Xamarin Public Jenkins (auto-signing) e79aa3c0ed Imported Upstream version 4.6.0.125
Former-commit-id: a2155e9bd80020e49e72e86c44da02a8ac0e57a4
2016-08-03 10:59:49 +00:00

833 lines
38 KiB
C#

// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
namespace System {
using System;
using System.Threading;
using System.Globalization;
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using System.Runtime.Serialization;
using System.Security.Permissions;
using System.Diagnostics.Contracts;
// DateTimeOffset is a value type that consists of a DateTime and a time zone offset,
// ie. how far away the time is from GMT. The DateTime is stored whole, and the offset
// is stored as an Int16 internally to save space, but presented as a TimeSpan.
//
// The range is constrained so that both the represented clock time and the represented
// UTC time fit within the boundaries of MaxValue. This gives it the same range as DateTime
// for actual UTC times, and a slightly constrained range on one end when an offset is
// present.
//
// This class should be substitutable for date time in most cases; so most operations
// effectively work on the clock time. However, the underlying UTC time is what counts
// for the purposes of identity, sorting and subtracting two instances.
//
//
// There are theoretically two date times stored, the UTC and the relative local representation
// or the 'clock' time. It actually does not matter which is stored in m_dateTime, so it is desirable
// for most methods to go through the helpers UtcDateTime and ClockDateTime both to abstract this
// out and for internal readability.
[StructLayout(LayoutKind.Auto)]
[Serializable]
public struct DateTimeOffset : IComparable, IFormattable, ISerializable, IDeserializationCallback,
IComparable<DateTimeOffset>, IEquatable<DateTimeOffset> {
// Constants
internal const Int64 MaxOffset = TimeSpan.TicksPerHour * 14;
internal const Int64 MinOffset = -MaxOffset;
private const long UnixEpochTicks = TimeSpan.TicksPerDay * DateTime.DaysTo1970; // 621,355,968,000,000,000
private const long UnixEpochSeconds = UnixEpochTicks / TimeSpan.TicksPerSecond; // 62,135,596,800
private const long UnixEpochMilliseconds = UnixEpochTicks / TimeSpan.TicksPerMillisecond; // 62,135,596,800,000
// Static Fields
public static readonly DateTimeOffset MinValue = new DateTimeOffset(DateTime.MinTicks, TimeSpan.Zero);
public static readonly DateTimeOffset MaxValue = new DateTimeOffset(DateTime.MaxTicks, TimeSpan.Zero);
// Instance Fields
private DateTime m_dateTime;
private Int16 m_offsetMinutes;
// Constructors
// Constructs a DateTimeOffset from a tick count and offset
public DateTimeOffset(long ticks, TimeSpan offset) {
m_offsetMinutes = ValidateOffset(offset);
// Let the DateTime constructor do the range checks
DateTime dateTime = new DateTime(ticks);
m_dateTime = ValidateDate(dateTime, offset);
}
// Constructs a DateTimeOffset from a DateTime. For Local and Unspecified kinds,
// extracts the local offset. For UTC, creates a UTC instance with a zero offset.
public DateTimeOffset(DateTime dateTime) {
TimeSpan offset;
if (dateTime.Kind != DateTimeKind.Utc) {
// Local and Unspecified are both treated as Local
offset = TimeZoneInfo.GetLocalUtcOffset(dateTime, TimeZoneInfoOptions.NoThrowOnInvalidTime);
}
else {
offset = new TimeSpan(0);
}
m_offsetMinutes = ValidateOffset(offset);
m_dateTime = ValidateDate(dateTime, offset);
}
// Constructs a DateTimeOffset from a DateTime. And an offset. Always makes the clock time
// consistent with the DateTime. For Utc ensures the offset is zero. For local, ensures that
// the offset corresponds to the local.
