Xamarin Public Jenkins f3e3aab35a Imported Upstream version 4.3.2.467
Former-commit-id: 9c2cb47f45fa221e661ab616387c9cda183f283d
2016-02-22 11:00:01 -05:00

1227 lines
33 KiB
C

/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
* Copyright (c) 1999-2001 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
/* Boehm, July 31, 1995 5:02 pm PDT */
#include <stdio.h>
#include <limits.h>
#ifndef _WIN32_WCE
#include <signal.h>
#endif
#define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */
#include "private/gc_pmark.h"
#ifdef GC_SOLARIS_THREADS
# include <sys/syscall.h>
#endif
#if defined(MSWIN32) || defined(MSWINCE)
# define WIN32_LEAN_AND_MEAN
# define NOSERVICE
# include <windows.h>
# include <tchar.h>
#endif
# ifdef THREADS
# ifdef PCR
# include "il/PCR_IL.h"
PCR_Th_ML GC_allocate_ml;
# else
# ifdef SRC_M3
/* Critical section counter is defined in the M3 runtime */
/* That's all we use. */
# else
# ifdef GC_SOLARIS_THREADS
mutex_t GC_allocate_ml; /* Implicitly initialized. */
# else
# if defined(GC_WIN32_THREADS)
# if defined(GC_PTHREADS)
pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
# elif defined(GC_DLL)
__declspec(dllexport) CRITICAL_SECTION GC_allocate_ml;
# else
CRITICAL_SECTION GC_allocate_ml;
# endif
# else
# if defined(GC_PTHREADS) && !defined(GC_SOLARIS_THREADS)
# if defined(USE_SPIN_LOCK)
pthread_t GC_lock_holder = NO_THREAD;
# else
pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
pthread_t GC_lock_holder = NO_THREAD;
/* Used only for assertions, and to prevent */
/* recursive reentry in the system call wrapper. */
# endif
# elif defined(SN_TARGET_PS3)
#include <pthread.h>
pthread_mutex_t GC_allocate_ml;
# else
--> declare allocator lock here
# endif
# endif
# endif
# endif
# endif
# endif
#if defined(NOSYS) || defined(ECOS)
#undef STACKBASE
#endif
/* Dont unnecessarily call GC_register_main_static_data() in case */
/* dyn_load.c isn't linked in. */
#ifdef DYNAMIC_LOADING
# define GC_REGISTER_MAIN_STATIC_DATA() GC_register_main_static_data()
#elif defined(GC_DONT_REGISTER_MAIN_STATIC_DATA)
# define GC_REGISTER_MAIN_STATIC_DATA() FALSE
#else
# define GC_REGISTER_MAIN_STATIC_DATA() TRUE
#endif
GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */;
GC_bool GC_debugging_started = FALSE;
/* defined here so we don't have to load debug_malloc.o */
void (*GC_check_heap) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_print_all_smashed) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_start_call_back) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
ptr_t GC_stackbottom = 0;
#ifdef IA64
ptr_t GC_register_stackbottom = 0;
#endif
GC_bool GC_dont_gc = 0;
GC_bool GC_dont_precollect = 0;
GC_bool GC_quiet = 0;
GC_bool GC_print_stats = 0;
GC_bool GC_print_back_height = 0;
#ifndef NO_DEBUGGING
GC_bool GC_dump_regularly = 0; /* Generate regular debugging dumps. */
#endif
#ifdef KEEP_BACK_PTRS
long GC_backtraces = 0; /* Number of random backtraces to */
/* generate for each GC. */
#endif
#ifdef FIND_LEAK
int GC_find_leak = 1;
#else
int GC_find_leak = 0;
#endif
#ifdef ALL_INTERIOR_POINTERS
int GC_all_interior_pointers = 1;
#else
int GC_all_interior_pointers = 0;
#endif
long GC_large_alloc_warn_interval = 5;
/* Interval between unsuppressed warnings. */
long GC_large_alloc_warn_suppressed = 0;
/* Number of warnings suppressed so far. */
/*ARGSUSED*/
GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested))
{
return(0);
}
GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn;
extern signed_word GC_mem_found;
void * GC_project2(arg1, arg2)
void *arg1;
void *arg2;
{
return arg2;
}
# ifdef MERGE_SIZES
/* Set things up so that GC_size_map[i] >= words(i), */
/* but not too much bigger */
/* and so that size_map contains relatively few distinct entries */
/* This is stolen from Russ Atkinson's Cedar quantization */
/* alogrithm (but we precompute it). */
void GC_init_size_map()
{
register unsigned i;
/* Map size 0 to something bigger. */
/* This avoids problems at lower levels. */
/* One word objects don't have to be 2 word aligned, */
/* unless we're using mark bytes. */
for (i = 0; i < sizeof(word); i++) {
GC_size_map[i] = MIN_WORDS;
}
# if MIN_WORDS > 1
GC_size_map[sizeof(word)] = MIN_WORDS;
# else
GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word));
# endif
for (i = sizeof(word) + 1; i <= 8 * sizeof(word); i++) {
GC_size_map[i] = ALIGNED_WORDS(i);
}
for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) {
GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
}
# ifdef GC_GCJ_SUPPORT
/* Make all sizes up to 32 words predictable, so that a */
/* compiler can statically perform the same computation, */
/* or at least a computation that results in similar size */
/* classes. */
for (i = 16*sizeof(word) + 1; i <= 32 * sizeof(word); i++) {
GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 3) & (~3);
}
# endif
/* We leave the rest of the array to be filled in on demand. */
}
/* Fill in additional entries in GC_size_map, including the ith one */
/* We assume the ith entry is currently 0. */
/* Note that a filled in section of the array ending at n always */
/* has length at least n/4. */
void GC_extend_size_map(i)
word i;
{
word orig_word_sz = ROUNDED_UP_WORDS(i);
word word_sz = orig_word_sz;
register word byte_sz = WORDS_TO_BYTES(word_sz);
/* The size we try to preserve. */
/* Close to to i, unless this would */
/* introduce too many distinct sizes. */
word smaller_than_i = byte_sz - (byte_sz >> 3);
word much_smaller_than_i = byte_sz - (byte_sz >> 2);
register word low_limit; /* The lowest indexed entry we */
/* initialize. */
register word j;
if (GC_size_map[smaller_than_i] == 0) {
low_limit = much_smaller_than_i;
while (GC_size_map[low_limit] != 0) low_limit++;
} else {
low_limit = smaller_than_i + 1;
while (GC_size_map[low_limit] != 0) low_limit++;
word_sz = ROUNDED_UP_WORDS(low_limit);
word_sz += word_sz >> 3;
if (word_sz < orig_word_sz) word_sz = orig_word_sz;
}
# ifdef ALIGN_DOUBLE
word_sz += 1;
word_sz &= ~1;
# endif
if (word_sz > MAXOBJSZ) {
word_sz = MAXOBJSZ;
}
/* If we can fit the same number of larger objects in a block, */
/* do so. */
{
size_t number_of_objs = BODY_SZ/word_sz;
word_sz = BODY_SZ/number_of_objs;
# ifdef ALIGN_DOUBLE
word_sz &= ~1;
# endif
}
byte_sz = WORDS_TO_BYTES(word_sz);
if (GC_all_interior_pointers) {
/* We need one extra byte; don't fill in GC_size_map[byte_sz] */
byte_sz -= EXTRA_BYTES;
}
for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz;
}
# endif
/*
* The following is a gross hack to deal with a problem that can occur
* on machines that are sloppy about stack frame sizes, notably SPARC.
* Bogus pointers may be written to the stack and not cleared for
* a LONG time, because they always fall into holes in stack frames
* that are not written. We partially address this by clearing
* sections of the stack whenever we get control.
