You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1760 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1760 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineSelect.cpp ----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitSelect function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CmpInstAnalysis.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| static SelectPatternFlavor
 | |
| getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
 | |
|   switch (SPF) {
 | |
|   default:
 | |
|     llvm_unreachable("unhandled!");
 | |
| 
 | |
|   case SPF_SMIN:
 | |
|     return SPF_SMAX;
 | |
|   case SPF_UMIN:
 | |
|     return SPF_UMAX;
 | |
|   case SPF_SMAX:
 | |
|     return SPF_SMIN;
 | |
|   case SPF_UMAX:
 | |
|     return SPF_UMIN;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
 | |
|                                                    bool Ordered=false) {
 | |
|   switch (SPF) {
 | |
|   default:
 | |
|     llvm_unreachable("unhandled!");
 | |
| 
 | |
|   case SPF_SMIN:
 | |
|     return ICmpInst::ICMP_SLT;
 | |
|   case SPF_UMIN:
 | |
|     return ICmpInst::ICMP_ULT;
 | |
|   case SPF_SMAX:
 | |
|     return ICmpInst::ICMP_SGT;
 | |
|   case SPF_UMAX:
 | |
|     return ICmpInst::ICMP_UGT;
 | |
|   case SPF_FMINNUM:
 | |
|     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
 | |
|   case SPF_FMAXNUM:
 | |
|     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy &Builder,
 | |
|                                           SelectPatternFlavor SPF, Value *A,
 | |
|                                           Value *B) {
 | |
|   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
 | |
|   assert(CmpInst::isIntPredicate(Pred));
 | |
|   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
 | |
| }
 | |
| 
 | |
| /// If one of the constants is zero (we know they can't both be) and we have an
 | |
| /// icmp instruction with zero, and we have an 'and' with the non-constant value
 | |
| /// and a power of two we can turn the select into a shift on the result of the
 | |
| /// 'and'.
 | |
| /// This folds:
 | |
| ///  select (icmp eq (and X, C1)), C2, C3
 | |
| ///    iff C1 is a power 2 and the difference between C2 and C3 is a power of 2.
 | |
| /// To something like:
 | |
| ///  (shr (and (X, C1)), (log2(C1) - log2(C2-C3))) + C3
 | |
| /// Or:
 | |
| ///  (shl (and (X, C1)), (log2(C2-C3) - log2(C1))) + C3
 | |
| /// With some variations depending if C3 is larger than C2, or the shift
 | |
| /// isn't needed, or the bit widths don't match.
 | |
| static Value *foldSelectICmpAnd(Type *SelType, const ICmpInst *IC,
 | |
|                                 APInt TrueVal, APInt FalseVal,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   assert(SelType->isIntOrIntVectorTy() && "Not an integer select?");
 | |
| 
 | |
|   // If this is a vector select, we need a vector compare.
 | |
|   if (SelType->isVectorTy() != IC->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V;
 | |
|   APInt AndMask;
 | |
|   bool CreateAnd = false;
 | |
|   ICmpInst::Predicate Pred = IC->getPredicate();
 | |
|   if (ICmpInst::isEquality(Pred)) {
 | |
|     if (!match(IC->getOperand(1), m_Zero()))
 | |
|       return nullptr;
 | |
| 
 | |
|     V = IC->getOperand(0);
 | |
| 
 | |
|     const APInt *AndRHS;
 | |
|     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
 | |
|       return nullptr;
 | |
| 
 | |
|     AndMask = *AndRHS;
 | |
|   } else if (decomposeBitTestICmp(IC->getOperand(0), IC->getOperand(1),
 | |
|                                   Pred, V, AndMask)) {
 | |
|     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
 | |
| 
 | |
|     if (!AndMask.isPowerOf2())
 | |
|       return nullptr;
 | |
| 
 | |
|     CreateAnd = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If both select arms are non-zero see if we have a select of the form
 | |
|   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
 | |
|   // for 'x ? 2^n : 0' and fix the thing up at the end.
 | |
|   APInt Offset(TrueVal.getBitWidth(), 0);
 | |
|   if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) {
 | |
|     if ((TrueVal - FalseVal).isPowerOf2())
 | |
|       Offset = FalseVal;
 | |
|     else if ((FalseVal - TrueVal).isPowerOf2())
 | |
|       Offset = TrueVal;
 | |
|     else
 | |
|       return nullptr;
 | |
| 
 | |
|     // Adjust TrueVal and FalseVal to the offset.
 | |
|     TrueVal -= Offset;
 | |
|     FalseVal -= Offset;
 | |
|   }
 | |
| 
 | |
|   // Make sure one of the select arms is a power of 2.
 | |
|   if (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Determine which shift is needed to transform result of the 'and' into the
 | |
|   // desired result.
 | |
|   const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal;
 | |
|   unsigned ValZeros = ValC.logBase2();
 | |
|   unsigned AndZeros = AndMask.logBase2();
 | |
| 
 | |
|   if (CreateAnd) {
 | |
|     // Insert the AND instruction on the input to the truncate.
 | |
|     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
 | |
|   }
 | |
| 
 | |
|   // If types don't match we can still convert the select by introducing a zext
 | |
|   // or a trunc of the 'and'.
 | |
|   if (ValZeros > AndZeros) {
 | |
|     V = Builder.CreateZExtOrTrunc(V, SelType);
 | |
|     V = Builder.CreateShl(V, ValZeros - AndZeros);
 | |
|   } else if (ValZeros < AndZeros) {
 | |
|     V = Builder.CreateLShr(V, AndZeros - ValZeros);
 | |
|     V = Builder.CreateZExtOrTrunc(V, SelType);
 | |
|   } else
 | |
|     V = Builder.CreateZExtOrTrunc(V, SelType);
 | |
| 
 | |
|   // Okay, now we know that everything is set up, we just don't know whether we
 | |
|   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
 | |
|   bool ShouldNotVal = !TrueVal.isNullValue();
 | |
|   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
 | |
|   if (ShouldNotVal)
 | |
|     V = Builder.CreateXor(V, ValC);
 | |
| 
 | |
|   // Apply an offset if needed.
 | |
|   if (!Offset.isNullValue())
 | |
|     V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset));
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// We want to turn code that looks like this:
 | |
| ///   %C = or %A, %B
 | |
| ///   %D = select %cond, %C, %A
 | |
| /// into:
 | |
| ///   %C = select %cond, %B, 0
 | |
| ///   %D = or %A, %C
 | |
| ///
 | |
| /// Assuming that the specified instruction is an operand to the select, return
 | |
| /// a bitmask indicating which operands of this instruction are foldable if they
 | |
| /// equal the other incoming value of the select.
 | |
| static unsigned getSelectFoldableOperands(BinaryOperator *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return 3;              // Can fold through either operand.
 | |
|   case Instruction::Sub:   // Can only fold on the amount subtracted.
 | |
|   case Instruction::Shl:   // Can only fold on the shift amount.