public DateTimeOffset(DateTime dateTime, TimeSpan offset) {
if (dateTime.Kind == DateTimeKind.Local) {
if (offset != TimeZoneInfo.GetLocalUtcOffset(dateTime, TimeZoneInfoOptions.NoThrowOnInvalidTime)) {
throw new ArgumentException(Environment.GetResourceString("Argument_OffsetLocalMismatch"), "offset");
}
}
else if (dateTime.Kind == DateTimeKind.Utc) {
if (offset != TimeSpan.Zero) {
throw new ArgumentException(Environment.GetResourceString("Argument_OffsetUtcMismatch"), "offset");
}
}
m_offsetMinutes = ValidateOffset(offset);
m_dateTime = ValidateDate(dateTime, offset);
}
// Constructs a DateTimeOffset from a given year, month, day, hour,
// minute, second and offset.
public DateTimeOffset(int year, int month, int day, int hour, int minute, int second, TimeSpan offset) {
m_offsetMinutes = ValidateOffset(offset);
m_dateTime = ValidateDate(new DateTime(year, month, day, hour, minute, second), offset);
}
// Constructs a DateTimeOffset from a given year, month, day, hour,
// minute, second, millsecond and offset
public DateTimeOffset(int year, int month, int day, int hour, int minute, int second, int millisecond, TimeSpan offset) {
m_offsetMinutes = ValidateOffset(offset);
m_dateTime = ValidateDate(new DateTime(year, month, day, hour, minute, second, millisecond), offset);
}
// Constructs a DateTimeOffset from a given year, month, day, hour,
// minute, second, millsecond, Calendar and offset.
public DateTimeOffset(int year, int month, int day, int hour, int minute, int second, int millisecond, Calendar calendar, TimeSpan offset) {
m_offsetMinutes = ValidateOffset(offset);
m_dateTime = ValidateDate(new DateTime(year, month, day, hour, minute, second, millisecond, calendar), offset);
}
// Returns a DateTimeOffset representing the current date and time. The
// resolution of the returned value depends on the system timer. For
// Windows NT 3.5 and later the timer resolution is approximately 10ms,
// for Windows NT 3.1 it is approximately 16ms, and for Windows 95 and 98
// it is approximately 55ms.
//
public static DateTimeOffset Now {
get {
return new DateTimeOffset(DateTime.Now);
}
}
public static DateTimeOffset UtcNow {
get {
return new DateTimeOffset(DateTime.UtcNow);
}
}
public DateTime DateTime {
get {
return ClockDateTime;
}
}
public DateTime UtcDateTime {
[Pure]
get {
Contract.Ensures(Contract.Result<DateTime>().Kind == DateTimeKind.Utc);
return DateTime.SpecifyKind(m_dateTime, DateTimeKind.Utc);
}
}
public DateTime LocalDateTime {
[Pure]
get {
Contract.Ensures(Contract.Result<DateTime>().Kind == DateTimeKind.Local);
return UtcDateTime.ToLocalTime();
}
}
// Adjust to a given offset with the same UTC time. Can throw ArgumentException
//
public DateTimeOffset ToOffset(TimeSpan offset) {
return new DateTimeOffset((m_dateTime + offset).Ticks, offset);
}
// Instance Properties
// The clock or visible time represented. This is just a wrapper around the internal date because this is
// the chosen storage mechanism. Going through this helper is good for readability and maintainability.
// This should be used for display but not identity.
private DateTime ClockDateTime {
get {
return new DateTime((m_dateTime + Offset).Ticks, DateTimeKind.Unspecified);
}
}
// Returns the date part of this DateTimeOffset. The resulting value
// corresponds to this DateTimeOffset with the time-of-day part set to
// zero (midnight).
//
public DateTime Date {
get {
return ClockDateTime.Date;
}
}
// Returns the day-of-month part of this DateTimeOffset. The returned
// value is an integer between 1 and 31.