*/
word GC_stack_last_cleared = 0; /* GC_no when we last did this */
# ifdef THREADS
# define BIG_CLEAR_SIZE 2048 /* Clear this much now and then. */
# define SMALL_CLEAR_SIZE 256 /* Clear this much every time. */
# endif
# define CLEAR_SIZE 213 /* Granularity for GC_clear_stack_inner */
# define DEGRADE_RATE 50
word GC_min_sp; /* Coolest stack pointer value from which we've */
/* already cleared the stack. */
word GC_high_water;
/* "hottest" stack pointer value we have seen */
/* recently. Degrades over time. */
word GC_words_allocd_at_reset;
#if defined(ASM_CLEAR_CODE)
extern ptr_t GC_clear_stack_inner();
#else
/* Clear the stack up to about limit. Return arg. */
/*ARGSUSED*/
ptr_t GC_clear_stack_inner(arg, limit)
ptr_t arg;
word limit;
{
word dummy[CLEAR_SIZE];
BZERO(dummy, CLEAR_SIZE*sizeof(word));
if ((word)(dummy) COOLER_THAN limit) {
(void) GC_clear_stack_inner(arg, limit);
}
/* Make sure the recursive call is not a tail call, and the bzero */
/* call is not recognized as dead code. */
GC_noop1((word)dummy);
return(arg);
}
#endif
/* Clear some of the inaccessible part of the stack. Returns its */
/* argument, so it can be used in a tail call position, hence clearing */
/* another frame. */
ptr_t GC_clear_stack(arg)
ptr_t arg;
{
register word sp = (word)GC_approx_sp(); /* Hotter than actual sp */
# ifdef THREADS
word dummy[SMALL_CLEAR_SIZE];
static unsigned random_no = 0;
/* Should be more random than it is ... */
/* Used to occasionally clear a bigger */
/* chunk. */
# endif
register word limit;
# define SLOP 400
/* Extra bytes we clear every time. This clears our own */
/* activation record, and should cause more frequent */
/* clearing near the cold end of the stack, a good thing. */
# define GC_SLOP 4000
/* We make GC_high_water this much hotter than we really saw */
/* saw it, to cover for GC noise etc. above our current frame. */
# define CLEAR_THRESHOLD 100000
/* We restart the clearing process after this many bytes of */
/* allocation. Otherwise very heavily recursive programs */
/* with sparse stacks may result in heaps that grow almost */
/* without bounds. As the heap gets larger, collection */
/* frequency decreases, thus clearing frequency would decrease, */
/* thus more junk remains accessible, thus the heap gets */
/* larger ... */
# ifdef THREADS
if (++random_no % 13 == 0) {
limit = sp;
MAKE_HOTTER(limit, BIG_CLEAR_SIZE*sizeof(word));
limit &= ~0xf; /* Make it sufficiently aligned for assembly */
/* implementations of GC_clear_stack_inner. */
return GC_clear_stack_inner(arg, limit);
} else {
BZERO(dummy, SMALL_CLEAR_SIZE*sizeof(word));
return arg;
}
# else
if (GC_gc_no > GC_stack_last_cleared) {
/* Start things over, so we clear the entire stack again */
if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom;
GC_min_sp = GC_high_water;
GC_stack_last_cleared = GC_gc_no;
GC_words_allocd_at_reset = GC_words_allocd;
}
/* Adjust GC_high_water */
MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP);
if (sp HOTTER_THAN GC_high_water) {
GC_high_water = sp;
}
MAKE_HOTTER(GC_high_water, GC_SLOP);
limit = GC_min_sp;
MAKE_HOTTER(limit, SLOP);
if (sp COOLER_THAN limit) {
limit &= ~0xf; /* Make it sufficiently aligned for assembly */
/* implementations of GC_clear_stack_inner. */
GC_min_sp = sp;
return(GC_clear_stack_inner(arg, limit));
} else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset)
> CLEAR_THRESHOLD) {
/* Restart clearing process, but limit how much clearing we do. */
GC_min_sp = sp;
MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4);
if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water;
