Xamarin Public Jenkins (auto-signing) 8625704ad8 Imported Upstream version 5.18.0.179
Former-commit-id: 67aa10e65b237e1c4537630979ee99ebe1374215
2018-10-25 08:34:57 +00:00

1614 lines
63 KiB
C++

//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to multiple loops. For example, it turns the left into the right code:
//
// for (...) if (lic)
// A for (...)
// if (lic) A; B; C
// B else
// C for (...)
// A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "loop-unswitch"
STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards, "Number of guards unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
STATISTIC(TotalInsts, "Total number of instructions analyzed");
// The specific value of 100 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
cl::init(100), cl::Hidden);
namespace {
class LUAnalysisCache {
using UnswitchedValsMap =
DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
using UnswitchedValsIt = UnswitchedValsMap::iterator;
struct LoopProperties {
unsigned CanBeUnswitchedCount;
unsigned WasUnswitchedCount;
unsigned SizeEstimation;
UnswitchedValsMap UnswitchedVals;
};
// Here we use std::map instead of DenseMap, since we need to keep valid
// LoopProperties pointer for current loop for better performance.
using LoopPropsMap = std::map<const Loop *, LoopProperties>;
using LoopPropsMapIt = LoopPropsMap::iterator;
LoopPropsMap LoopsProperties;
UnswitchedValsMap *CurLoopInstructions = nullptr;
LoopProperties *CurrentLoopProperties = nullptr;
// A loop unswitching with an estimated cost above this threshold
// is not performed. MaxSize is turned into unswitching quota for
// the current loop, and reduced correspondingly, though note that
// the quota is returned by releaseMemory() when the loop has been
// processed, so that MaxSize will return to its previous
// value. So in most cases MaxSize will equal the Threshold flag
// when a new loop is processed. An exception to that is that
// MaxSize will have a smaller value while processing nested loops
// that were introduced due to loop unswitching of an outer loop.
//
// FIXME: The way that MaxSize works is subtle and depends on the
// pass manager processing loops and calling releaseMemory() in a
// specific order. It would be good to find a more straightforward
// way of doing what MaxSize does.
unsigned MaxSize;
public:
LUAnalysisCache() : MaxSize(Threshold) {}
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
AssumptionCache *AC);
// Clean all data related to given loop.
void forgetLoop(const Loop *L);
// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void setUnswitched(const SwitchInst *SI, const Value *V);
// Check was this case value unswitched before or not.
bool isUnswitched(const SwitchInst *SI, const Value *V);
// Returns true if another unswitching could be done within the cost
// threshold.
bool CostAllowsUnswitching();
// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void cloneData(const Loop *NewLoop, const Loop *OldLoop,
const ValueToValueMapTy &VMap);
};
class LoopUnswitch : public LoopPass {
LoopInfo *LI; // Loop information
LPPassManager *LPM;
AssumptionCache *AC;
// Used to check if second loop needs processing after
// RewriteLoopBodyWithConditionConstant rewrites first loop.
std::vector<Loop*> LoopProcessWorklist;
LUAnalysisCache BranchesInfo;
bool OptimizeForSize;
bool redoLoop = false;
Loop *currentLoop = nullptr;
DominatorTree *DT = nullptr;
BasicBlock *loopHeader = nullptr;
BasicBlock *loopPreheader = nullptr;
bool SanitizeMemory;
LoopSafetyInfo SafetyInfo;
// LoopBlocks contains all of the basic blocks of the loop, including the
// preheader of the loop, the body of the loop, and the exit blocks of the
// loop, in that order.
std::vector<BasicBlock*> LoopBlocks;
// NewBlocks contained cloned copy of basic blocks from LoopBlocks.
std::vector<BasicBlock*> NewBlocks;
bool hasBranchDivergence;
public:
static char ID; // Pass ID, replacement for typeid
explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
: LoopPass(ID), OptimizeForSize(Os),
hasBranchDivergence(hasBranchDivergence) {
initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
bool processCurrentLoop();
bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG.
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
if (hasBranchDivergence)
AU.addRequired<DivergenceAnalysis>();
getLoopAnalysisUsage(AU);
}
private:
void releaseMemory() override {
BranchesInfo.forgetLoop(currentLoop);
}
void initLoopData() {
loopHeader = currentLoop->getHeader();
loopPreheader = currentLoop->getLoopPreheader();
}
/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void SplitExitEdges(Loop *L,
const SmallVectorImpl<BasicBlock *> &ExitBlocks);
bool TryTrivialLoopUnswitch(bool &Changed);
bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
TerminatorInst *TI = nullptr);
void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
BasicBlock *ExitBlock, TerminatorInst *TI);
void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
TerminatorInst *TI);
void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Constant *Val, bool isEqual);
void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
BasicBlock *TrueDest,
BasicBlock *FalseDest,
BranchInst *OldBranch,
TerminatorInst *TI);
void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
/// Given that the Invariant is not equal to Val. Simplify instructions
/// in the loop.
Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
Constant *Val);
};
} // end anonymous namespace
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
AssumptionCache *AC) {
LoopPropsMapIt PropsIt;
bool Inserted;
std::tie(PropsIt, Inserted) =
LoopsProperties.insert(std::make_pair(L, LoopProperties()));
LoopProperties &Props = PropsIt->second;
if (Inserted) {
// New loop.