//
public int Day {
get {
Contract.Ensures(Contract.Result<int>() >= 1);
Contract.Ensures(Contract.Result<int>() <= 31);
return ClockDateTime.Day;
}
}
// Returns the day-of-week part of this DateTimeOffset. The returned value
// is an integer between 0 and 6, where 0 indicates Sunday, 1 indicates
// Monday, 2 indicates Tuesday, 3 indicates Wednesday, 4 indicates
// Thursday, 5 indicates Friday, and 6 indicates Saturday.
//
public DayOfWeek DayOfWeek {
get {
Contract.Ensures(Contract.Result<DayOfWeek>() >= DayOfWeek.Sunday);
Contract.Ensures(Contract.Result<DayOfWeek>() <= DayOfWeek.Saturday);
return ClockDateTime.DayOfWeek;
}
}
// Returns the day-of-year part of this DateTimeOffset. The returned value
// is an integer between 1 and 366.
//
public int DayOfYear {
get {
Contract.Ensures(Contract.Result<int>() >= 1);
Contract.Ensures(Contract.Result<int>() <= 366); // leap year
return ClockDateTime.DayOfYear;
}
}
// Returns the hour part of this DateTimeOffset. The returned value is an
// integer between 0 and 23.
//
public int Hour {
get {
Contract.Ensures(Contract.Result<int>() >= 0);
Contract.Ensures(Contract.Result<int>() < 24);
return ClockDateTime.Hour;
}
}
// Returns the millisecond part of this DateTimeOffset. The returned value
// is an integer between 0 and 999.
//
public int Millisecond {
get {
Contract.Ensures(Contract.Result<int>() >= 0);
Contract.Ensures(Contract.Result<int>() < 1000);
return ClockDateTime.Millisecond;
}
}
// Returns the minute part of this DateTimeOffset. The returned value is
// an integer between 0 and 59.
//
public int Minute {
get {
Contract.Ensures(Contract.Result<int>() >= 0);
Contract.Ensures(Contract.Result<int>() < 60);
return ClockDateTime.Minute;
}
}
// Returns the month part of this DateTimeOffset. The returned value is an
// integer between 1 and 12.
//
public int Month {
get {
Contract.Ensures(Contract.Result<int>() >= 1);
return ClockDateTime.Month;
}
}
public TimeSpan Offset {
get {
return new TimeSpan(0, m_offsetMinutes, 0);
}
}
// Returns the second part of this DateTimeOffset. The returned value is
// an integer between 0 and 59.
//
public int Second {
get {
Contract.Ensures(Contract.Result<int>() >= 0);
Contract.Ensures(Contract.Result<int>() < 60);
return ClockDateTime.Second;
}
}
// Returns the tick count for this DateTimeOffset. The returned value is
// the number of 100-nanosecond intervals that have elapsed since 1/1/0001
// 12:00am.
//
public long Ticks {
get {
return ClockDateTime.Ticks;
}
}
public long UtcTicks {
get {
return UtcDateTime.Ticks;
}
}
// Returns the time-of-day part of this DateTimeOffset. The returned value
// is a TimeSpan that indicates the time elapsed since midnight.
//
public TimeSpan TimeOfDay {
get {
return ClockDateTime.TimeOfDay;
}
}
// Returns the year part of this DateTimeOffset. The returned value is an
// integer between 1 and 9999.
//
public int Year {
get {
Contract.Ensures(Contract.Result<int>() >= 1 && Contract.Result<int>() <= 9999);
return ClockDateTime.Year;
}
}
// Returns the DateTimeOffset resulting from adding the given
// TimeSpan to this DateTimeOffset.
//
public DateTimeOffset Add(TimeSpan timeSpan) {
return new DateTimeOffset(ClockDateTime.Add(timeSpan), Offset);
}
// Returns the DateTimeOffset resulting from adding a fractional number of
// days to this DateTimeOffset. The result is computed by rounding the
// fractional number of days given by value to the nearest
// millisecond, and adding that interval to this DateTimeOffset. The
// value argument is permitted to be negative.