GC_words_allocd_at_reset = GC_words_allocd;
}
return(arg);
# endif
}
/* Return a pointer to the base address of p, given a pointer to a */
/* an address within an object. Return 0 o.w. */
# ifdef __STDC__
GC_PTR GC_base(GC_PTR p)
# else
GC_PTR GC_base(p)
GC_PTR p;
# endif
{
register word r;
register struct hblk *h;
register bottom_index *bi;
register hdr *candidate_hdr;
register word limit;
r = (word)p;
if (!GC_is_initialized) return 0;
h = HBLKPTR(r);
GET_BI(r, bi);
candidate_hdr = HDR_FROM_BI(bi, r);
if (candidate_hdr == 0) return(0);
/* If it's a pointer to the middle of a large object, move it */
/* to the beginning. */
while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) {
h = FORWARDED_ADDR(h,candidate_hdr);
r = (word)h;
candidate_hdr = HDR(h);
}
if (candidate_hdr -> hb_map == GC_invalid_map) return(0);
/* Make sure r points to the beginning of the object */
r &= ~(WORDS_TO_BYTES(1) - 1);
{
register int offset = HBLKDISPL(r);
register signed_word sz = candidate_hdr -> hb_sz;
register signed_word map_entry;
map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset);
if (map_entry > CPP_MAX_OFFSET) {
map_entry = (signed_word)(BYTES_TO_WORDS(offset)) % sz;
}
r -= WORDS_TO_BYTES(map_entry);
limit = r + WORDS_TO_BYTES(sz);
if (limit > (word)(h + 1)
&& sz <= BYTES_TO_WORDS(HBLKSIZE)) {
return(0);
}
if ((word)p >= limit) return(0);
}
return((GC_PTR)r);
}
/* Return the size of an object, given a pointer to its base. */
/* (For small obects this also happens to work from interior pointers, */
/* but that shouldn't be relied upon.) */
# ifdef __STDC__
size_t GC_size(GC_PTR p)
# else
size_t GC_size(p)
GC_PTR p;
# endif
{
register int sz;
register hdr * hhdr = HDR(p);
sz = WORDS_TO_BYTES(hhdr -> hb_sz);
return(sz);
}
size_t GC_get_heap_size GC_PROTO(())
{
return ((size_t) GC_heapsize);
}
size_t GC_get_free_bytes GC_PROTO(())
{
return ((size_t) GC_large_free_bytes);
}
size_t GC_get_bytes_since_gc GC_PROTO(())
{
return ((size_t) WORDS_TO_BYTES(GC_words_allocd));
}
size_t GC_get_total_bytes GC_PROTO(())
{
return ((size_t) WORDS_TO_BYTES(GC_words_allocd+GC_words_allocd_before_gc));
}
int GC_get_suspend_signal GC_PROTO(())
{
#if defined(SIG_SUSPEND) && defined(GC_PTHREADS) && !defined(GC_MACOSX_THREADS) && !defined(GC_OPENBSD_THREADS)
return SIG_SUSPEND;
#else
return -1;
#endif
}
int GC_get_thr_restart_signal GC_PROTO(())
{
#if defined(SIG_THR_RESTART) && defined(GC_PTHREADS) && !defined(GC_MACOSX_THREADS) && !defined(GC_OPENBSD_THREADS)
return SIG_THR_RESTART;
#else
return -1;
#endif
}
GC_bool GC_is_initialized = FALSE;
void GC_init()
{
#if defined(SN_TARGET_PS3)
pthread_mutexattr_t mattr;
#endif
DCL_LOCK_STATE;
DISABLE_SIGNALS();
#if defined(GC_WIN32_THREADS) && !defined(GC_PTHREADS)
if (!GC_is_initialized) {
BOOL (WINAPI *pfn) (LPCRITICAL_SECTION, DWORD) = NULL;
HMODULE hK32 = GetModuleHandle(_T("kernel32.dll"));
if (hK32)
pfn = GetProcAddress(hK32,
"InitializeCriticalSectionAndSpinCount");
if (pfn)
pfn(&GC_allocate_ml, 4000);
else
InitializeCriticalSection (&GC_allocate_ml);
}
#endif /* MSWIN32 */
#if defined(SN_TARGET_PS3)
pthread_mutexattr_init (&mattr);
pthread_mutex_init (&GC_allocate_ml, &mattr);
pthread_mutexattr_destroy (&mattr);
#endif
LOCK();
GC_init_inner();
UNLOCK();
ENABLE_SIGNALS();
# if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
/* Make sure marker threads and started and thread local */
/* allocation is initialized, in case we didn't get */
/* called from GC_init_parallel(); */
{
extern void GC_init_parallel(void);
GC_init_parallel();
}
# endif /* PARALLEL_MARK || THREAD_LOCAL_ALLOC */
# if defined(DYNAMIC_LOADING) && defined(DARWIN)
{