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return 1;
 | |
|   default:
 | |
|     return 0;              // Cannot fold
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For the same transformation as the previous function, return the identity
 | |
| /// constant that goes into the select.
 | |
| static APInt getSelectFoldableConstant(BinaryOperator *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("This cannot happen!");
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
 | |
|   case Instruction::And:
 | |
|     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
 | |
|   case Instruction::Mul:
 | |
|     return APInt(I->getType()->getScalarSizeInBits(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
 | |
| Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                           Instruction *FI) {
 | |
|   // Don't break up min/max patterns. The hasOneUse checks below prevent that
 | |
|   // for most cases, but vector min/max with bitcasts can be transformed. If the
 | |
|   // one-use restrictions are eased for other patterns, we still don't want to
 | |
|   // obfuscate min/max.
 | |
|   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
 | |
|        match(&SI, m_SMax(m_Value(), m_Value())) ||
 | |
|        match(&SI, m_UMin(m_Value(), m_Value())) ||
 | |
|        match(&SI, m_UMax(m_Value(), m_Value()))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a cast from the same type, merge.
 | |
|   if (TI->getNumOperands() == 1 && TI->isCast()) {
 | |
|     Type *FIOpndTy = FI->getOperand(0)->getType();
 | |
|     if (TI->getOperand(0)->getType() != FIOpndTy)
 | |
|       return nullptr;
 | |
| 
 | |
|     // The select condition may be a vector. We may only change the operand
 | |
|     // type if the vector width remains the same (and matches the condition).
 | |
|     Type *CondTy = SI.getCondition()->getType();
 | |
|     if (CondTy->isVectorTy()) {
 | |
|       if (!FIOpndTy->isVectorTy())
 | |
|         return nullptr;
 | |
|       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
 | |
|         return nullptr;
 | |
| 
 | |
|       // TODO: If the backend knew how to deal with casts better, we could
 | |
|       // remove this limitation. For now, there's too much potential to create
 | |
|       // worse codegen by promoting the select ahead of size-altering casts
 | |
|       // (PR28160).
 | |
|       //
 | |
|       // Note that ValueTracking's matchSelectPattern() looks through casts
 | |
|       // without checking 'hasOneUse' when it matches min/max patterns, so this
 | |
|       // transform may end up happening anyway.
 | |
|       if (TI->getOpcode() != Instruction::BitCast &&
 | |
|           (!TI->hasOneUse() || !FI->hasOneUse()))
 | |
|         return nullptr;
 | |
|     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
 | |
|       // TODO: The one-use restrictions for a scalar select could be eased if
 | |
|       // the fold of a select in visitLoadInst() was enhanced to match a pattern
 | |
|       // that includes a cast.
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Fold this by inserting a select from the input values.
 | |
|     Value *NewSI =
 | |
|         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
 | |
|                              FI->getOperand(0), SI.getName() + ".v", &SI);
 | |
|     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
 | |
|                             TI->getType());
 | |
|   }
 | |
| 
 | |
|   // Only handle binary operators with one-use here. As with the cast case
 | |
|   // above, it may be possible to relax the one-use constraint, but that needs
 | |
|   // be examined carefully since it may not reduce the total number of
 | |
|   // instructions.
 | |
|   BinaryOperator *BO = dyn_cast<BinaryOperator>(TI);
 | |
|   if (!BO || !TI->hasOneUse() || !FI->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Figure out if the operations have any operands in common.
 | |
|   Value *MatchOp, *OtherOpT, *OtherOpF;
 | |
|   bool MatchIsOpZero;
 | |
|   if (TI->getOperand(0) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = false;
 | |
|   } else if (!TI->isCommutative()) {
 | |
|     return nullptr;
 | |
|   } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If we reach here, they do have operations in common.
 | |
|   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
 | |
|                                       SI.getName() + ".v", &SI);
 | |
|   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
 | |
|   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
 | |
|   return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
 | |
| }
 | |
| 
 | |
| static bool isSelect01(const APInt &C1I, const APInt &C2I) {
 | |
|   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
 | |
|     return false;
 | |
|   return C1I.isOneValue() || C1I.isAllOnesValue() ||
 | |
|          C2I.isOneValue() || C2I.isAllOnesValue();
 | |
| }
 | |
| 
 | |
| /// Try to fold the select into one of the operands to allow further
 | |
| /// optimization.
 | |
| Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
 | |
|                                             Value *FalseVal) {
 | |
|   // See the comment above GetSelectFoldableOperands for a description of the
 | |
|   // transformation we are doing here.
 | |
|   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
 | |
|     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
 | |
|       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           APInt CI = getSelectFoldableConstant(TVI);
 | |
|           Value *OOp = TVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0, 1 and -1.
 | |
|           const APInt *OOpC;
 | |
|           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
 | |
|           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
 | |
|             Value *C = ConstantInt::get(OOp->getType(), CI);
 | |
|             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
 | |
|             NewSel->takeName(TVI);
 | |
|             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
 | |
|                                                         FalseVal, NewSel);
 | |
|             BO->copyIRFlags(TVI);
 | |
|             return BO;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
 | |
|     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
 | |
|       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           APInt CI = getSelectFoldableConstant(FVI);
 | |
|           Value *OOp = FVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0, 1 and -1.
 | |
|           const APInt *OOpC;
 | |
|           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
 | |
|           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
 | |
|             Value *C = ConstantInt::get(OOp->getType(), CI);
 | |
|             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
 | |
|             NewSel->takeName(FVI);
 | |
|             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
 | |
|                                                         TrueVal, NewSel);
 | |
|             BO->copyIRFlags(FVI);
 | |
|             return BO;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// We want to turn:
 | |
| ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
 | |
| /// into:
 | |
| ///   (or (shl (and X, C1), C3), Y)
 | |
| /// iff:
 | |
| ///   C1 and C2 are both powers of 2
 | |
| /// where:
 | |
| ///   C3 = Log(C2) - Log(C1)
 | |
| ///
 | |
| /// This transform handles cases where:
 | |
| /// 1. The icmp predicate is inverted
 | |
| /// 2. The select operands are reversed
 | |
| /// 3. The magnitude of C2 and C1 are flipped
 | |
| static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
 | |
|                                   Value *FalseVal,
 | |
|                                   InstCombiner::BuilderTy &Builder) {
 | |
|   // Only handle integer compares. Also, if this is a vector select, we need a
 | |
|   // vector compare.
 | |
|   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
 | |
|       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *CmpLHS = IC->getOperand(0);
 | |
|   Value *CmpRHS = IC->getOperand(1);
 | |
| 
 | |
|   Value *V;
 | |
|   unsigned C1Log;
 | |
|   bool IsEqualZero;
 | |
|   bool NeedAnd = false;
 | |
|   if (IC->isEquality()) {
 | |
|     if (!match(CmpRHS, m_Zero()))
 | |
|       return nullptr;
 | |
| 
 | |
|     const APInt *C1;
 | |
|     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
 | |
|       return nullptr;
 | |
| 
 | |
|     V = CmpLHS;
 | |
|     C1Log = C1->logBase2();
 | |
|     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
 | |
|   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
 | |
|              IC->getPredicate() == ICmpInst::ICMP_SGT) {
 | |
|     // We also need to recognize (icmp slt (trunc (X)), 0) and
 | |
|     // (icmp sgt (trunc (X)), -1).
