94b2861243
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
324 lines
11 KiB
C
324 lines
11 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*
|
|
* The DSS routines are based on patches supplied by
|
|
* Steven Schoch <schoch@sheba.arc.nasa.gov>. */
|
|
|
|
#include <openssl/dsa.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
|
|
|
|
static int dsa_cb(int p, int n, BN_GENCB *arg);
|
|
|
|
/* The following values are taken from the updated Appendix 5 to FIPS PUB 186
|
|
* and also appear in Appendix 5 to FIPS PUB 186-1. */
|
|
|
|
static const uint8_t seed[20] = {
|
|
0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
|
|
0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
|
|
};
|
|
|
|
static const uint8_t fips_p[] = {
|
|
0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
|
|
0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
|
|
0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
|
|
0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
|
|
0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
|
|
0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
|
|
};
|
|
|
|
static const uint8_t fips_q[] = {
|
|
0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
|
|
0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
|
|
};
|
|
|
|
static const uint8_t fips_g[] = {
|
|
0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
|
|
0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
|
|
0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
|
|
0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
|
|
0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
|
|
0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
|
|
};
|
|
|
|
static const uint8_t fips_x[] = {
|
|
0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
|
|
0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
|
|
};
|
|
|
|
static const uint8_t fips_y[] = {
|
|
0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
|
|
0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
|
|
0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
|
|
0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
|
|
0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
|
|
0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
|
|
};
|
|
|
|
static const uint8_t fips_digest[] = {
|
|
0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
|
|
0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
|
|
};
|
|
|
|
/* fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1. */
|
|
static const uint8_t fips_sig[] = {
|
|
0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
|
|
0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
|
|
0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
|
|
0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
|
|
0xdc, 0xd8, 0xc8,
|
|
};
|
|
|
|
/* fips_sig_negative is fips_sig with r encoded as a negative number. */
|
|
static const uint8_t fips_sig_negative[] = {
|
|
0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
|
|
0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
|
|
0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
|
|
0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
|
|
0xd8, 0xc8,
|
|
};
|
|
|
|
/* fip_sig_extra is fips_sig with trailing data. */
|
|
static const uint8_t fips_sig_extra[] = {
|
|
0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
|
|
0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
|
|
0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
|
|
0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
|
|
0xdc, 0xd8, 0xc8, 0x00,
|
|
};
|
|
|
|
/* fips_sig_lengths is fips_sig with a non-minimally encoded length. */
|
|
static const uint8_t fips_sig_bad_length[] = {
|
|
0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
|
|
0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
|
|
0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
|
|
0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
|
|
0xb6, 0xdc, 0xd8, 0xc8, 0x00,
|
|
};
|
|
|
|
/* fips_sig_bad_r is fips_sig with a bad r value. */
|
|
static const uint8_t fips_sig_bad_r[] = {