// Limit the number of instructions to avoid causing significant code
// expansion, and the number of basic blocks, to avoid loops with
// large numbers of branches which cause loop unswitching to go crazy.
// This is a very ad-hoc heuristic.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
// FIXME: This is overly conservative because it does not take into
// consideration code simplification opportunities and code that can
// be shared by the resultant unswitched loops.
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
++I)
Metrics.analyzeBasicBlock(*I, TTI, EphValues);
Props.SizeEstimation = Metrics.NumInsts;
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
Props.WasUnswitchedCount = 0;
MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
if (Metrics.notDuplicatable) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< L->getHeader()->getName() << ", contents cannot be "
<< "duplicated!\n");
return false;
}
}
// Be careful. This links are good only before new loop addition.
CurrentLoopProperties = &Props;
CurLoopInstructions = &Props.UnswitchedVals;
return true;
}
// Clean all data related to given loop.
void LUAnalysisCache::forgetLoop(const Loop *L) {
LoopPropsMapIt LIt = LoopsProperties.find(L);
if (LIt != LoopsProperties.end()) {
LoopProperties &Props = LIt->second;
MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
Props.SizeEstimation;
LoopsProperties.erase(LIt);
}
CurrentLoopProperties = nullptr;
CurLoopInstructions = nullptr;
}
// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
(*CurLoopInstructions)[SI].insert(V);
}
// Check was this case value unswitched before or not.
bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
return (*CurLoopInstructions)[SI].count(V);
}
bool LUAnalysisCache::CostAllowsUnswitching() {
return CurrentLoopProperties->CanBeUnswitchedCount > 0;
}
// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
const ValueToValueMapTy &VMap) {
LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
LoopProperties &OldLoopProps = *CurrentLoopProperties;
UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
// Reallocate "can-be-unswitched quota"
--OldLoopProps.CanBeUnswitchedCount;
++OldLoopProps.WasUnswitchedCount;
NewLoopProps.WasUnswitchedCount = 0;
unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
NewLoopProps.CanBeUnswitchedCount = Quota / 2;
OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
// Clone unswitched values info:
// for new loop switches we clone info about values that was
// already unswitched and has redundant successors.
for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
const SwitchInst *OldInst = I->first;
Value *NewI = VMap.lookup(OldInst);
const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
}
}
char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
return new LoopUnswitch(Os, hasBranchDivergence);
}
/// Operator chain lattice.
enum OperatorChain {
OC_OpChainNone, ///< There is no operator.
OC_OpChainOr, ///< There are only ORs.
OC_OpChainAnd, ///< There are only ANDs.
OC_OpChainMixed ///< There are ANDs and ORs.
};
/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant. Otherwise, return null.
//
/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
/// mixed operator chain, as we can not reliably find a value which will simplify
/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
/// to simplify the chain.
///
/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
/// simplify the condition itself to a loop variant condition, but at the
/// cost of creating an entirely new loop.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
OperatorChain &ParentChain,
DenseMap<Value *, Value *> &Cache) {
auto CacheIt = Cache.find(Cond);
if (CacheIt != Cache.end())
return CacheIt->second;
// We started analyze new instruction, increment scanned instructions counter.
++TotalInsts;
// We can never unswitch on vector conditions.
if (Cond->getType()->isVectorTy())
return nullptr;
// Constants should be folded, not unswitched on!
if (isa<Constant>(Cond)) return nullptr;
// TODO: Handle: br (VARIANT|INVARIANT).
// Hoist simple values out.
if (L->makeLoopInvariant(Cond, Changed)) {
Cache[Cond] = Cond;
return Cond;
}
// Walk up the operator chain to find partial invariant conditions.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
if (BO->getOpcode() == Instruction::And ||
BO->getOpcode() == Instruction::Or) {
// Given the previous operator, compute the current operator chain status.
OperatorChain NewChain;
switch (ParentChain) {
case OC_OpChainNone:
NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
OC_OpChainOr;
break;
case OC_OpChainOr:
NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
OC_OpChainMixed;
break;
case OC_OpChainAnd:
NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
OC_OpChainMixed;
break;
case OC_OpChainMixed:
NewChain = OC_OpChainMixed;
break;
}
// If we reach a Mixed state, we do not want to keep walking up as we can not
// reliably find a value that will simplify the chain. With this check, we
// will return null on the first sight of mixed chain and the caller will
// either backtrack to find partial LIV in other operand or return null.
if (NewChain != OC_OpChainMixed) {
// Update the current operator chain type before we search up the chain.
ParentChain = NewChain;
// If either the left or right side is invariant, we can unswitch on this,
// which will cause the branch to go away in one loop and the condition to
// simplify in the other one.
if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
ParentChain, Cache)) {
Cache[Cond] = LHS;
return LHS;
}
// We did not manage to find a partial LIV in operand(0). Backtrack and try
// operand(1).
ParentChain = NewChain;
if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
ParentChain, Cache)) {
Cache[Cond] = RHS;
return RHS;
}
}
}
Cache[Cond] = nullptr;
return nullptr;
}
/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant along with the operator chain type.