 | |
|     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
 | |
|     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
 | |
|         (!IsEqualZero && !match(CmpRHS, m_Zero())))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
 | |
|       return nullptr;
 | |
| 
 | |
|     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
 | |
|     NeedAnd = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   const APInt *C2;
 | |
|   bool OrOnTrueVal = false;
 | |
|   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
 | |
|   if (!OrOnFalseVal)
 | |
|     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
 | |
| 
 | |
|   if (!OrOnFalseVal && !OrOnTrueVal)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
 | |
| 
 | |
|   unsigned C2Log = C2->logBase2();
 | |
| 
 | |
|   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
 | |
|   bool NeedShift = C1Log != C2Log;
 | |
|   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
 | |
|                        V->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   // Make sure we don't create more instructions than we save.
 | |
|   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
 | |
|   if ((NeedShift + NeedXor + NeedZExtTrunc) >
 | |
|       (IC->hasOneUse() + Or->hasOneUse()))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (NeedAnd) {
 | |
|     // Insert the AND instruction on the input to the truncate.
 | |
|     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
 | |
|     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
 | |
|   }
 | |
| 
 | |
|   if (C2Log > C1Log) {
 | |
|     V = Builder.CreateZExtOrTrunc(V, Y->getType());
 | |
|     V = Builder.CreateShl(V, C2Log - C1Log);
 | |
|   } else if (C1Log > C2Log) {
 | |
|     V = Builder.CreateLShr(V, C1Log - C2Log);
 | |
|     V = Builder.CreateZExtOrTrunc(V, Y->getType());
 | |
|   } else
 | |
|     V = Builder.CreateZExtOrTrunc(V, Y->getType());
 | |
| 
 | |
|   if (NeedXor)
 | |
|     V = Builder.CreateXor(V, *C2);
 | |
| 
 | |
|   return Builder.CreateOr(V, Y);
 | |
| }
 | |
| 
 | |
| /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
 | |
| /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
 | |
| ///
 | |
| /// For example, we can fold the following code sequence:
 | |
| /// \code
 | |
| ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
 | |
| ///   %1 = icmp ne i32 %x, 0
 | |
| ///   %2 = select i1 %1, i32 %0, i32 32
 | |
| /// \code
 | |
| ///
 | |
| /// into:
 | |
| ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
 | |
| static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
 | |
|                                  InstCombiner::BuilderTy &Builder) {
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
| 
 | |
|   // Check if the condition value compares a value for equality against zero.
 | |
|   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Count = FalseVal;
 | |
|   Value *ValueOnZero = TrueVal;
 | |
|   if (Pred == ICmpInst::ICMP_NE)
 | |
|     std::swap(Count, ValueOnZero);
 | |
| 
 | |
|   // Skip zero extend/truncate.
 | |
|   Value *V = nullptr;
 | |
|   if (match(Count, m_ZExt(m_Value(V))) ||
 | |
|       match(Count, m_Trunc(m_Value(V))))
 | |
|     Count = V;
 | |
| 
 | |
|   // Check if the value propagated on zero is a constant number equal to the
 | |
|   // sizeof in bits of 'Count'.
 | |
|   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
 | |
|   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
 | |
|   // input to the cttz/ctlz is used as LHS for the compare instruction.
 | |
|   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
 | |
|       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
 | |
|     IntrinsicInst *II = cast<IntrinsicInst>(Count);
 | |
|     // Explicitly clear the 'undef_on_zero' flag.
 | |
|     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
 | |
|     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
 | |
|     Builder.Insert(NewI);
 | |
|     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true if we find and adjust an icmp+select pattern where the compare
 | |
| /// is with a constant that can be incremented or decremented to match the
 | |
| /// minimum or maximum idiom.
 | |
| static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   Value *CmpLHS = Cmp.getOperand(0);
 | |
|   Value *CmpRHS = Cmp.getOperand(1);
 | |
|   Value *TrueVal = Sel.getTrueValue();
 | |
|   Value *FalseVal = Sel.getFalseValue();
 | |
| 
 | |
|   // We may move or edit the compare, so make sure the select is the only user.
 | |
|   const APInt *CmpC;
 | |
|   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
 | |
|     return false;
 | |
| 
 | |
|   // These transforms only work for selects of integers or vector selects of
 | |
|   // integer vectors.
 | |
|   Type *SelTy = Sel.getType();
 | |
|   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
 | |
|   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   Constant *AdjustedRHS;
 | |
|   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
 | |
|     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
 | |
|   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
 | |
|     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
 | |
|   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
 | |
|   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
 | |
|       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
 | |
|     ; // Nothing to do here. Values match without any sign/zero extension.
 | |
|   }
 | |
|   // Types do not match. Instead of calculating this with mixed types, promote
 | |
|   // all to the larger type. This enables scalar evolution to analyze this
 | |
|   // expression.
 | |
|   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
 | |
|     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
 | |
| 
 | |
|     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
 | |
|     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
 | |
|     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
 | |
|     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
 | |
|     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
 | |
|       CmpLHS = TrueVal;
 | |
|       AdjustedRHS = SextRHS;
 | |
|     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
 | |
|                SextRHS == TrueVal) {
 | |
|       CmpLHS = FalseVal;
 | |
|       AdjustedRHS = SextRHS;
 | |
|     } else if (Cmp.isUnsigned()) {
 | |
|       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
 | |
|       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
 | |
|       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
 | |
|       // zext + signed compare cannot be changed:
 | |
|       //    0xff <s 0x00, but 0x00ff >s 0x0000
 | |
|       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
 | |
|         CmpLHS = TrueVal;
 | |
|         AdjustedRHS = ZextRHS;
 | |
|       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
 | |
|                  ZextRHS == TrueVal) {
 | |
|         CmpLHS = FalseVal;
 | |
|         AdjustedRHS = ZextRHS;
 | |
|       } else {
 | |
|         return false;
 | |
|       }
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   CmpRHS = AdjustedRHS;
 | |
|   std::swap(FalseVal, TrueVal);
 | |
|   Cmp.setPredicate(Pred);
 | |
|   Cmp.setOperand(0, CmpLHS);
 | |
|   Cmp.setOperand(1, CmpRHS);
 | |
|   Sel.setOperand(1, TrueVal);
 | |
|   Sel.setOperand(2, FalseVal);
 | |
|   Sel.swapProfMetadata();
 | |
| 
 | |
|   // Move the compare instruction right before the select instruction. Otherwise
 | |
|   // the sext/zext value may be defined after the compare instruction uses it.
 | |
|   Cmp.moveBefore(&Sel);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If this is an integer min/max (icmp + select) with a constant operand,
 | |
| /// create the canonical icmp for the min/max operation and canonicalize the
 | |
| /// constant to the 'false' operand of the select:
 | |
| /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
 | |
| /// Note: if C1 != C2, this will change the icmp constant to the existing
 | |
| /// constant operand of the select.
 | |
| static Instruction *
 | |
| canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
 | |
|                                InstCombiner::BuilderTy &Builder) {
 | |
|   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize the compare predicate based on whether we have min or max.
 | |
|   Value *LHS, *RHS;
 | |
|   ICmpInst::Predicate NewPred;
 | |
|   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
 | |
|   switch (SPR.Flavor) {
 | |
|   case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
 | |
|   case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
 | |
|   case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
 | |
|   case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
 | |
|   default: return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Is this already canonical?