//
public DateTimeOffset AddDays(double days) {
return new DateTimeOffset(ClockDateTime.AddDays(days), Offset);
}
// Returns the DateTimeOffset resulting from adding a fractional number of
// hours to this DateTimeOffset. The result is computed by rounding the
// fractional number of hours given by value to the nearest
// millisecond, and adding that interval to this DateTimeOffset. The
// value argument is permitted to be negative.
//
public DateTimeOffset AddHours(double hours) {
return new DateTimeOffset(ClockDateTime.AddHours(hours), Offset);
}
// Returns the DateTimeOffset resulting from the given number of
// milliseconds to this DateTimeOffset. The result is computed by rounding
// the number of milliseconds given by value to the nearest integer,
// and adding that interval to this DateTimeOffset. The value
// argument is permitted to be negative.
//
public DateTimeOffset AddMilliseconds(double milliseconds) {
return new DateTimeOffset(ClockDateTime.AddMilliseconds(milliseconds), Offset);
}
// Returns the DateTimeOffset resulting from adding a fractional number of
// minutes to this DateTimeOffset. The result is computed by rounding the
// fractional number of minutes given by value to the nearest
// millisecond, and adding that interval to this DateTimeOffset. The
// value argument is permitted to be negative.
//
public DateTimeOffset AddMinutes(double minutes) {
return new DateTimeOffset(ClockDateTime.AddMinutes(minutes), Offset);
}
public DateTimeOffset AddMonths(int months) {
return new DateTimeOffset(ClockDateTime.AddMonths(months), Offset);
}
// Returns the DateTimeOffset resulting from adding a fractional number of
// seconds to this DateTimeOffset. The result is computed by rounding the
// fractional number of seconds given by value to the nearest
// millisecond, and adding that interval to this DateTimeOffset. The
// value argument is permitted to be negative.
//
public DateTimeOffset AddSeconds(double seconds) {
return new DateTimeOffset(ClockDateTime.AddSeconds(seconds), Offset);
}
// Returns the DateTimeOffset resulting from adding the given number of
// 100-nanosecond ticks to this DateTimeOffset. The value argument
// is permitted to be negative.
//
public DateTimeOffset AddTicks(long ticks) {
return new DateTimeOffset(ClockDateTime.AddTicks(ticks), Offset);
}
// Returns the DateTimeOffset resulting from adding the given number of
// years to this DateTimeOffset. The result is computed by incrementing
// (or decrementing) the year part of this DateTimeOffset by value
// years. If the month and day of this DateTimeOffset is 2/29, and if the
// resulting year is not a leap year, the month and day of the resulting
// DateTimeOffset becomes 2/28. Otherwise, the month, day, and time-of-day
// parts of the result are the same as those of this DateTimeOffset.
//
public DateTimeOffset AddYears(int years) {
return new DateTimeOffset(ClockDateTime.AddYears(years), Offset);
}
// Compares two DateTimeOffset values, returning an integer that indicates
// their relationship.
//
public static int Compare(DateTimeOffset first, DateTimeOffset second) {
return DateTime.Compare(first.UtcDateTime, second.UtcDateTime);
}
// Compares this DateTimeOffset to a given object. This method provides an
// implementation of the IComparable interface. The object
// argument must be another DateTimeOffset, or otherwise an exception
// occurs. Null is considered less than any instance.
//
int IComparable.CompareTo(Object obj) {
if (obj == null) return 1;
if (!(obj is DateTimeOffset)) {
throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDateTimeOffset"));
}
DateTime objUtc = ((DateTimeOffset)obj).UtcDateTime;
DateTime utc = UtcDateTime;
if (utc > objUtc) return 1;
if (utc < objUtc) return -1;
return 0;
}
public int CompareTo(DateTimeOffset other) {
DateTime otherUtc = other.UtcDateTime;
DateTime utc = UtcDateTime;
if (utc > otherUtc) return 1;
if (utc < otherUtc) return -1;
return 0;
}
// Checks if this DateTimeOffset is equal to a given object. Returns
// true if the given object is a boxed DateTimeOffset and its value
// is equal to the value of this DateTimeOffset. Returns false
// otherwise.