/// Otherwise, return null.
static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
Loop *L,
bool &Changed) {
DenseMap<Value *, Value *> Cache;
OperatorChain OpChain = OC_OpChainNone;
Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
// In case we do find a LIV, it can not be obtained by walking up a mixed
// operator chain.
assert((!FCond || OpChain != OC_OpChainMixed) &&
"Do not expect a partial LIV with mixed operator chain");
return {FCond, OpChain};
}
bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
if (skipLoop(L))
return false;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
*L->getHeader()->getParent());
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
LPM = &LPM_Ref;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
currentLoop = L;
Function *F = currentLoop->getHeader()->getParent();
SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
if (SanitizeMemory)
computeLoopSafetyInfo(&SafetyInfo, L);
bool Changed = false;
do {
assert(currentLoop->isLCSSAForm(*DT));
redoLoop = false;
Changed |= processCurrentLoop();
} while(redoLoop);
return Changed;
}
// Return true if the BasicBlock BB is unreachable from the loop header.
// Return false, otherwise.
bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
auto *Node = DT->getNode(BB)->getIDom();
BasicBlock *DomBB = Node->getBlock();
while (currentLoop->contains(DomBB)) {
BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
Node = DT->getNode(DomBB)->getIDom();
DomBB = Node->getBlock();
if (!BInst || !BInst->isConditional())
continue;
Value *Cond = BInst->getCondition();
if (!isa<ConstantInt>(Cond))
continue;
BasicBlock *UnreachableSucc =
Cond == ConstantInt::getTrue(Cond->getContext())
? BInst->getSuccessor(1)
: BInst->getSuccessor(0);
if (DT->dominates(UnreachableSucc, BB))
return true;
}
return false;
}
/// FIXME: Remove this workaround when freeze related patches are done.
/// LoopUnswitch and Equality propagation in GVN have discrepancy about
/// whether branch on undef/poison has undefine behavior. Here it is to
/// rule out some common cases that we found such discrepancy already
/// causing problems. Detail could be found in PR31652. Note if the
/// func returns true, it is unsafe. But if it is false, it doesn't mean
/// it is necessarily safe.
static bool EqualityPropUnSafe(Value &LoopCond) {
ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
if (!CI || !CI->isEquality())
return false;
Value *LHS = CI->getOperand(0);
Value *RHS = CI->getOperand(1);
if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
return true;
auto hasUndefInPHI = [](PHINode &PN) {
for (Value *Opd : PN.incoming_values()) {
if (isa<UndefValue>(Opd))
return true;
}
return false;
};
PHINode *LPHI = dyn_cast<PHINode>(LHS);
PHINode *RPHI = dyn_cast<PHINode>(RHS);
if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
return true;
auto hasUndefInSelect = [](SelectInst &SI) {
if (isa<UndefValue>(SI.getTrueValue()) ||
isa<UndefValue>(SI.getFalseValue()))
return true;
return false;
};
SelectInst *LSI = dyn_cast<SelectInst>(LHS);
SelectInst *RSI = dyn_cast<SelectInst>(RHS);
if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
return true;
return false;
}
/// Do actual work and unswitch loop if possible and profitable.
bool LoopUnswitch::processCurrentLoop() {
bool Changed = false;
initLoopData();
// If LoopSimplify was unable to form a preheader, don't do any unswitching.
if (!loopPreheader)
return false;
// Loops with indirectbr cannot be cloned.
if (!currentLoop->isSafeToClone())
return false;
// Without dedicated exits, splitting the exit edge may fail.
if (!currentLoop->hasDedicatedExits())
return false;
LLVMContext &Context = loopHeader->getContext();
// Analyze loop cost, and stop unswitching if loop content can not be duplicated.
if (!BranchesInfo.countLoop(
currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
*currentLoop->getHeader()->getParent()),
AC))
return false;
// Try trivial unswitch first before loop over other basic blocks in the loop.
if (TryTrivialLoopUnswitch(Changed)) {
return true;
}
// Run through the instructions in the loop, keeping track of three things:
//
// - That we do not unswitch loops containing convergent operations, as we
// might be making them control dependent on the unswitch value when they
// were not before.
// FIXME: This could be refined to only bail if the convergent operation is
// not already control-dependent on the unswitch value.
//
// - That basic blocks in the loop contain invokes whose predecessor edges we
// cannot split.
//
// - The set of guard intrinsics encountered (these are non terminator
// instructions that are also profitable to be unswitched).
SmallVector<IntrinsicInst *, 4> Guards;
for (const auto BB : currentLoop->blocks()) {
for (auto &I : *BB) {
auto CS = CallSite(&I);
if (!CS) continue;
if (CS.hasFnAttr(Attribute::Convergent))
return false;
if (auto *II = dyn_cast<InvokeInst>(&I))
if (!II->getUnwindDest()->canSplitPredecessors())
return false;
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::experimental_guard)
Guards.push_back(II);
}
}
// Do not do non-trivial unswitch while optimizing for size.