 | |
|   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
 | |
|       Cmp.getPredicate() == NewPred)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create the canonical compare and plug it into the select.
 | |
|   Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS));
 | |
| 
 | |
|   // If the select operands did not change, we're done.
 | |
|   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
 | |
|     return &Sel;
 | |
| 
 | |
|   // If we are swapping the select operands, swap the metadata too.
 | |
|   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
 | |
|          "Unexpected results from matchSelectPattern");
 | |
|   Sel.setTrueValue(LHS);
 | |
|   Sel.setFalseValue(RHS);
 | |
|   Sel.swapProfMetadata();
 | |
|   return &Sel;
 | |
| }
 | |
| 
 | |
| /// Visit a SelectInst that has an ICmpInst as its first operand.
 | |
| Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
 | |
|                                                   ICmpInst *ICI) {
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
 | |
|     return NewSel;
 | |
| 
 | |
|   bool Changed = adjustMinMax(SI, *ICI);
 | |
| 
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
| 
 | |
|   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
 | |
|   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
 | |
|   // FIXME: Type and constness constraints could be lifted, but we have to
 | |
|   //        watch code size carefully. We should consider xor instead of
 | |
|   //        sub/add when we decide to do that.
 | |
|   // TODO: Merge this with foldSelectICmpAnd somehow.
 | |
|   if (CmpLHS->getType()->isIntOrIntVectorTy() &&
 | |
|       CmpLHS->getType() == TrueVal->getType()) {
 | |
|     const APInt *C1, *C2;
 | |
|     if (match(TrueVal, m_APInt(C1)) && match(FalseVal, m_APInt(C2))) {
 | |
|       ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|       Value *X;
 | |
|       APInt Mask;
 | |
|       if (decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask, false)) {
 | |
|         if (Mask.isSignMask()) {
 | |
|           assert(X == CmpLHS && "Expected to use the compare input directly");
 | |
|           assert(ICmpInst::isEquality(Pred) && "Expected equality predicate");
 | |
| 
 | |
|           if (Pred == ICmpInst::ICMP_NE)
 | |
|             std::swap(C1, C2);
 | |
| 
 | |
|           // This shift results in either -1 or 0.
 | |
|           Value *AShr = Builder.CreateAShr(X, Mask.getBitWidth() - 1);
 | |
| 
 | |
|           // Check if we can express the operation with a single or.
 | |
|           if (C2->isAllOnesValue())
 | |
|             return replaceInstUsesWith(SI, Builder.CreateOr(AShr, *C1));
 | |
| 
 | |
|           Value *And = Builder.CreateAnd(AShr, *C2 - *C1);
 | |
|           return replaceInstUsesWith(SI, Builder.CreateAdd(And,
 | |
|                                         ConstantInt::get(And->getType(), *C1)));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     const APInt *TrueValC, *FalseValC;
 | |
|     if (match(TrueVal, m_APInt(TrueValC)) &&
 | |
|         match(FalseVal, m_APInt(FalseValC)))
 | |
|       if (Value *V = foldSelectICmpAnd(SI.getType(), ICI, *TrueValC,
 | |
|                                        *FalseValC, Builder))
 | |
|         return replaceInstUsesWith(SI, V);
 | |
|   }
 | |
| 
 | |
|   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
 | |
| 
 | |
|   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
 | |
|     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
 | |
|       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
 | |
|       SI.setOperand(1, CmpRHS);
 | |
|       Changed = true;
 | |
|     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
 | |
|       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
 | |
|       SI.setOperand(2, CmpRHS);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
 | |
|   // decomposeBitTestICmp() might help.
 | |
|   {
 | |
|     unsigned BitWidth =
 | |
|         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
 | |
|     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
 | |
|     Value *X;
 | |
|     const APInt *Y, *C;
 | |
|     bool TrueWhenUnset;
 | |
|     bool IsBitTest = false;
 | |
|     if (ICmpInst::isEquality(Pred) &&
 | |
|         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
 | |
|         match(CmpRHS, m_Zero())) {
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
 | |
|     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
 | |
|       X = CmpLHS;
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = false;
 | |
|     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
 | |
|       X = CmpLHS;
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = true;
 | |
|     }
 | |
|     if (IsBitTest) {
 | |
|       Value *V = nullptr;
 | |
|       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
 | |
|       if (TrueWhenUnset && TrueVal == X &&
 | |
|           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateAnd(X, ~(*Y));
 | |
|       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
 | |
|       else if (!TrueWhenUnset && FalseVal == X &&
 | |
|                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateAnd(X, ~(*Y));
 | |
|       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
 | |
|       else if (TrueWhenUnset && FalseVal == X &&
 | |
|                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateOr(X, *Y);
 | |
|       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
 | |
|       else if (!TrueWhenUnset && TrueVal == X &&
 | |
|                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateOr(X, *Y);
 | |
| 
 | |
|       if (V)
 | |
|         return replaceInstUsesWith(SI, V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   return Changed ? &SI : nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SI is a select whose condition is a PHI node (but the two may be in
 | |
| /// different blocks). See if the true/false values (V) are live in all of the
 | |
| /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
 | |
| ///
 | |
| ///   X = phi [ C1, BB1], [C2, BB2]
 | |
| ///   Y = add
 | |
| ///   Z = select X, Y, 0
 | |
| ///
 | |
| /// because Y is not live in BB1/BB2.
 | |
| static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
 | |
|                                                    const SelectInst &SI) {
 | |
|   // If the value is a non-instruction value like a constant or argument, it
 | |
|   // can always be mapped.
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return true;
 | |
| 
 | |
|   // If V is a PHI node defined in the same block as the condition PHI, we can
 | |
|   // map the arguments.
 | |
|   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
 | |
| 
 | |
|   if (const PHINode *VP = dyn_cast<PHINode>(I))
 | |
|     if (VP->getParent() == CondPHI->getParent())
 | |
|       return true;
 | |
| 
 | |
|   // Otherwise, if the PHI and select are defined in the same block and if V is
 | |
|   // defined in a different block, then we can transform it.