//
public override bool Equals(Object obj) {
if (obj is DateTimeOffset) {
return UtcDateTime.Equals(((DateTimeOffset)obj).UtcDateTime);
}
return false;
}
public bool Equals(DateTimeOffset other) {
return UtcDateTime.Equals(other.UtcDateTime);
}
public bool EqualsExact(DateTimeOffset other) {
//
// returns true when the ClockDateTime, Kind, and Offset match
//
// currently the Kind should always be Unspecified, but there is always the possibility that a future version
// of DateTimeOffset overloads the Kind field
//
return (ClockDateTime == other.ClockDateTime && Offset == other.Offset && ClockDateTime.Kind == other.ClockDateTime.Kind);
}
// Compares two DateTimeOffset values for equality. Returns true if
// the two DateTimeOffset values are equal, or false if they are
// not equal.
//
public static bool Equals(DateTimeOffset first, DateTimeOffset second) {
return DateTime.Equals(first.UtcDateTime, second.UtcDateTime);
}
// Creates a DateTimeOffset from a Windows filetime. A Windows filetime is
// a long representing the date and time as the number of
// 100-nanosecond intervals that have elapsed since 1/1/1601 12:00am.
//
public static DateTimeOffset FromFileTime(long fileTime) {
return new DateTimeOffset(DateTime.FromFileTime(fileTime));
}
public static DateTimeOffset FromUnixTimeSeconds(long seconds) {
const long MinSeconds = DateTime.MinTicks / TimeSpan.TicksPerSecond - UnixEpochSeconds;
const long MaxSeconds = DateTime.MaxTicks / TimeSpan.TicksPerSecond - UnixEpochSeconds;
if (seconds < MinSeconds || seconds > MaxSeconds) {
throw new ArgumentOutOfRangeException("seconds",
string.Format(Environment.GetResourceString("ArgumentOutOfRange_Range"), MinSeconds, MaxSeconds));
}
long ticks = seconds * TimeSpan.TicksPerSecond + UnixEpochTicks;
return new DateTimeOffset(ticks, TimeSpan.Zero);
}
public static DateTimeOffset FromUnixTimeMilliseconds(long milliseconds) {
const long MinMilliseconds = DateTime.MinTicks / TimeSpan.TicksPerMillisecond - UnixEpochMilliseconds;
const long MaxMilliseconds = DateTime.MaxTicks / TimeSpan.TicksPerMillisecond - UnixEpochMilliseconds;
if (milliseconds < MinMilliseconds || milliseconds > MaxMilliseconds) {
throw new ArgumentOutOfRangeException("milliseconds",
string.Format(Environment.GetResourceString("ArgumentOutOfRange_Range"), MinMilliseconds, MaxMilliseconds));
}
long ticks = milliseconds * TimeSpan.TicksPerMillisecond + UnixEpochTicks;
return new DateTimeOffset(ticks, TimeSpan.Zero);
}
// ----- SECTION: private serialization instance methods ----------------*
#if FEATURE_SERIALIZATION
void IDeserializationCallback.OnDeserialization(Object sender) {
try {
m_offsetMinutes = ValidateOffset(Offset);
m_dateTime = ValidateDate(ClockDateTime, Offset);
}
catch (ArgumentException e) {
throw new SerializationException(Environment.GetResourceString("Serialization_InvalidData"), e);
}
}
[System.Security.SecurityCritical] // auto-generated_required
void ISerializable.GetObjectData(SerializationInfo info, StreamingContext context) {
if (info == null) {
throw new ArgumentNullException("info");
}
Contract.EndContractBlock();
info.AddValue("DateTime", m_dateTime);
info.AddValue("OffsetMinutes", m_offsetMinutes);
}
DateTimeOffset(SerializationInfo info, StreamingContext context) {
if (info == null) {
throw new ArgumentNullException("info");
}
m_dateTime = (DateTime)info.GetValue("DateTime", typeof(DateTime));
m_offsetMinutes = (Int16)info.GetValue("OffsetMinutes", typeof(Int16));
}
#endif
// Returns the hash code for this DateTimeOffset.