/* This must be called WITHOUT the allocation lock held
and before any threads are created */
extern void GC_init_dyld();
GC_init_dyld();
}
# endif
}
#if defined(MSWIN32) || defined(MSWINCE)
CRITICAL_SECTION GC_write_cs;
#endif
#ifdef MSWIN32
extern void GC_init_win32 GC_PROTO((void));
#endif
extern void GC_setpagesize();
#ifdef MSWIN32
extern GC_bool GC_no_win32_dlls;
#else
# define GC_no_win32_dlls FALSE
#endif
void GC_exit_check GC_PROTO((void))
{
GC_gcollect();
}
#ifdef SEARCH_FOR_DATA_START
extern void GC_init_linux_data_start GC_PROTO((void));
#endif
#ifdef UNIX_LIKE
extern void GC_set_and_save_fault_handler GC_PROTO((void (*handler)(int)));
static void looping_handler(sig)
int sig;
{
GC_err_printf1("Caught signal %d: looping in handler\n", sig);
for(;;);
}
static GC_bool installed_looping_handler = FALSE;
static void maybe_install_looping_handler()
{
/* Install looping handler before the write fault handler, so we */
/* handle write faults correctly. */
if (!installed_looping_handler && 0 != GETENV("GC_LOOP_ON_ABORT")) {
GC_set_and_save_fault_handler(looping_handler);
installed_looping_handler = TRUE;
}
}
#else /* !UNIX_LIKE */
# define maybe_install_looping_handler()
#endif
void GC_init_inner()
{
# if !defined(THREADS) && defined(GC_ASSERTIONS)
word dummy;
# endif
word initial_heap_sz = (word)MINHINCR;
if (GC_is_initialized) return;
# ifdef PRINTSTATS
GC_print_stats = 1;
# endif
# if defined(MSWIN32) || defined(MSWINCE)
InitializeCriticalSection(&GC_write_cs);
# endif
if (0 != GETENV("GC_PRINT_STATS")) {
GC_print_stats = 1;
}
# ifndef NO_DEBUGGING
if (0 != GETENV("GC_DUMP_REGULARLY")) {
GC_dump_regularly = 1;
}
# endif
# ifdef KEEP_BACK_PTRS
{
char * backtraces_string = GETENV("GC_BACKTRACES");
if (0 != backtraces_string) {
GC_backtraces = atol(backtraces_string);
if (backtraces_string[0] == '\0') GC_backtraces = 1;
}
}
# endif
if (0 != GETENV("GC_FIND_LEAK")) {
GC_find_leak = 1;
# ifdef __STDC__
atexit(GC_exit_check);
# endif
}
if (0 != GETENV("GC_ALL_INTERIOR_POINTERS")) {
GC_all_interior_pointers = 1;
}
if (0 != GETENV("GC_DONT_GC")) {
GC_dont_gc = 1;
}
if (0 != GETENV("GC_PRINT_BACK_HEIGHT")) {
GC_print_back_height = 1;
}
if (0 != GETENV("GC_NO_BLACKLIST_WARNING")) {
GC_large_alloc_warn_interval = LONG_MAX;
}
{
char * time_limit_string = GETENV("GC_PAUSE_TIME_TARGET");
if (0 != time_limit_string) {
long time_limit = atol(time_limit_string);
if (time_limit < 5) {
WARN("GC_PAUSE_TIME_TARGET environment variable value too small "
"or bad syntax: Ignoring\n", 0);
} else {
GC_time_limit = time_limit;
}
}
}
{
char * interval_string = GETENV("GC_LARGE_ALLOC_WARN_INTERVAL");
if (0 != interval_string) {
long interval = atol(interval_string);
if (interval <= 0) {
WARN("GC_LARGE_ALLOC_WARN_INTERVAL environment variable has "
"bad value: Ignoring\n", 0);
} else {
GC_large_alloc_warn_interval = interval;
}
}
}
maybe_install_looping_handler();
/* Adjust normal object descriptor for extra allocation. */
if (ALIGNMENT > GC_DS_TAGS && EXTRA_BYTES != 0) {
GC_obj_kinds[NORMAL].ok_descriptor = ((word)(-ALIGNMENT) | GC_DS_LENGTH);
}
GC_setpagesize();
GC_exclude_static_roots(beginGC_arrays, endGC_arrays);
GC_exclude_static_roots(beginGC_obj_kinds, endGC_obj_kinds);
# ifdef SEPARATE_GLOBALS
GC_exclude_static_roots(beginGC_objfreelist, endGC_objfreelist);
GC_exclude_static_roots(beginGC_aobjfreelist, endGC_aobjfreelist);
# endif
# ifdef MSWIN32
GC_init_win32();
# endif
# if defined(SEARCH_FOR_DATA_START)
GC_init_linux_data_start();
# endif
# if defined(NETBSD) && defined(__ELF__)
GC_init_netbsd_elf();