// FIXME: Use Function::optForSize().
if (OptimizeForSize ||
loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
return false;
for (IntrinsicInst *Guard : Guards) {
Value *LoopCond =
FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
if (LoopCond &&
UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
// NB! Unswitching (if successful) could have erased some of the
// instructions in Guards leaving dangling pointers there. This is fine
// because we're returning now, and won't look at Guards again.
++NumGuards;
return true;
}
}
// Loop over all of the basic blocks in the loop. If we find an interior
// block that is branching on a loop-invariant condition, we can unswitch this
// loop.
for (Loop::block_iterator I = currentLoop->block_begin(),
E = currentLoop->block_end(); I != E; ++I) {
TerminatorInst *TI = (*I)->getTerminator();
// Unswitching on a potentially uninitialized predicate is not
// MSan-friendly. Limit this to the cases when the original predicate is
// guaranteed to execute, to avoid creating a use-of-uninitialized-value
// in the code that did not have one.
// This is a workaround for the discrepancy between LLVM IR and MSan
// semantics. See PR28054 for more details.
if (SanitizeMemory &&
!isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
continue;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
// Some branches may be rendered unreachable because of previous
// unswitching.
// Unswitch only those branches that are reachable.
if (isUnreachableDueToPreviousUnswitching(*I))
continue;
// If this isn't branching on an invariant condition, we can't unswitch
// it.
if (BI->isConditional()) {
// See if this, or some part of it, is loop invariant. If so, we can
// unswitch on it if we desire.
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed).first;
if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
++NumBranches;
return true;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Value *SC = SI->getCondition();
Value *LoopCond;
OperatorChain OpChain;
std::tie(LoopCond, OpChain) =
FindLIVLoopCondition(SC, currentLoop, Changed);
unsigned NumCases = SI->getNumCases();
if (LoopCond && NumCases) {
// Find a value to unswitch on:
// FIXME: this should chose the most expensive case!
// FIXME: scan for a case with a non-critical edge?
Constant *UnswitchVal = nullptr;
// Find a case value such that at least one case value is unswitched
// out.
if (OpChain == OC_OpChainAnd) {
// If the chain only has ANDs and the switch has a case value of 0.
// Dropping in a 0 to the chain will unswitch out the 0-casevalue.
auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
if (BranchesInfo.isUnswitched(SI, AllZero))
continue;
// We are unswitching 0 out.
UnswitchVal = AllZero;
} else if (OpChain == OC_OpChainOr) {
// If the chain only has ORs and the switch has a case value of ~0.
// Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
if (BranchesInfo.isUnswitched(SI, AllOne))
continue;
// We are unswitching ~0 out.
UnswitchVal = AllOne;
} else {
assert(OpChain == OC_OpChainNone &&
"Expect to unswitch on trivial chain");
// Do not process same value again and again.
// At this point we have some cases already unswitched and
// some not yet unswitched. Let's find the first not yet unswitched one.
for (auto Case : SI->cases()) {
Constant *UnswitchValCandidate = Case.getCaseValue();
if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
UnswitchVal = UnswitchValCandidate;
break;
}
}
}
if (!UnswitchVal)
continue;
if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
++NumSwitches;
// In case of a full LIV, UnswitchVal is the value we unswitched out.
// In case of a partial LIV, we only unswitch when its an AND-chain
// or OR-chain. In both cases switch input value simplifies to
// UnswitchVal.
BranchesInfo.setUnswitched(SI, UnswitchVal);
return true;
}
}
}
// Scan the instructions to check for unswitchable values.
for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
BBI != E; ++BBI)
if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed).first;
if (LoopCond && UnswitchIfProfitable(LoopCond,
ConstantInt::getTrue(Context))) {
++NumSelects;
return true;
}
}
}
return Changed;
}
/// Check to see if all paths from BB exit the loop with no side effects
/// (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
BasicBlock *&ExitBB,
std::set<BasicBlock*> &Visited) {
if (!Visited.insert(BB).second) {
// Already visited. Without more analysis, this could indicate an infinite
// loop.
return false;
}
if (!L->contains(BB)) {
// Otherwise, this is a loop exit, this is fine so long as this is the
// first exit.
if (ExitBB) return false;
ExitBB = BB;
return true;
}
// Otherwise, this is an unvisited intra-loop node. Check all successors.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
// Check to see if the successor is a trivial loop exit.
if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
return false;
}
// Okay, everything after this looks good, check to make sure that this block
// doesn't include any side effects.
for (Instruction &I : *BB)
if (I.mayHaveSideEffects())
return false;
return true;
}
/// Return true if the specified block unconditionally leads to an exit from
/// the specified loop, and has no side-effects in the process. If so, return
/// the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
std::set<BasicBlock*> Visited;
Visited.insert(L->getHeader()); // Branches to header make infinite loops.