//
public override int GetHashCode() {
return UtcDateTime.GetHashCode();
}
// Constructs a DateTimeOffset from a string. The string must specify a
// date and optionally a time in a culture-specific or universal format.
// Leading and trailing whitespace characters are allowed.
//
public static DateTimeOffset Parse(String input) {
TimeSpan offset;
DateTime dateResult = DateTimeParse.Parse(input,
DateTimeFormatInfo.CurrentInfo,
DateTimeStyles.None,
out offset);
return new DateTimeOffset(dateResult.Ticks, offset);
}
// Constructs a DateTimeOffset from a string. The string must specify a
// date and optionally a time in a culture-specific or universal format.
// Leading and trailing whitespace characters are allowed.
//
public static DateTimeOffset Parse(String input, IFormatProvider formatProvider) {
return Parse(input, formatProvider, DateTimeStyles.None);
}
public static DateTimeOffset Parse(String input, IFormatProvider formatProvider, DateTimeStyles styles) {
styles = ValidateStyles(styles, "styles");
TimeSpan offset;
DateTime dateResult = DateTimeParse.Parse(input,
DateTimeFormatInfo.GetInstance(formatProvider),
styles,
out offset);
return new DateTimeOffset(dateResult.Ticks, offset);
}
// Constructs a DateTimeOffset from a string. The string must specify a
// date and optionally a time in a culture-specific or universal format.
// Leading and trailing whitespace characters are allowed.
//
public static DateTimeOffset ParseExact(String input, String format, IFormatProvider formatProvider) {
return ParseExact(input, format, formatProvider, DateTimeStyles.None);
}
// Constructs a DateTimeOffset from a string. The string must specify a
// date and optionally a time in a culture-specific or universal format.
// Leading and trailing whitespace characters are allowed.
//
public static DateTimeOffset ParseExact(String input, String format, IFormatProvider formatProvider, DateTimeStyles styles) {
styles = ValidateStyles(styles, "styles");
TimeSpan offset;
DateTime dateResult = DateTimeParse.ParseExact(input,
format,
DateTimeFormatInfo.GetInstance(formatProvider),
styles,
out offset);
return new DateTimeOffset(dateResult.Ticks, offset);
}
public static DateTimeOffset ParseExact(String input, String[] formats, IFormatProvider formatProvider, DateTimeStyles styles) {
styles = ValidateStyles(styles, "styles");
TimeSpan offset;
DateTime dateResult = DateTimeParse.ParseExactMultiple(input,
formats,
DateTimeFormatInfo.GetInstance(formatProvider),
styles,
out offset);
return new DateTimeOffset(dateResult.Ticks, offset);
}
public TimeSpan Subtract(DateTimeOffset value) {
return UtcDateTime.Subtract(value.UtcDateTime);
}
public DateTimeOffset Subtract(TimeSpan value) {
return new DateTimeOffset(ClockDateTime.Subtract(value), Offset);
}
public long ToFileTime() {
return UtcDateTime.ToFileTime();
}
public long ToUnixTimeSeconds() {
// Truncate sub-second precision before offsetting by the Unix Epoch to avoid
// the last digit being off by one for dates that result in negative Unix times.