 | |
|   if (SI.getParent() == CondPHI->getParent() &&
 | |
|       I->getParent() != CondPHI->getParent())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise we have a 'hard' case and we can't tell without doing more
 | |
|   // detailed dominator based analysis, punt.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// We have an SPF (e.g. a min or max) of an SPF of the form:
 | |
| ///   SPF2(SPF1(A, B), C)
 | |
| Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
 | |
|                                         SelectPatternFlavor SPF1,
 | |
|                                         Value *A, Value *B,
 | |
|                                         Instruction &Outer,
 | |
|                                         SelectPatternFlavor SPF2, Value *C) {
 | |
|   if (Outer.getType() != Inner->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (C == A || C == B) {
 | |
|     // MAX(MAX(A, B), B) -> MAX(A, B)
 | |
|     // MIN(MIN(a, b), a) -> MIN(a, b)
 | |
|     if (SPF1 == SPF2)
 | |
|       return replaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|     // MAX(MIN(a, b), a) -> a
 | |
|     // MIN(MAX(a, b), a) -> a
 | |
|     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
 | |
|         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
 | |
|         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
 | |
|         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
 | |
|       return replaceInstUsesWith(Outer, C);
 | |
|   }
 | |
| 
 | |
|   if (SPF1 == SPF2) {
 | |
|     const APInt *CB, *CC;
 | |
|     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
 | |
|       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
 | |
|       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
 | |
|       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
 | |
|           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
 | |
|           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
 | |
|           (SPF1 == SPF_SMAX && CB->sge(*CC)))
 | |
|         return replaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
 | |
|       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
 | |
|       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
 | |
|           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
 | |
|           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
 | |
|           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
 | |
|         Outer.replaceUsesOfWith(Inner, A);
 | |
|         return &Outer;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ABS(ABS(X)) -> ABS(X)
 | |
|   // NABS(NABS(X)) -> NABS(X)
 | |
|   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
 | |
|     return replaceInstUsesWith(Outer, Inner);
 | |
|   }
 | |
| 
 | |
|   // ABS(NABS(X)) -> ABS(X)
 | |
|   // NABS(ABS(X)) -> NABS(X)
 | |
|   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
 | |
|       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
 | |
|     SelectInst *SI = cast<SelectInst>(Inner);
 | |
|     Value *NewSI =
 | |
|         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
 | |
|                              SI->getTrueValue(), SI->getName(), SI);
 | |
|     return replaceInstUsesWith(Outer, NewSI);
 | |
|   }
 | |
| 
 | |
|   auto IsFreeOrProfitableToInvert =
 | |
|       [&](Value *V, Value *&NotV, bool &ElidesXor) {
 | |
|     if (match(V, m_Not(m_Value(NotV)))) {
 | |
|       // If V has at most 2 uses then we can get rid of the xor operation
 | |
|       // entirely.
 | |
|       ElidesXor |= !V->hasNUsesOrMore(3);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
 | |
|       NotV = nullptr;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   Value *NotA, *NotB, *NotC;
 | |
|   bool ElidesXor = false;
 | |
| 
 | |
|   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
 | |
|   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
 | |
|   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
 | |
|   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
 | |
|   //
 | |
|   // This transform is performance neutral if we can elide at least one xor from
 | |
|   // the set of three operands, since we'll be tacking on an xor at the very
 | |
|   // end.
 | |
|   if (SelectPatternResult::isMinOrMax(SPF1) &&
 | |
|       SelectPatternResult::isMinOrMax(SPF2) &&
 | |
|       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
 | |
|       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
 | |
|       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
 | |
|     if (!NotA)
 | |
|       NotA = Builder.CreateNot(A);
 | |
|     if (!NotB)
 | |
|       NotB = Builder.CreateNot(B);
 | |
|     if (!NotC)
 | |
|       NotC = Builder.CreateNot(C);
 | |
| 
 | |
|     Value *NewInner = generateMinMaxSelectPattern(
 | |
|         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
 | |
|     Value *NewOuter = Builder.CreateNot(generateMinMaxSelectPattern(
 | |
|         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
 | |
|     return replaceInstUsesWith(Outer, NewOuter);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
 | |
| /// This is even legal for FP.
 | |
| static Instruction *foldAddSubSelect(SelectInst &SI,
 | |
|                                      InstCombiner::BuilderTy &Builder) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
|   auto *TI = dyn_cast<Instruction>(TrueVal);
 | |
|   auto *FI = dyn_cast<Instruction>(FalseVal);
 | |
|   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Instruction *AddOp = nullptr, *SubOp = nullptr;
 | |
|   if ((TI->getOpcode() == Instruction::Sub &&
 | |
|        FI->getOpcode() == Instruction::Add) ||
 | |
|       (TI->getOpcode() == Instruction::FSub &&
 | |
|        FI->getOpcode() == Instruction::FAdd)) {
 | |
|     AddOp = FI;
 | |
|     SubOp = TI;
 | |
|   } else if ((FI->getOpcode() == Instruction::Sub &&
 | |
|               TI->getOpcode() == Instruction::Add) ||
 | |
|              (FI->getOpcode() == Instruction::FSub &&
 | |
|               TI->getOpcode() == Instruction::FAdd)) {
 | |
|     AddOp = TI;
 | |
|     SubOp = FI;
 | |
|   }
 | |
| 
 | |
|   if (AddOp) {
 | |
|     Value *OtherAddOp = nullptr;
 | |
|     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | |
|       OtherAddOp = AddOp->getOperand(1);
 | |
|     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | |
|       OtherAddOp = AddOp->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     if (OtherAddOp) {
 | |
|       // So at this point we know we have (Y -> OtherAddOp):
 | |
|       //        select C, (add X, Y), (sub X, Z)
 | |
|       Value *NegVal; // Compute -Z
 | |
|       if (SI.getType()->isFPOrFPVectorTy()) {
 | |
|         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
 | |
|         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
 | |
|           FastMathFlags Flags = AddOp->getFastMathFlags();
 | |
|           Flags &= SubOp->getFastMathFlags();
 | |
|           NegInst->setFastMathFlags(Flags);
 | |
|         }
 | |
|       } else {
 | |
|         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
 | |
|       }
 | |
| 
 | |
|       Value *NewTrueOp = OtherAddOp;
 | |
|       Value *NewFalseOp = NegVal;
 | |
|       if (AddOp != TI)
 | |
|         std::swap(NewTrueOp, NewFalseOp);
 | |
|       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
 | |
|                                            SI.getName() + ".p", &SI);
 | |
| 
 | |
|       if (SI.getType()->isFPOrFPVectorTy()) {
 | |
|         Instruction *RI =
 | |
|             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
 | |
| 
 | |
|         FastMathFlags Flags = AddOp->getFastMathFlags();
 | |
|         Flags &= SubOp->getFastMathFlags();
 | |
|         RI->setFastMathFlags(Flags);
 | |
|         return RI;
 | |
|       } else
 | |
|         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
 | |
|   Instruction *ExtInst;
 | |
|   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
 | |
|       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto ExtOpcode = ExtInst->getOpcode();
 | |
|   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
 | |
|     return nullptr;
 | |
| 
 | |
|   // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
 | |
|   Value *X = ExtInst->getOperand(0);
 | |
|   Type *SmallType = X->getType();
 | |
|   if (!SmallType->isIntOrIntVectorTy(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *C;
 | |
|   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
 | |
|       !match(Sel.getFalseValue(), m_Constant(C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the constant is the same after truncation to the smaller type and
 | |
|   // extension to the original type, we can narrow the select.