# endif
# if defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS) \
|| defined(GC_WIN32_THREADS)
GC_thr_init();
# endif
# ifdef GC_SOLARIS_THREADS
/* We need dirty bits in order to find live stack sections. */
GC_dirty_init();
# endif
# if !defined(THREADS) || defined(GC_PTHREADS) || defined(GC_WIN32_THREADS) \
|| defined(GC_SOLARIS_THREADS)
if (GC_stackbottom == 0) {
GC_stackbottom = GC_get_stack_base();
# if (defined(LINUX) || defined(HPUX)) && defined(IA64)
GC_register_stackbottom = GC_get_register_stack_base();
# endif
} else {
# if (defined(LINUX) || defined(HPUX)) && defined(IA64)
if (GC_register_stackbottom == 0) {
WARN("GC_register_stackbottom should be set with GC_stackbottom", 0);
/* The following may fail, since we may rely on */
/* alignment properties that may not hold with a user set */
/* GC_stackbottom. */
GC_register_stackbottom = GC_get_register_stack_base();
}
# endif
}
# endif
GC_STATIC_ASSERT(sizeof (ptr_t) == sizeof(word));
GC_STATIC_ASSERT(sizeof (signed_word) == sizeof(word));
GC_STATIC_ASSERT(sizeof (struct hblk) == HBLKSIZE);
# ifndef THREADS
# if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN)
ABORT(
"Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
# endif
# if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN)
ABORT(
"One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
# endif
# ifdef STACK_GROWS_DOWN
GC_ASSERT((word)(&dummy) <= (word)GC_stackbottom);
# else
GC_ASSERT((word)(&dummy) >= (word)GC_stackbottom);
# endif
# endif
# if !defined(_AUX_SOURCE) || defined(__GNUC__)
GC_ASSERT((word)(-1) > (word)0);
/* word should be unsigned */
# endif
GC_ASSERT((signed_word)(-1) < (signed_word)0);
/* Add initial guess of root sets. Do this first, since sbrk(0) */
/* might be used. */
if (GC_REGISTER_MAIN_STATIC_DATA()) GC_register_data_segments();
GC_init_headers();
GC_bl_init();
GC_mark_init();
{
char * sz_str = GETENV("GC_INITIAL_HEAP_SIZE");
if (sz_str != NULL) {
initial_heap_sz = atoi(sz_str);
if (initial_heap_sz <= MINHINCR * HBLKSIZE) {
WARN("Bad initial heap size %s - ignoring it.\n",
sz_str);
}
initial_heap_sz = divHBLKSZ(initial_heap_sz);
}
}
{
char * sz_str = GETENV("GC_MAXIMUM_HEAP_SIZE");
if (sz_str != NULL) {
word max_heap_sz = (word)atol(sz_str);
if (max_heap_sz < initial_heap_sz * HBLKSIZE) {
WARN("Bad maximum heap size %s - ignoring it.\n",
sz_str);
}
if (0 == GC_max_retries) GC_max_retries = 2;
GC_set_max_heap_size(max_heap_sz);
}
}
if (!GC_expand_hp_inner(initial_heap_sz)) {
GC_err_printf0("Can't start up: not enough memory\n");
EXIT();
}
/* Preallocate large object map. It's otherwise inconvenient to */
/* deal with failure. */
if (!GC_add_map_entry((word)0)) {
GC_err_printf0("Can't start up: not enough memory\n");
EXIT();
}
GC_register_displacement_inner(0L);
# ifdef MERGE_SIZES
GC_init_size_map();
# endif
# ifdef PCR
if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever)
!= PCR_ERes_okay) {
ABORT("Can't lock load state\n");
} else if (PCR_IL_Unlock() != PCR_ERes_okay) {
ABORT("Can't unlock load state\n");
}
PCR_IL_Unlock();
GC_pcr_install();
# endif
# if !defined(SMALL_CONFIG)
if (!GC_no_win32_dlls && 0 != GETENV("GC_ENABLE_INCREMENTAL")) {
GC_ASSERT(!GC_incremental);
GC_setpagesize();
# ifndef GC_SOLARIS_THREADS
GC_dirty_init();
# endif
GC_ASSERT(GC_words_allocd == 0)
GC_incremental = TRUE;
}
# endif /* !SMALL_CONFIG */
COND_DUMP;
/* Get black list set up and/or incremental GC started */
if (!GC_dont_precollect || GC_incremental) GC_gcollect_inner();
GC_is_initialized = TRUE;
# ifdef STUBBORN_ALLOC
GC_stubborn_init();
# endif
/* Convince lint that some things are used */
# ifdef LINT
{