//
// For example, consider the DateTimeOffset 12/31/1969 12:59:59.001 +0
// ticks = 621355967990010000
// ticksFromEpoch = ticks - UnixEpochTicks = -9990000
// secondsFromEpoch = ticksFromEpoch / TimeSpan.TicksPerSecond = 0
//
// Notice that secondsFromEpoch is rounded *up* by the truncation induced by integer division,
// whereas we actually always want to round *down* when converting to Unix time. This happens
// automatically for positive Unix time values. Now the example becomes:
// seconds = ticks / TimeSpan.TicksPerSecond = 62135596799
// secondsFromEpoch = seconds - UnixEpochSeconds = -1
//
// In other words, we want to consistently round toward the time 1/1/0001 00:00:00,
// rather than toward the Unix Epoch (1/1/1970 00:00:00).
long seconds = UtcDateTime.Ticks / TimeSpan.TicksPerSecond;
return seconds - UnixEpochSeconds;
}
public long ToUnixTimeMilliseconds() {
// Truncate sub-millisecond precision before offsetting by the Unix Epoch to avoid
// the last digit being off by one for dates that result in negative Unix times
long milliseconds = UtcDateTime.Ticks / TimeSpan.TicksPerMillisecond;
return milliseconds - UnixEpochMilliseconds;
}
public DateTimeOffset ToLocalTime() {
return ToLocalTime(false);
}
internal DateTimeOffset ToLocalTime(bool throwOnOverflow)
{
return new DateTimeOffset(UtcDateTime.ToLocalTime(throwOnOverflow));
}
public override String ToString() {
Contract.Ensures(Contract.Result<String>() != null);
return DateTimeFormat.Format(ClockDateTime, null, DateTimeFormatInfo.CurrentInfo, Offset);
}
public String ToString(String format) {
Contract.Ensures(Contract.Result<String>() != null);
return DateTimeFormat.Format(ClockDateTime, format, DateTimeFormatInfo.CurrentInfo, Offset);
}
public String ToString(IFormatProvider formatProvider) {
Contract.Ensures(Contract.Result<String>() != null);
return DateTimeFormat.Format(ClockDateTime, null, DateTimeFormatInfo.GetInstance(formatProvider), Offset);
}
public String ToString(String format, IFormatProvider formatProvider) {
Contract.Ensures(Contract.Result<String>() != null);
return DateTimeFormat.Format(ClockDateTime, format, DateTimeFormatInfo.GetInstance(formatProvider), Offset);
}
public DateTimeOffset ToUniversalTime() {
return new DateTimeOffset(UtcDateTime);
}
public static Boolean TryParse(String input, out DateTimeOffset result) {
TimeSpan offset;
DateTime dateResult;
Boolean parsed = DateTimeParse.TryParse(input,
DateTimeFormatInfo.CurrentInfo,
DateTimeStyles.None,
out dateResult,
out offset);
result = new DateTimeOffset(dateResult.Ticks, offset);
return parsed;
}
public static Boolean TryParse(String input, IFormatProvider formatProvider, DateTimeStyles styles, out DateTimeOffset result) {
styles = ValidateStyles(styles, "styles");
TimeSpan offset;
DateTime dateResult;
Boolean parsed = DateTimeParse.TryParse(input,
DateTimeFormatInfo.GetInstance(formatProvider),
styles,
out dateResult,
out offset);
result = new DateTimeOffset(dateResult.Ticks, offset);
return parsed;
}
public static Boolean TryParseExact(String input, String format, IFormatProvider formatProvider, DateTimeStyles styles,
out DateTimeOffset result) {
styles = ValidateStyles(styles, "styles");
TimeSpan offset;
DateTime dateResult;
Boolean parsed = DateTimeParse.TryParseExact(input,
format,
DateTimeFormatInfo.GetInstance(formatProvider),
styles,
out dateResult,
out offset);
result = new DateTimeOffset(dateResult.Ticks, offset);
return parsed;
}
public static Boolean TryParseExact(String input, String[] formats, IFormatProvider formatProvider, DateTimeStyles styles,
out DateTimeOffset result) {
styles = ValidateStyles(styles, "styles");
TimeSpan offset;
DateTime dateResult;
Boolean parsed = DateTimeParse.TryParseExactMultiple(input,
formats,
DateTimeFormatInfo.GetInstance(formatProvider),
styles,
out dateResult,
out offset);
result = new DateTimeOffset(dateResult.Ticks, offset);
return parsed;
}
// Ensures the TimeSpan is valid to go in a DateTimeOffset.
