value);
|
|
}
|
|
|
|
public static explicit operator float(Decimal value) {
|
|
return ToSingle(value);
|
|
}
|
|
|
|
public static explicit operator double(Decimal value) {
|
|
return ToDouble(value);
|
|
}
|
|
|
|
public static Decimal operator +(Decimal d) {
|
|
return d;
|
|
}
|
|
|
|
public static Decimal operator -(Decimal d) {
|
|
return Negate(d);
|
|
}
|
|
|
|
public static Decimal operator ++(Decimal d) {
|
|
return Add(d, One);
|
|
}
|
|
|
|
public static Decimal operator --(Decimal d) {
|
|
return Subtract(d, One);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal operator +(Decimal d1, Decimal d2) {
|
|
FCallAddSub(ref d1, ref d2, DECIMAL_ADD);
|
|
return d1;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal operator -(Decimal d1, Decimal d2) {
|
|
FCallAddSub(ref d1, ref d2, DECIMAL_NEG);
|
|
return d1;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal operator *(Decimal d1, Decimal d2) {
|
|
FCallMultiply (ref d1, ref d2);
|
|
return d1;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static Decimal operator /(Decimal d1, Decimal d2) {
|
|
FCallDivide (ref d1, ref d2);
|
|
return d1;
|
|
}
|
|
|
|
public static Decimal operator %(Decimal d1, Decimal d2) {
|
|
return Remainder(d1, d2);
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool operator ==(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) == 0;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool operator !=(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) != 0;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool operator <(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) < 0;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool operator <=(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) <= 0;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool operator >(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) > 0;
|
|
}
|
|
|
|
[System.Security.SecuritySafeCritical] // auto-generated
|
|
public static bool operator >=(Decimal d1, Decimal d2) {
|
|
return FCallCompare(ref d1, ref d2) >= 0;
|
|
}
|
|
|
|
//
|
|
// IConvertible implementation
|
|
//
|
|
|
|
public TypeCode GetTypeCode() {
|
|
return TypeCode.Decimal;
|
|
}
|
|
|
|
/// <internalonly/>
|
|
bool IConvertible.ToBoolean(IFormatProvider provider) {
|
|
return Convert.ToBoolean(this);
|
|
}
|
|
|
|
|
|
/// <internalonly/>
|
|
char IConvertible.ToChar(IFormatProvider provider) {
|
|
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Decimal", "Char"));
|
|
}
|
|
|
|
/// <internalonly/>
|
|
sbyte IConvertible.ToSByte(IFormatProvider provider) {
|
|
return Convert.ToSByte(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
byte IConvertible.ToByte(IFormatProvider provider) {
|
|
return Convert.ToByte(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
short IConvertible.ToInt16(IFormatProvider provider) {
|
|
return Convert.ToInt16(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
ushort IConvertible.ToUInt16(IFormatProvider provider) {
|
|
return Convert.ToUInt16(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
int IConvertible.ToInt32(IFormatProvider provider) {
|
|
return Convert.ToInt32(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
uint IConvertible.ToUInt32(IFormatProvider provider) {
|
|
return Convert.ToUInt32(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
long IConvertible.ToInt64(IFormatProvider provider) {
|
|
return Convert.ToInt64(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
ulong IConvertible.ToUInt64(IFormatProvider provider) {
|
|
return Convert.ToUInt64(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
float IConvertible.ToSingle(IFormatProvider provider) {
|
|
return Convert.ToSingle(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
double IConvertible.ToDouble(IFormatProvider provider) {
|
|
return Convert.ToDouble(this);
|
|
}
|
|
|
|
/// <internalonly/>
|
|
Decimal IConvertible.ToDecimal(IFormatProvider provider) {
|
|
return this;
|
|
}
|
|
|
|
/// <internalonly/>
|
|
DateTime IConvertible.ToDateTime(IFormatProvider provider) {
|
|