BasicBlock *ExitBB = nullptr;
if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
return ExitBB;
return nullptr;
}
/// We have found that we can unswitch currentLoop when LoopCond == Val to
/// simplify the loop. If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
TerminatorInst *TI) {
// Check to see if it would be profitable to unswitch current loop.
if (!BranchesInfo.CostAllowsUnswitching()) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< currentLoop->getHeader()->getName()
<< " at non-trivial condition '" << *Val
<< "' == " << *LoopCond << "\n"
<< ". Cost too high.\n");
return false;
}
if (hasBranchDivergence &&
getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< currentLoop->getHeader()->getName()
<< " at non-trivial condition '" << *Val
<< "' == " << *LoopCond << "\n"
<< ". Condition is divergent.\n");
return false;
}
UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
return true;
}
/// Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
LoopInfo *LI, LPPassManager *LPM) {
Loop &New = *LI->AllocateLoop();
if (PL)
PL->addChildLoop(&New);
else
LI->addTopLevelLoop(&New);
LPM->addLoop(New);
// Add all of the blocks in L to the new loop.
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
if (LI->getLoopFor(*I) == L)
New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
// Add all of the subloops to the new loop.
for (Loop *I : *L)
CloneLoop(I, &New, VM, LI, LPM);
return &New;
}
/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
/// and remove (but not erase!) it from the function.
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
BasicBlock *TrueDest,
BasicBlock *FalseDest,
BranchInst *OldBranch,
TerminatorInst *TI) {
assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
// Insert a conditional branch on LIC to the two preheaders. The original
// code is the true version and the new code is the false version.
Value *BranchVal = LIC;
bool Swapped = false;
if (!isa<ConstantInt>(Val) ||
Val->getType() != Type::getInt1Ty(LIC->getContext()))
BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
else if (Val != ConstantInt::getTrue(Val->getContext())) {
// We want to enter the new loop when the condition is true.
std::swap(TrueDest, FalseDest);
Swapped = true;
}
// Old branch will be removed, so save its parent and successor to update the
// DomTree.
auto *OldBranchSucc = OldBranch->getSuccessor(0);
auto *OldBranchParent = OldBranch->getParent();
// Insert the new branch.
BranchInst *BI =
IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
if (Swapped)
BI->swapProfMetadata();
// Remove the old branch so there is only one branch at the end. This is
// needed to perform DomTree's internal DFS walk on the function's CFG.
OldBranch->removeFromParent();
// Inform the DT about the new branch.
if (DT) {
// First, add both successors.
SmallVector<DominatorTree::UpdateType, 3> Updates;
if (TrueDest != OldBranchParent)
Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
if (FalseDest != OldBranchParent)
Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
// If both of the new successors are different from the old one, inform the
// DT that the edge was deleted.
if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
}
DT->applyUpdates(Updates);
}
// If either edge is critical, split it. This helps preserve LoopSimplify
// form for enclosing loops.
auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
SplitCriticalEdge(BI, 0, Options);
SplitCriticalEdge(BI, 1, Options);
}
/// Given a loop that has a trivial unswitchable condition in it (a cond branch
/// from its header block to its latch block, where the path through the loop
/// that doesn't execute its body has no side-effects), unswitch it. This
/// doesn't involve any code duplication, just moving the conditional branch
/// outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
BasicBlock *ExitBlock,
TerminatorInst *TI) {
DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function "
<< L->getHeader()->getParent()->getName() << " on cond: " << *Val
<< " == " << *Cond << "\n");
// First step, split the preheader, so that we know that there is a safe place
// to insert the conditional branch. We will change loopPreheader to have a
// conditional branch on Cond.
BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
// Now that we have a place to insert the conditional branch, create a place
// to branch to: this is the exit block out of the loop that we should
// short-circuit to.
// Split this block now, so that the loop maintains its exit block, and so
// that the jump from the preheader can execute the contents of the exit block
// without actually branching to it (the exit block should be dominated by the
// loop header, not the preheader).
assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
// Okay, now we have a position to branch from and a position to branch to,
// insert the new conditional branch.
auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
assert(OldBranch && "Failed to split the preheader");
EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
LPM->deleteSimpleAnalysisValue(OldBranch, L);
// EmitPreheaderBranchOnCondition removed the OldBranch from the function.
// Delete it, as it is no longer needed.
delete OldBranch;
// We need to reprocess this loop, it could be unswitched again.
redoLoop = true;
// Now that we know that the loop is never entered when this condition is a
// particular value, rewrite the loop with this info. We know that this will
// at least eliminate the old branch.
RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
++NumTrivial;
}
/// Check if the first non-constant condition starting from the loop header is
/// a trivial unswitch condition: that is, a condition controls whether or not
/// the loop does anything at all. If it is a trivial condition, unswitching
/// produces no code duplications (equivalently, it produces a simpler loop and
/// a new empty loop, which gets deleted). Therefore always unswitch trivial
/// condition.
bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
BasicBlock *CurrentBB = currentLoop->getHeader();
TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
LLVMContext &Context = CurrentBB->getContext();
// If loop header has only one reachable successor (currently via an
// unconditional branch or constant foldable conditional branch, but
// should also consider adding constant foldable switch instruction in
// future), we should keep looking for trivial condition candidates in
// the successor as well. An alternative is to constant fold conditions
// and merge successors into loop header (then we only need to check header's
// terminator). The reason for not doing this in LoopUnswitch pass is that
// it could potentially break LoopPassManager's invariants. Folding dead
// branches could either eliminate the current loop or make other loops
// unreachable. LCSSA form might also not be preserved after deleting
// branches. The following code keeps traversing loop header's successors
// until it finds the trivial condition candidate (condition that is not a
// constant). Since unswitching generates branches with constant conditions,
// this scenario could be very common in practice.