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   Type *SelType = Sel.getType();
 | |
|   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
 | |
|   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
 | |
|   if (ExtC == C) {
 | |
|     Value *TruncCVal = cast<Value>(TruncC);
 | |
|     if (ExtInst == Sel.getFalseValue())
 | |
|       std::swap(X, TruncCVal);
 | |
| 
 | |
|     // select Cond, (ext X), C --> ext(select Cond, X, C')
 | |
|     // select Cond, C, (ext X) --> ext(select Cond, C', X)
 | |
|     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
 | |
|     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
 | |
|   }
 | |
| 
 | |
|   // If one arm of the select is the extend of the condition, replace that arm
 | |
|   // with the extension of the appropriate known bool value.
 | |
|   if (Cond == X) {
 | |
|     if (ExtInst == Sel.getTrueValue()) {
 | |
|       // select X, (sext X), C --> select X, -1, C
 | |
|       // select X, (zext X), C --> select X,  1, C
 | |
|       Constant *One = ConstantInt::getTrue(SmallType);
 | |
|       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
 | |
|       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
 | |
|     } else {
 | |
|       // select X, C, (sext X) --> select X, C, 0
 | |
|       // select X, C, (zext X) --> select X, C, 0
 | |
|       Constant *Zero = ConstantInt::getNullValue(SelType);
 | |
|       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to transform a vector select with a constant condition vector into a
 | |
| /// shuffle for easier combining with other shuffles and insert/extract.
 | |
| static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Constant *CondC;
 | |
|   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned NumElts = CondVal->getType()->getVectorNumElements();
 | |
|   SmallVector<Constant *, 16> Mask;
 | |
|   Mask.reserve(NumElts);
 | |
|   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     Constant *Elt = CondC->getAggregateElement(i);
 | |
|     if (!Elt)
 | |
|       return nullptr;
 | |
| 
 | |
|     if (Elt->isOneValue()) {
 | |
|       // If the select condition element is true, choose from the 1st vector.
 | |
|       Mask.push_back(ConstantInt::get(Int32Ty, i));
 | |
|     } else if (Elt->isNullValue()) {
 | |
|       // If the select condition element is false, choose from the 2nd vector.
 | |
|       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
 | |
|     } else if (isa<UndefValue>(Elt)) {
 | |
|       // Undef in a select condition (choose one of the operands) does not mean
 | |
|       // the same thing as undef in a shuffle mask (any value is acceptable), so
 | |
|       // give up.
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       // Bail out on a constant expression.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
 | |
|                                ConstantVector::get(Mask));
 | |
| }
 | |
| 
 | |
| /// Reuse bitcasted operands between a compare and select:
 | |
| /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
 | |
| /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
 | |
| static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
 | |
|                                           InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   Value *TVal = Sel.getTrueValue();
 | |
|   Value *FVal = Sel.getFalseValue();
 | |
| 
 | |
|   CmpInst::Predicate Pred;
 | |
|   Value *A, *B;
 | |
|   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The select condition is a compare instruction. If the select's true/false
 | |
|   // values are already the same as the compare operands, there's nothing to do.
 | |
|   if (TVal == A || TVal == B || FVal == A || FVal == B)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *C, *D;
 | |
|   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
 | |
|   Value *TSrc, *FSrc;
 | |
|   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
 | |
|       !match(FVal, m_BitCast(m_Value(FSrc))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the select true/false values are *different bitcasts* of the same source
 | |
|   // operands, make the select operands the same as the compare operands and
 | |
|   // cast the result. This is the canonical select form for min/max.
 | |
|   Value *NewSel;
 | |
|   if (TSrc == C && FSrc == D) {
 | |
|     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
 | |
|     // bitcast (select (cmp A, B), A, B)
 | |
|     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
 | |
|   } else if (TSrc == D && FSrc == C) {
 | |
|     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
 | |
|     // bitcast (select (cmp A, B), B, A)
 | |
|     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
|   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
 | |
| }
 | |
| 
 | |
| /// Try to eliminate select instructions that test the returned flag of cmpxchg
 | |
| /// instructions.
 | |
| ///
 | |
| /// If a select instruction tests the returned flag of a cmpxchg instruction and
 | |
| /// selects between the returned value of the cmpxchg instruction its compare
 | |
| /// operand, the result of the select will always be equal to its false value.
 | |
| /// For example:
 | |
| ///
 | |
| ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
 | |
| ///   %1 = extractvalue { i64, i1 } %0, 1
 | |
| ///   %2 = extractvalue { i64, i1 } %0, 0
 | |
| ///   %3 = select i1 %1, i64 %compare, i64 %2
 | |
| ///   ret i64 %3
 | |
| ///
 | |
| /// The returned value of the cmpxchg instruction (%2) is the original value
 | |
| /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
 | |
| /// must have been equal to %compare. Thus, the result of the select is always
 | |
| /// equal to %2, and the code can be simplified to:
 | |
| ///
 | |
| ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
 | |
| ///   %1 = extractvalue { i64, i1 } %0, 0
 | |
| ///   ret i64 %1
 | |
| ///
 | |
| static Instruction *foldSelectCmpXchg(SelectInst &SI) {
 | |
|   // A helper that determines if V is an extractvalue instruction whose
 | |
|   // aggregate operand is a cmpxchg instruction and whose single index is equal
 | |
|   // to I. If such conditions are true, the helper returns the cmpxchg
 | |
|   // instruction; otherwise, a nullptr is returned.
 | |
|   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
 | |
|     auto *Extract = dyn_cast<ExtractValueInst>(V);
 | |
|     if (!Extract)
 | |
|       return nullptr;
 | |
|     if (Extract->getIndices()[0] != I)
 | |
|       return nullptr;
 | |
|     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
 | |
|   };
 | |
| 
 | |
|   // If the select has a single user, and this user is a select instruction that
 | |
|   // we can simplify, skip the cmpxchg simplification for now.
 | |
|   if (SI.hasOneUse())
 | |
|     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
 | |
|       if (Select->getCondition() == SI.getCondition())
 | |
|         if (Select->getFalseValue() == SI.getTrueValue() ||
 | |
|             Select->getTrueValue() == SI.getFalseValue())
 | |
|           return nullptr;
 | |
| 
 | |
|   // Ensure the select condition is the returned flag of a cmpxchg instruction.
 | |
|   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
 | |
|   if (!CmpXchg)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check the true value case: The true value of the select is the returned
 | |
|   // value of the same cmpxchg used by the condition, and the false value is the
 | |
|   // cmpxchg instruction's compare operand.
 | |
|   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
 | |
|     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
 | |
|       SI.setTrueValue(SI.getFalseValue());
 | |
|       return &SI;
 | |
|     }
 | |
| 
 | |
|   // Check the false value case: The false value of the select is the returned
 | |
|   // value of the same cmpxchg used by the condition, and the true value is the
 | |
|   // cmpxchg instruction's compare operand.
 | |
|   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
 | |
|     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
 | |
|       SI.setTrueValue(SI.getFalseValue());
 | |
|       return &SI;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
|   Type *SelType = SI.getType();
 | |
| 
 | |
|   // FIXME: Remove this workaround when freeze related patches are done.
 | |
|   // For select with undef operand which feeds into an equality comparison,
 | |
|   // don't simplify it so loop unswitch can know the equality comparison
 | |
|   // may have an undef operand. This is a workaround for PR31652 caused by
 | |
|   // descrepancy about branch on undef between LoopUnswitch and GVN.