|
|
0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
|
|
0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
|
|
0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
|
|
0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
|
|
0xdc, 0xd8, 0xc8,
|
|
};
|
|
|
|
static DSA *get_fips_dsa(void) {
|
|
DSA *dsa = DSA_new();
|
|
if (!dsa) {
|
|
return NULL;
|
|
}
|
|
dsa->p = BN_bin2bn(fips_p, sizeof(fips_p), NULL);
|
|
dsa->q = BN_bin2bn(fips_q, sizeof(fips_q), NULL);
|
|
dsa->g = BN_bin2bn(fips_g, sizeof(fips_g), NULL);
|
|
dsa->pub_key = BN_bin2bn(fips_y, sizeof(fips_y), NULL);
|
|
dsa->priv_key = BN_bin2bn(fips_x, sizeof(fips_x), NULL);
|
|
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL ||
|
|
dsa->pub_key == NULL || dsa->priv_key == NULL) {
|
|
DSA_free(dsa);
|
|
return NULL;
|
|
}
|
|
return dsa;
|
|
}
|
|
|
|
static int test_generate(FILE *out) {
|
|
BN_GENCB cb;
|
|
DSA *dsa = NULL;
|
|
int counter, ok = 0, i, j;
|
|
uint8_t buf[256];
|
|
unsigned long h;
|
|
uint8_t sig[256];
|
|
unsigned int siglen;
|
|
|
|
fprintf(out, "test generation of DSA parameters\n");
|
|
|
|
BN_GENCB_set(&cb, dsa_cb, out);
|
|
dsa = DSA_new();
|
|
if (dsa == NULL ||
|
|
!DSA_generate_parameters_ex(dsa, 512, seed, 20, &counter, &h, &cb)) {
|
|
goto end;
|
|
}
|
|
|
|
fprintf(out, "seed\n");
|
|
for (i = 0; i < 20; i += 4) {
|
|
fprintf(out, "%02X%02X%02X%02X ", seed[i], seed[i + 1], seed[i + 2],
|
|
seed[i + 3]);
|
|
}
|
|
fprintf(out, "\ncounter=%d h=%ld\n", counter, h);
|
|
|
|
if (counter != 105) {
|
|
fprintf(stderr, "counter should be 105\n");
|
|
goto end;
|
|
}
|
|
if (h != 2) {
|
|
fprintf(stderr, "h should be 2\n");
|
|
goto end;
|
|
}
|
|
|
|
i = BN_bn2bin(dsa->q, buf);
|
|
j = sizeof(fips_q);
|
|
if (i != j || memcmp(buf, fips_q, i) != 0) {
|
|
fprintf(stderr, "q value is wrong\n");
|
|
goto end;
|
|
}
|
|
|
|
i = BN_bn2bin(dsa->p, buf);
|
|
j = sizeof(fips_p);
|
|
if (i != j || memcmp(buf, fips_p, i) != 0) {
|
|
fprintf(stderr, "p value is wrong\n");
|
|
goto end;
|
|
}
|
|
|
|
i = BN_bn2bin(dsa->g, buf);
|
|
j = sizeof(fips_g);
|
|
if (i != j || memcmp(buf, fips_g, i) != 0) {
|
|
fprintf(stderr, "g value is wrong\n");
|
|
goto end;
|
|
}
|
|
|
|
if (!DSA_generate_key(dsa) ||
|
|
!DSA_sign(0, fips_digest, sizeof(fips_digest), sig, &siglen, dsa)) {
|
|
goto end;
|
|
}
|
|
if (DSA_verify(0, fips_digest, sizeof(fips_digest), sig, siglen, dsa) == 1) {
|
|
ok = 1;
|
|
} else {
|
|
fprintf(stderr, "verification failure\n");
|
|
}
|
|
|
|
end:
|
|
DSA_free(dsa);
|
|
|
|
return ok;
|
|
}
|
|
|
|
static int test_verify(const uint8_t *sig, size_t sig_len, int expect) {
|
|
int ok = 0;
|
|
DSA *dsa = get_fips_dsa();
|
|
if (dsa == NULL) {
|
|
goto end;
|
|
}
|
|
|
|
int ret = DSA_verify(0, fips_digest, sizeof(fips_digest), sig, sig_len, dsa);
|
|
if (ret != expect) {
|
|
fprintf(stderr, "DSA_verify returned %d, want %d\n", ret, expect);
|
|
goto end;
|
|
}
|
|
ok = 1;
|
|
/* Clear any errorrs from a test with expected failure. */
|
|
ERR_clear_error();
|
|
|
|
end:
|
|
DSA_free(dsa);
|
|
|
|
return ok;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
CRYPTO_library_init();
|
|
|
|
if (!test_generate(stdout) ||
|
|
!test_verify(fips_sig, sizeof(fips_sig), 1) ||
|
|
!test_verify(fips_sig_negative, sizeof(fips_sig_negative), -1) ||
|
|
!test_verify(fips_sig_extra, sizeof(fips_sig_extra), -1) ||
|
|
!test_verify(fips_sig_bad_length, sizeof(fips_sig_bad_length), -1) ||
|
|
!test_verify(fips_sig_bad_r, sizeof(fips_sig_bad_r), 0)) {
|
|
ERR_print_errors_fp(stderr);
|
|
return 1;
|
|
}
|
|
|
|
printf("PASS\n");
|
|
return 0;
|
|
}
|
|
|
|
static int dsa_cb(int p, int n, BN_GENCB *arg) {
|
|
char c = '*';
|
|
static int ok = 0, num = 0;
|
|
|
|
switch (p) {
|
|
case 0:
|
|
c = '.';
|
|
num++;
|
|
break;
|
|
case 1:
|
|
c = '+';
|
|
break;
|
|
case 2:
|
|
c = '*';
|
|
ok++;
|
|
break;
|
|
case 3:
|
|
c = '\n';
|
|
}
|
|
|
|
fputc(c, arg->arg);
|
|
fflush(arg->arg);
|
|
|
|
if (!ok && p == 0 && num > 1) {
|
|
fprintf(stderr, "error in dsatest\n");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|