SmallSet<BasicBlock*, 8> Visited;
while (true) {
// If we exit loop or reach a previous visited block, then
// we can not reach any trivial condition candidates (unfoldable
// branch instructions or switch instructions) and no unswitch
// can happen. Exit and return false.
if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
return false;
// Check if this loop will execute any side-effecting instructions (e.g.
// stores, calls, volatile loads) in the part of the loop that the code
// *would* execute. Check the header first.
for (Instruction &I : *CurrentBB)
if (I.mayHaveSideEffects())
return false;
if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
if (BI->isUnconditional()) {
CurrentBB = BI->getSuccessor(0);
} else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
CurrentBB = BI->getSuccessor(0);
} else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
CurrentBB = BI->getSuccessor(1);
} else {
// Found a trivial condition candidate: non-foldable conditional branch.
break;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
// At this point, any constant-foldable instructions should have probably
// been folded.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
if (!Cond)
break;
// Find the target block we are definitely going to.
CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
} else {
// We do not understand these terminator instructions.
break;
}
CurrentTerm = CurrentBB->getTerminator();
}
// CondVal is the condition that controls the trivial condition.
// LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
Constant *CondVal = nullptr;
BasicBlock *LoopExitBB = nullptr;
if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
// If this isn't branching on an invariant condition, we can't unswitch it.
if (!BI->isConditional())
return false;
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed).first;
// Unswitch only if the trivial condition itself is an LIV (not
// partial LIV which could occur in and/or)
if (!LoopCond || LoopCond != BI->getCondition())
return false;
// Check to see if a successor of the branch is guaranteed to
// exit through a unique exit block without having any
// side-effects. If so, determine the value of Cond that causes
// it to do this.
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(0)))) {
CondVal = ConstantInt::getTrue(Context);
} else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(1)))) {
CondVal = ConstantInt::getFalse(Context);
}
// If we didn't find a single unique LoopExit block, or if the loop exit
// block contains phi nodes, this isn't trivial.
if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
return false; // Can't handle this.
if (EqualityPropUnSafe(*LoopCond))
return false;
UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
CurrentTerm);
++NumBranches;
return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
// If this isn't switching on an invariant condition, we can't unswitch it.
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed).first;
// Unswitch only if the trivial condition itself is an LIV (not
// partial LIV which could occur in and/or)
if (!LoopCond || LoopCond != SI->getCondition())
return false;
// Check to see if a successor of the switch is guaranteed to go to the
// latch block or exit through a one exit block without having any
// side-effects. If so, determine the value of Cond that causes it to do
// this.
// Note that we can't trivially unswitch on the default case or
// on already unswitched cases.
for (auto Case : SI->cases()) {
BasicBlock *LoopExitCandidate;
if ((LoopExitCandidate =
isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
// Okay, we found a trivial case, remember the value that is trivial.
ConstantInt *CaseVal = Case.getCaseValue();
// Check that it was not unswitched before, since already unswitched
// trivial vals are looks trivial too.
if (BranchesInfo.isUnswitched(SI, CaseVal))
continue;
LoopExitBB = LoopExitCandidate;
CondVal = CaseVal;
break;
}
}
// If we didn't find a single unique LoopExit block, or if the loop exit
// block contains phi nodes, this isn't trivial.
if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
return false; // Can't handle this.
UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
nullptr);
// We are only unswitching full LIV.
BranchesInfo.setUnswitched(SI, CondVal);
++NumSwitches;
return true;
}
return false;
}
/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L,
const SmallVectorImpl<BasicBlock *> &ExitBlocks){
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
pred_end(ExitBlock));
// Although SplitBlockPredecessors doesn't preserve loop-simplify in
// general, if we call it on all predecessors of all exits then it does.
SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
/*PreserveLCSSA*/ true);
}
}
/// We determined that the loop is profitable to unswitch when LIC equal Val.
/// Split it into loop versions and test the condition outside of either loop.
/// Return the loops created as Out1/Out2.
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
Loop *L, TerminatorInst *TI) {
Function *F = loopHeader->getParent();
DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function " << F->getName()
<< " when '" << *Val << "' == " << *LIC << "\n");
if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
SEWP->getSE().forgetLoop(L);
LoopBlocks.clear();
NewBlocks.clear();
// First step, split the preheader and exit blocks, and add these blocks to
// the LoopBlocks list.
BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
LoopBlocks.push_back(NewPreheader);
// We want the loop to come after the preheader, but before the exit blocks.
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Split all of the edges from inside the loop to their exit blocks. Update
// the appropriate Phi nodes as we do so.
SplitExitEdges(L, ExitBlocks);
// The exit blocks may have been changed due to edge splitting, recompute.
ExitBlocks.clear();
L->getUniqueExitBlocks(ExitBlocks);
// Add exit blocks to the loop blocks.
LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
// Next step, clone all of the basic blocks that make up the loop (including
// the loop preheader and exit blocks), keeping track of the mapping between
// the instructions and blocks.
NewBlocks.reserve(LoopBlocks.size());
ValueToValueMapTy VMap;
for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
NewBlocks.push_back(NewBB);
VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
}
// Splice the newly inserted blocks into the function right before the
// original preheader.