 | |
|   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
 | |
|     if (llvm::any_of(SI.users(), [&](User *U) {
 | |
|           ICmpInst *CI = dyn_cast<ICmpInst>(U);
 | |
|           if (CI && CI->isEquality())
 | |
|             return true;
 | |
|           return false;
 | |
|         })) {
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
 | |
|                                     SQ.getWithInstruction(&SI)))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Instruction *I = canonicalizeSelectToShuffle(SI))
 | |
|     return I;
 | |
| 
 | |
|   // Canonicalize a one-use integer compare with a non-canonical predicate by
 | |
|   // inverting the predicate and swapping the select operands. This matches a
 | |
|   // compare canonicalization for conditional branches.
 | |
|   // TODO: Should we do the same for FP compares?
 | |
|   CmpInst::Predicate Pred;
 | |
|   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
 | |
|       !isCanonicalPredicate(Pred)) {
 | |
|     // Swap true/false values and condition.
 | |
|     CmpInst *Cond = cast<CmpInst>(CondVal);
 | |
|     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
 | |
|     SI.setOperand(1, FalseVal);
 | |
|     SI.setOperand(2, TrueVal);
 | |
|     SI.swapProfMetadata();
 | |
|     Worklist.Add(Cond);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   if (SelType->isIntOrIntVectorTy(1) &&
 | |
|       TrueVal->getType() == CondVal->getType()) {
 | |
|     if (match(TrueVal, m_One())) {
 | |
|       // Change: A = select B, true, C --> A = or B, C
 | |
|       return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|     }
 | |
|     if (match(TrueVal, m_Zero())) {
 | |
|       // Change: A = select B, false, C --> A = and !B, C
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return BinaryOperator::CreateAnd(NotCond, FalseVal);
 | |
|     }
 | |
|     if (match(FalseVal, m_Zero())) {
 | |
|       // Change: A = select B, C, false --> A = and B, C
 | |
|       return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
|     }
 | |
|     if (match(FalseVal, m_One())) {
 | |
|       // Change: A = select B, C, true --> A = or !B, C
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return BinaryOperator::CreateOr(NotCond, TrueVal);
 | |
|     }
 | |
| 
 | |
|     // select a, a, b  -> a | b
 | |
|     // select a, b, a  -> a & b
 | |
|     if (CondVal == TrueVal)
 | |
|       return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|     if (CondVal == FalseVal)
 | |
|       return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
| 
 | |
|     // select a, ~a, b -> (~a) & b
 | |
|     // select a, b, ~a -> (~a) | b
 | |
|     if (match(TrueVal, m_Not(m_Specific(CondVal))))
 | |
|       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
 | |
|     if (match(FalseVal, m_Not(m_Specific(CondVal))))
 | |
|       return BinaryOperator::CreateOr(TrueVal, FalseVal);
 | |
|   }
 | |
| 
 | |
|   // Selecting between two integer or vector splat integer constants?
 | |
|   //
 | |
|   // Note that we don't handle a scalar select of vectors:
 | |
|   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
 | |
|   // because that may need 3 instructions to splat the condition value:
 | |
|   // extend, insertelement, shufflevector.
 | |
|   if (SelType->isIntOrIntVectorTy() &&
 | |
|       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
 | |
|     // select C, 1, 0 -> zext C to int
 | |
|     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
 | |
|       return new ZExtInst(CondVal, SelType);
 | |
| 
 | |
|     // select C, -1, 0 -> sext C to int
 | |
|     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
 | |
|       return new SExtInst(CondVal, SelType);
 | |
| 
 | |
|     // select C, 0, 1 -> zext !C to int
 | |
|     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return new ZExtInst(NotCond, SelType);
 | |
|     }
 | |
| 
 | |
|     // select C, 0, -1 -> sext !C to int
 | |
|     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return new SExtInst(NotCond, SelType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
 | |
|     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
 | |
|       // Transform (X == Y) ? X : Y  -> Y
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|         return replaceInstUsesWith(SI, FalseVal);
 | |
|       }
 | |
|       // Transform (X une Y) ? X : Y  -> X
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|         return replaceInstUsesWith(SI, TrueVal);
 | |
|       }
 | |
| 
 | |
|       // Canonicalize to use ordered comparisons by swapping the select
 | |
|       // operands.
 | |
|       //
 | |
|       // e.g.
 | |
|       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
 | |
|       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
 | |
|         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
 | |
|         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|         Builder.setFastMathFlags(FCI->getFastMathFlags());
 | |
|         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
 | |
|                                             FCI->getName() + ".inv");
 | |
| 
 | |
|         return SelectInst::Create(NewCond, FalseVal, TrueVal,
 | |
|                                   SI.getName() + ".p");
 | |
|       }
 | |
| 
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
|     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
 | |
|       // Transform (X == Y) ? Y : X  -> X
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|           return replaceInstUsesWith(SI, FalseVal);
 | |
|       }
 | |
|       // Transform (X une Y) ? Y : X  -> Y
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|           return replaceInstUsesWith(SI, TrueVal);
 | |
|       }
 | |
| 
 | |
|       // Canonicalize to use ordered comparisons by swapping the select
 | |
|       // operands.
 | |
|       //
 | |
|       // e.g.
 | |
|       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
 | |
|       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
 | |
|         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
 | |
|         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|         Builder.setFastMathFlags(FCI->getFastMathFlags());
 | |
|         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
 | |
|                                             FCI->getName() + ".inv");
 | |
| 
 | |
|         return SelectInst::Create(NewCond, FalseVal, TrueVal,
 | |
|                                   SI.getName() + ".p");
 | |
|       }
 | |
| 
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
|     }
 | |
|     // NOTE: if we wanted to, this is where to detect ABS
 | |
|   }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
 | |
|     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
 | |
|       return Result;
 | |
| 
 | |
|   if (Instruction *Add = foldAddSubSelect(SI, Builder))
 | |
|     return Add;
 | |
| 
 | |
|   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | |
|   auto *TI = dyn_cast<Instruction>(TrueVal);
 | |
|   auto *FI = dyn_cast<Instruction>(FalseVal);
 | |
|   if (TI && FI && TI->getOpcode() == FI->getOpcode())
 | |
|     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
 | |
|       return IV;
 | |
| 
 | |
|   if (Instruction *I = foldSelectExtConst(SI))
 | |
|     return I;
 | |
| 
 | |
|   // See if we can fold the select into one of our operands.
 | |
|   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
 | |
|     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
 | |
|       return FoldI;
 | |
| 
 | |
|     Value *LHS, *RHS, *LHS2, *RHS2;
 | |
|     Instruction::CastOps CastOp;
 | |
|     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
 | |
|     auto SPF = SPR.Flavor;
 | |
| 
 | |
|     if (SelectPatternResult::isMinOrMax(SPF)) {
 | |
|       // Canonicalize so that
 | |
|       // - type casts are outside select patterns.