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Decimal", "DateTime"));
|
|
}
|
|
|
|
/// <internalonly/>
|
|
Object IConvertible.ToType(Type type, IFormatProvider provider) {
|
|
return Convert.DefaultToType((IConvertible)this, type, provider);
|
|
}
|
|
|
|
///#if GENERICS_WORK
|
|
/// //
|
|
/// // IArithmetic<Decimal> implementation
|
|
/// //
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.AbsoluteValue(out bool overflowed) {
|
|
/// overflowed = false;
|
|
/// return new Decimal(this.lo, this.mid, this.hi, this.flags & ~SignMask);
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Negate(out bool overflowed) {
|
|
/// overflowed = false;
|
|
/// return new Decimal(this.lo, this.mid, this.hi, this.flags ^ SignMask);
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Sign(out bool overflowed) {
|
|
/// overflowed = false;
|
|
/// Decimal zero = Decimal.Zero;
|
|
/// return FCallCompare(ref this, ref zero);
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Add(Decimal addend, out bool overflowed) {
|
|
/// Decimal result = this;
|
|
/// overflowed = false;
|
|
/// FCallAddSubOverflowed(ref result, ref addend, DECIMAL_ADD, ref overflowed);
|
|
/// return result;
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Subtract(Decimal subtrahend, out bool overflowed) {
|
|
/// Decimal result = this;
|
|
/// overflowed = false;
|
|
/// FCallAddSubOverflowed(ref result, ref subtrahend, DECIMAL_NEG, ref overflowed);
|
|
/// return result;
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Multiply(Decimal multiplier, out bool overflowed) {
|
|
/// Decimal result = this;
|
|
/// overflowed = false;
|
|
/// FCallMultiplyOverflowed(ref result, ref multiplier, ref overflowed);
|
|
/// return result;
|
|
/// }
|
|
///
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Divide(Decimal divisor, out bool overflowed) {
|
|
/// Decimal result = this;
|
|
/// overflowed = false;
|
|
/// FCallDivideOverflowed(ref result, ref divisor, ref overflowed);
|
|
/// return result;
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.DivideRemainder(Decimal divisor, out Decimal remainder, out bool overflowed) {
|
|
/// Decimal result = this;
|
|
/// overflowed = false;
|
|
/// FCallDivideOverflowed(ref result, ref divisor, ref overflowed);
|
|
/// try {
|
|
/// remainder = Decimal.Remainder(this, divisor);
|
|
/// }
|
|
/// catch (OverflowException) {
|
|
/// overflowed = true;
|
|
/// remainder = this;
|
|
/// }
|
|
///
|
|
/// return result;
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// Decimal IArithmetic<Decimal>.Remainder(Decimal divisor, out bool overflowed) {
|
|
/// overflowed = false;
|
|
///
|
|
/// try {
|
|
/// return Decimal.Remainder(this, divisor);
|
|
/// }
|
|
/// catch (OverflowException) {
|
|
/// overflowed = true;
|
|
/// return this;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// /// <internalonly/>
|
|
/// ArithmeticDescriptor<Decimal> IArithmetic<Decimal>.GetDescriptor() {
|
|
/// if (s_descriptor == null) {
|
|
/// s_descriptor = new DecimalArithmeticDescriptor( ArithmeticCapabilities.One
|
|
/// | ArithmeticCapabilities.Zero
|
|
/// | ArithmeticCapabilities.MaxValue
|
|
/// | ArithmeticCapabilities.MinValue);
|
|
/// }
|
|
/// return s_descriptor;
|
|
/// }
|
|
///
|
|
/// private static DecimalArithmeticDescriptor s_descriptor;
|
|
///
|
|
/// class DecimalArithmeticDescriptor : ArithmeticDescriptor<Decimal> {
|
|
/// public DecimalArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
|
|
///
|
|
/// public override Decimal One {
|
|
/// get {
|
|
/// return (Decimal) 1;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// public override Decimal Zero {
|
|
/// get {
|
|
/// return (Decimal) 0;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// public override Decimal MinValue {
|
|
/// get {
|
|
/// return Decimal.MinValue;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// public override Decimal MaxValue {
|
|
/// get {
|
|
/// return Decimal.MaxValue;
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///#endif // #if GENERICS_WORK
|
|
|
|
}
|
|
}
|