F->getBasicBlockList().splice(NewPreheader->getIterator(),
F->getBasicBlockList(),
NewBlocks[0]->getIterator(), F->end());
// Now we create the new Loop object for the versioned loop.
Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
// Recalculate unswitching quota, inherit simplified switches info for NewBB,
// Probably clone more loop-unswitch related loop properties.
BranchesInfo.cloneData(NewLoop, L, VMap);
Loop *ParentLoop = L->getParentLoop();
if (ParentLoop) {
// Make sure to add the cloned preheader and exit blocks to the parent loop
// as well.
ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
}
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
// The new exit block should be in the same loop as the old one.
if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
"Exit block should have been split to have one successor!");
BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
// If the successor of the exit block had PHI nodes, add an entry for
// NewExit.
for (PHINode &PN : ExitSucc->phis()) {
Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
ValueToValueMapTy::iterator It = VMap.find(V);
if (It != VMap.end()) V = It->second;
PN.addIncoming(V, NewExit);
}
if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
&*ExitSucc->getFirstInsertionPt());
for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
I != E; ++I) {
BasicBlock *BB = *I;
LandingPadInst *LPI = BB->getLandingPadInst();
LPI->replaceAllUsesWith(PN);
PN->addIncoming(LPI, BB);
}
}
}
// Rewrite the code to refer to itself.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
for (Instruction &I : *NewBlocks[i]) {
RemapInstruction(&I, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::assume)
AC->registerAssumption(II);
}
}
// Rewrite the original preheader to select between versions of the loop.
BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
"Preheader splitting did not work correctly!");
// Emit the new branch that selects between the two versions of this loop.
EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
TI);
LPM->deleteSimpleAnalysisValue(OldBR, L);
// The OldBr was replaced by a new one and removed (but not erased) by
// EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
delete OldBR;
LoopProcessWorklist.push_back(NewLoop);
redoLoop = true;
// Keep a WeakTrackingVH holding onto LIC. If the first call to
// RewriteLoopBody
// deletes the instruction (for example by simplifying a PHI that feeds into
// the condition that we're unswitching on), we don't rewrite the second
// iteration.
WeakTrackingVH LICHandle(LIC);
// Now we rewrite the original code to know that the condition is true and the
// new code to know that the condition is false.
RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
// It's possible that simplifying one loop could cause the other to be
// changed to another value or a constant. If its a constant, don't simplify
// it.
if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
LICHandle && !isa<Constant>(LICHandle))
RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
}
/// Remove all instances of I from the worklist vector specified.
static void RemoveFromWorklist(Instruction *I,
std::vector<Instruction*> &Worklist) {
Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
Worklist.end());
}
/// When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void ReplaceUsesOfWith(Instruction *I, Value *V,
std::vector<Instruction*> &Worklist,
Loop *L, LPPassManager *LPM) {
DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
Worklist.push_back(Use);
// Add users to the worklist which may be simplified now.
for (User *U : I->users())
Worklist.push_back(cast<Instruction>(U));
LPM->deleteSimpleAnalysisValue(I, L);
RemoveFromWorklist(I, Worklist);
I->replaceAllUsesWith(V);
if (!I->mayHaveSideEffects())
I->eraseFromParent();
++NumSimplify;
}
/// We know either that the value LIC has the value specified by Val in the
/// specified loop, or we know it does NOT have that value.
/// Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Constant *Val,
bool IsEqual) {
assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
// FIXME: Support correlated properties, like:
// for (...)
// if (li1 < li2)
// ...
// if (li1 > li2)
// ...
// FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
// selects, switches.
std::vector<Instruction*> Worklist;
LLVMContext &Context = Val->getContext();
// If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
// in the loop with the appropriate one directly.
if (IsEqual || (isa<ConstantInt>(Val) &&
Val->getType()->isIntegerTy(1))) {
Value *Replacement;
if (IsEqual)
Replacement = Val;
else
Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
!cast<ConstantInt>(Val)->getZExtValue());
for (User *U : LIC->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI || !L->contains(UI))
continue;
Worklist.push_back(UI);
}
for (Instruction *UI : Worklist)
UI->replaceUsesOfWith(LIC, Replacement);
SimplifyCode(Worklist, L);
return;
}
// Otherwise, we don't know the precise value of LIC, but we do know that it
// is certainly NOT "Val". As such, simplify any uses in the loop that we
// can. This case occurs when we unswitch switch statements.
for (User *U : LIC->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI || !L->contains(UI))
continue;
// At this point, we know LIC is definitely not Val. Try to use some simple
// logic to simplify the user w.r.t. to the context.
if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
// This in-loop instruction has been simplified w.r.t. its context,
// i.e. LIC != Val, make sure we propagate its replacement value to
// all its users.
//
// We can not yet delete UI, the LIC user, yet, because that would invalidate
// the LIC->users() iterator !. However, we can make this instruction
// dead by replacing all its users and push it onto the worklist so that
// it can be properly deleted and its operands simplified.
UI->replaceAllUsesWith(Replacement);
}
}
// This is a LIC user, push it into the worklist so that SimplifyCode can
// attempt to simplify it.