 | |
|       // - float clamp is transformed to min/max pattern
 | |
| 
 | |
|       bool IsCastNeeded = LHS->getType() != SelType;
 | |
|       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
 | |
|       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
 | |
|       if (IsCastNeeded ||
 | |
|           (LHS->getType()->isFPOrFPVectorTy() &&
 | |
|            ((CmpLHS != LHS && CmpLHS != RHS) ||
 | |
|             (CmpRHS != LHS && CmpRHS != RHS)))) {
 | |
|         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
 | |
| 
 | |
|         Value *Cmp;
 | |
|         if (CmpInst::isIntPredicate(Pred)) {
 | |
|           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
 | |
|         } else {
 | |
|           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
 | |
|           Builder.setFastMathFlags(FMF);
 | |
|           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
 | |
|         }
 | |
| 
 | |
|         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
 | |
|         if (!IsCastNeeded)
 | |
|           return replaceInstUsesWith(SI, NewSI);
 | |
| 
 | |
|         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
 | |
|         return replaceInstUsesWith(SI, NewCast);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SPF) {
 | |
|       // MAX(MAX(a, b), a) -> MAX(a, b)
 | |
|       // MIN(MIN(a, b), a) -> MIN(a, b)
 | |
|       // MAX(MIN(a, b), a) -> a
 | |
|       // MIN(MAX(a, b), a) -> a
 | |
|       // ABS(ABS(a)) -> ABS(a)
 | |
|       // NABS(NABS(a)) -> NABS(a)
 | |
|       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
 | |
|         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
 | |
|                                           SI, SPF, RHS))
 | |
|           return R;
 | |
|       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
 | |
|         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
 | |
|                                           SI, SPF, LHS))
 | |
|           return R;
 | |
|     }
 | |
| 
 | |
|     // MAX(~a, ~b) -> ~MIN(a, b)
 | |
|     if ((SPF == SPF_SMAX || SPF == SPF_UMAX) &&
 | |
|         IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
 | |
|         IsFreeToInvert(RHS, RHS->hasNUses(2))) {
 | |
|       // For this transform to be profitable, we need to eliminate at least two
 | |
|       // 'not' instructions if we're going to add one 'not' instruction.
 | |
|       int NumberOfNots =
 | |
|           (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) +
 | |
|           (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) +
 | |
|           (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
 | |
| 
 | |
|       if (NumberOfNots >= 2) {
 | |
|         Value *NewLHS = Builder.CreateNot(LHS);
 | |
|         Value *NewRHS = Builder.CreateNot(RHS);
 | |
|         Value *NewCmp = SPF == SPF_SMAX ? Builder.CreateICmpSLT(NewLHS, NewRHS)
 | |
|                                         : Builder.CreateICmpULT(NewLHS, NewRHS);
 | |
|         Value *NewSI =
 | |
|             Builder.CreateNot(Builder.CreateSelect(NewCmp, NewLHS, NewRHS));
 | |
|         return replaceInstUsesWith(SI, NewSI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO.
 | |
|     // ABS(-X) -> ABS(X)
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the select into a phi node if the condition is a select.
 | |
|   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
 | |
|     // The true/false values have to be live in the PHI predecessor's blocks.
 | |
|     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
 | |
|         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
 | |
|       if (Instruction *NV = foldOpIntoPhi(SI, PN))
 | |
|         return NV;
 | |
| 
 | |
|   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
 | |
|     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
 | |
|       // select(C, select(C, a, b), c) -> select(C, a, c)
 | |
|       if (TrueSI->getCondition() == CondVal) {
 | |
|         if (SI.getTrueValue() == TrueSI->getTrueValue())
 | |
|           return nullptr;
 | |
|         SI.setOperand(1, TrueSI->getTrueValue());
 | |
|         return &SI;
 | |
|       }
 | |
|       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
 | |
|       // We choose this as normal form to enable folding on the And and shortening
 | |
|       // paths for the values (this helps GetUnderlyingObjects() for example).
 | |
|       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
 | |
|         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
 | |
|         SI.setOperand(0, And);
 | |
|         SI.setOperand(1, TrueSI->getTrueValue());
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
 | |
|     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
 | |
|       // select(C, a, select(C, b, c)) -> select(C, a, c)
 | |
|       if (FalseSI->getCondition() == CondVal) {
 | |
|         if (SI.getFalseValue() == FalseSI->getFalseValue())
 | |
|           return nullptr;
 | |
|         SI.setOperand(2, FalseSI->getFalseValue());
 | |
|         return &SI;
 | |
|       }
 | |
|       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
 | |
|       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
 | |
|         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
 | |
|         SI.setOperand(0, Or);
 | |
|         SI.setOperand(2, FalseSI->getFalseValue());
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
 | |
|     // The select might be preventing a division by 0.
 | |
|     switch (BO->getOpcode()) {
 | |
|     default:
 | |
|       return true;
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Try to simplify a binop sandwiched between 2 selects with the same
 | |
|   // condition.
 | |
|   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
 | |
|   BinaryOperator *TrueBO;
 | |
|   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
 | |
|       canMergeSelectThroughBinop(TrueBO)) {
 | |
|     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
 | |
|       if (TrueBOSI->getCondition() == CondVal) {
 | |
|         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
 | |
|         Worklist.Add(TrueBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
 | |
|       if (TrueBOSI->getCondition() == CondVal) {
 | |
|         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
 | |
|         Worklist.Add(TrueBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
 | |
|   BinaryOperator *FalseBO;
 | |
|   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
 | |
|       canMergeSelectThroughBinop(FalseBO)) {
 | |
|     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
 | |
|       if (FalseBOSI->getCondition() == CondVal) {
 | |
|         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
 | |
|         Worklist.Add(FalseBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
 | |
|       if (FalseBOSI->getCondition() == CondVal) {
 | |
|         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
 | |
|         Worklist.Add(FalseBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator::isNot(CondVal)) {
 | |
|     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
 | |
|     SI.setOperand(1, FalseVal);
 | |
|     SI.setOperand(2, TrueVal);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
 | |
|     unsigned VWidth = VecTy->getNumElements();
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
 | |
|       if (V != &SI)
 | |
|         return replaceInstUsesWith(SI, V);
 | |
|       return &SI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we can determine the result of this select based on a dominating
 | |
|   // condition.
 | |
|   BasicBlock *Parent = SI.getParent();
 | |
|   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
 | |
|     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
 | |
|     if (PBI && PBI->isConditional() &&
 | |
|         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
 | |
|         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
 | |
|       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
 | |
|       Optional<bool> Implication = isImpliedCondition(
 | |
|           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
 | |
|       if (Implication) {
 | |
|         Value *V = *Implication ? TrueVal : FalseVal;
 | |
|         return replaceInstUsesWith(SI, V);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we can compute the condition, there's no need for a select.
 | |
|   // Like the above fold, we are attempting to reduce compile-time cost by
 | |
|   // putting this fold here with limitations rather than in InstSimplify.
 | |
|   // The motivation for this call into value tracking is to take advantage of
 | |
|   // the assumption cache, so make sure that is populated.
 | |
|   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
 | |
|     KnownBits Known(1);
 | |
|     computeKnownBits(CondVal, Known, 0, &SI);
 | |
|     if (Known.One.isOneValue())
 | |
|       return replaceInstUsesWith(SI, TrueVal);
 | |
|     if (Known.Zero.isOneValue())
 | |
|       return replaceInstUsesWith(SI, FalseVal);
 | |
|   }
 | |
| 
 | |
|   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
 | |
|     return BitCastSel;
 | |
| 
 | |
|   // Simplify selects that test the returned flag of cmpxchg instructions.
 | |
|   if (Instruction *Select = foldSelectCmpXchg(SI))
 | |
|     return Select;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 |