private static Int16 ValidateOffset(TimeSpan offset) {
Int64 ticks = offset.Ticks;
if (ticks % TimeSpan.TicksPerMinute != 0) {
throw new ArgumentException(Environment.GetResourceString("Argument_OffsetPrecision"), "offset");
}
if (ticks < MinOffset || ticks > MaxOffset) {
throw new ArgumentOutOfRangeException("offset", Environment.GetResourceString("Argument_OffsetOutOfRange"));
}
return (Int16)(offset.Ticks / TimeSpan.TicksPerMinute);
}
// Ensures that the time and offset are in range.
private static DateTime ValidateDate(DateTime dateTime, TimeSpan offset) {
// The key validation is that both the UTC and clock times fit. The clock time is validated
// by the DateTime constructor.
Contract.Assert(offset.Ticks >= MinOffset && offset.Ticks <= MaxOffset, "Offset not validated.");
// This operation cannot overflow because offset should have already been validated to be within
// 14 hours and the DateTime instance is more than that distance from the boundaries of Int64.
Int64 utcTicks = dateTime.Ticks - offset.Ticks;
if (utcTicks < DateTime.MinTicks || utcTicks > DateTime.MaxTicks) {
throw new ArgumentOutOfRangeException("offset", Environment.GetResourceString("Argument_UTCOutOfRange"));
}
// make sure the Kind is set to Unspecified
//
return new DateTime(utcTicks, DateTimeKind.Unspecified);
}
private static DateTimeStyles ValidateStyles(DateTimeStyles style, String parameterName) {
if ((style & DateTimeFormatInfo.InvalidDateTimeStyles) != 0) {
throw new ArgumentException(Environment.GetResourceString("Argument_InvalidDateTimeStyles"), parameterName);
}
if (((style & (DateTimeStyles.AssumeLocal)) != 0) && ((style & (DateTimeStyles.AssumeUniversal)) != 0)) {
throw new ArgumentException(Environment.GetResourceString("Argument_ConflictingDateTimeStyles"), parameterName);
}
if ((style & DateTimeStyles.NoCurrentDateDefault) != 0) {
throw new ArgumentException(Environment.GetResourceString("Argument_DateTimeOffsetInvalidDateTimeStyles"), parameterName);
}
Contract.EndContractBlock();
// RoundtripKind does not make sense for DateTimeOffset; ignore this flag for backward compatibility with DateTime
style &= ~DateTimeStyles.RoundtripKind;
// AssumeLocal is also ignored as that is what we do by default with DateTimeOffset.Parse
style &= ~DateTimeStyles.AssumeLocal;
return style;
}
// Operators
public static implicit operator DateTimeOffset (DateTime dateTime) {
return new DateTimeOffset(dateTime);
}
public static DateTimeOffset operator +(DateTimeOffset dateTimeOffset, TimeSpan timeSpan) {
return new DateTimeOffset(dateTimeOffset.ClockDateTime + timeSpan, dateTimeOffset.Offset);
}
public static DateTimeOffset operator -(DateTimeOffset dateTimeOffset, TimeSpan timeSpan) {
return new DateTimeOffset(dateTimeOffset.ClockDateTime - timeSpan, dateTimeOffset.Offset);
}
public static TimeSpan operator -(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime - right.UtcDateTime;
}
public static bool operator ==(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime == right.UtcDateTime;
}
public static bool operator !=(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime != right.UtcDateTime;
}
public static bool operator <(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime < right.UtcDateTime;
}
public static bool operator <=(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime <= right.UtcDateTime;
}
public static bool operator >(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime > right.UtcDateTime;
}
public static bool operator >=(DateTimeOffset left, DateTimeOffset right) {
return left.UtcDateTime >= right.UtcDateTime;
}
}
}