Worklist.push_back(UI);
// If we know that LIC is not Val, use this info to simplify code.
SwitchInst *SI = dyn_cast<SwitchInst>(UI);
if (!SI || !isa<ConstantInt>(Val)) continue;
// NOTE: if a case value for the switch is unswitched out, we record it
// after the unswitch finishes. We can not record it here as the switch
// is not a direct user of the partial LIV.
SwitchInst::CaseHandle DeadCase =
*SI->findCaseValue(cast<ConstantInt>(Val));
// Default case is live for multiple values.
if (DeadCase == *SI->case_default())
continue;
// Found a dead case value. Don't remove PHI nodes in the
// successor if they become single-entry, those PHI nodes may
// be in the Users list.
BasicBlock *Switch = SI->getParent();
BasicBlock *SISucc = DeadCase.getCaseSuccessor();
BasicBlock *Latch = L->getLoopLatch();
if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
// If the DeadCase successor dominates the loop latch, then the
// transformation isn't safe since it will delete the sole predecessor edge
// to the latch.
if (Latch && DT->dominates(SISucc, Latch))
continue;
// FIXME: This is a hack. We need to keep the successor around
// and hooked up so as to preserve the loop structure, because
// trying to update it is complicated. So instead we preserve the
// loop structure and put the block on a dead code path.
SplitEdge(Switch, SISucc, DT, LI);
// Compute the successors instead of relying on the return value
// of SplitEdge, since it may have split the switch successor
// after PHI nodes.
BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
BasicBlock *OldSISucc = *succ_begin(NewSISucc);
// Create an "unreachable" destination.
BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
Switch->getParent(),
OldSISucc);
new UnreachableInst(Context, Abort);
// Force the new case destination to branch to the "unreachable"
// block while maintaining a (dead) CFG edge to the old block.
NewSISucc->getTerminator()->eraseFromParent();
BranchInst::Create(Abort, OldSISucc,
ConstantInt::getTrue(Context), NewSISucc);
// Release the PHI operands for this edge.
for (PHINode &PN : NewSISucc->phis())
PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
UndefValue::get(PN.getType()));
// Tell the domtree about the new block. We don't fully update the
// domtree here -- instead we force it to do a full recomputation
// after the pass is complete -- but we do need to inform it of
// new blocks.
DT->addNewBlock(Abort, NewSISucc);
}
SimplifyCode(Worklist, L);
}
/// Now that we have simplified some instructions in the loop, walk over it and
/// constant prop, dce, and fold control flow where possible. Note that this is
/// effectively a very simple loop-structure-aware optimizer. During processing
/// of this loop, L could very well be deleted, so it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
// Simple DCE.
if (isInstructionTriviallyDead(I)) {
DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
Worklist.push_back(Use);
LPM->deleteSimpleAnalysisValue(I, L);
RemoveFromWorklist(I, Worklist);
I->eraseFromParent();
++NumSimplify;
continue;
}
// See if instruction simplification can hack this up. This is common for
// things like "select false, X, Y" after unswitching made the condition be
// 'false'. TODO: update the domtree properly so we can pass it here.
if (Value *V = SimplifyInstruction(I, DL))
if (LI->replacementPreservesLCSSAForm(I, V)) {
ReplaceUsesOfWith(I, V, Worklist, L, LPM);
continue;
}
// Special case hacks that appear commonly in unswitched code.
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
if (BI->isUnconditional()) {
// If BI's parent is the only pred of the successor, fold the two blocks
// together.
BasicBlock *Pred = BI->getParent();
BasicBlock *Succ = BI->getSuccessor(0);
BasicBlock *SinglePred = Succ->getSinglePredecessor();
if (!SinglePred) continue; // Nothing to do.
assert(SinglePred == Pred && "CFG broken");
DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
<< Succ->getName() << "\n");
// Resolve any single entry PHI nodes in Succ.
while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
// If Succ has any successors with PHI nodes, update them to have
// entries coming from Pred instead of Succ.
Succ->replaceAllUsesWith(Pred);
// Move all of the successor contents from Succ to Pred.
Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
Succ->begin(), Succ->end());
LPM->deleteSimpleAnalysisValue(BI, L);
RemoveFromWorklist(BI, Worklist);
BI->eraseFromParent();
// Remove Succ from the loop tree.
LI->removeBlock(Succ);
LPM->deleteSimpleAnalysisValue(Succ, L);
Succ->eraseFromParent();
++NumSimplify;
continue;
}
continue;
}
}
}
/// Simple simplifications we can do given the information that Cond is
/// definitely not equal to Val.
Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
Value *Invariant,
Constant *Val) {
// icmp eq cond, val -> false
ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
if (CI && CI->isEquality()) {
Value *Op0 = CI->getOperand(0);
Value *Op1 = CI->getOperand(1);
if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
LLVMContext &Ctx = Inst->getContext();
if (CI->getPredicate() == CmpInst::ICMP_EQ)
return ConstantInt::getFalse(Ctx);
else
return ConstantInt::getTrue(Ctx);
}
}
// FIXME: there may be other opportunities, e.g. comparison with floating
// point, or Invariant - Val != 0, etc.
return nullptr;
}