extern char * GC_copyright[];
extern int GC_read();
extern void GC_register_finalizer_no_order();
GC_noop(GC_copyright, GC_find_header,
GC_push_one, GC_call_with_alloc_lock, GC_read,
GC_dont_expand,
# ifndef NO_DEBUGGING
GC_dump,
# endif
GC_register_finalizer_no_order);
}
# endif
}
void GC_enable_incremental GC_PROTO(())
{
# if !defined(SMALL_CONFIG) && !defined(KEEP_BACK_PTRS)
/* If we are keeping back pointers, the GC itself dirties all */
/* pages on which objects have been marked, making */
/* incremental GC pointless. */
if (!GC_find_leak) {
DCL_LOCK_STATE;
DISABLE_SIGNALS();
LOCK();
if (GC_incremental) goto out;
GC_setpagesize();
if (GC_no_win32_dlls) goto out;
# ifndef GC_SOLARIS_THREADS
maybe_install_looping_handler(); /* Before write fault handler! */
GC_dirty_init();
# endif
if (!GC_is_initialized) {
GC_init_inner();
}
if (GC_incremental) goto out;
if (GC_dont_gc) {
/* Can't easily do it. */
UNLOCK();
ENABLE_SIGNALS();
return;
}
if (GC_words_allocd > 0) {
/* There may be unmarked reachable objects */
GC_gcollect_inner();
} /* else we're OK in assuming everything's */
/* clean since nothing can point to an */
/* unmarked object. */
GC_read_dirty();
GC_incremental = TRUE;
out:
UNLOCK();
ENABLE_SIGNALS();
}
# endif
}
#if defined(MSWIN32) || defined(MSWINCE)
# define LOG_FILE _T("gc.log")
HANDLE GC_stdout = 0;
void GC_deinit()
{
if (GC_is_initialized) {
DeleteCriticalSection(&GC_write_cs);
}
}
int GC_write(buf, len)
GC_CONST char * buf;
size_t len;
{
BOOL tmp;
DWORD written;
if (len == 0)
return 0;
EnterCriticalSection(&GC_write_cs);
if (GC_stdout == INVALID_HANDLE_VALUE) {
return -1;
} else if (GC_stdout == 0) {
GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH,
NULL);
if (GC_stdout == INVALID_HANDLE_VALUE) ABORT("Open of log file failed");
}
tmp = WriteFile(GC_stdout, buf, len, &written, NULL);
if (!tmp)
DebugBreak();
LeaveCriticalSection(&GC_write_cs);
return tmp ? (int)written : -1;
}
#endif
#if defined(OS2) || defined(MACOS)
FILE * GC_stdout = NULL;
FILE * GC_stderr = NULL;
int GC_tmp; /* Should really be local ... */
void GC_set_files()
{
if (GC_stdout == NULL) {
GC_stdout = stdout;
}
if (GC_stderr == NULL) {
GC_stderr = stderr;
}
}
#endif
#if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32) && !defined(MSWINCE)
int GC_stdout = 1;
int GC_stderr = 2;
# if !defined(AMIGA)
# include <unistd.h>
# endif
#endif
#if !defined(MSWIN32) && !defined(MSWINCE) && !defined(OS2) \
&& !defined(MACOS) && !defined(ECOS) && !defined(NOSYS)
int GC_write(fd, buf, len)
int fd;
GC_CONST char *buf;
size_t len;
{
register int bytes_written = 0;
register int result;
while (bytes_written < len) {
# ifdef GC_SOLARIS_THREADS
result = syscall(SYS_write, fd, buf + bytes_written,
len - bytes_written);
# else
result = write(fd, buf + bytes_written, len - bytes_written);
# endif
if (-1 == result) return(result);
bytes_written += result;
}
return(bytes_written);
}
#endif /* UN*X */
#ifdef ECOS
int GC_write(fd, buf, len)
{
_Jv_diag_write (buf, len);
return len;
}
#endif
#ifdef NOSYS
int GC_write(fd, buf, len)
{
/* No writing. */
return len;
}
#endif
#if defined(MSWIN32) || defined(MSWINCE)
# define WRITE(f, buf, len) GC_write(buf, len)
#else
# if defined(OS2) || defined(MACOS)
# define WRITE(f, buf, len) (GC_set_files(), \
GC_tmp = fwrite((buf), 1, (len), (f)), \
fflush(f), GC_tmp)
# else
# define WRITE(f, buf, len) GC_write((f), (buf), (len))
# endif
#endif
/* A version of printf that is unlikely to call malloc, and is thus safer */
/* to call from the collector in case malloc has been bound to GC_malloc. */
/* Assumes that no more than 1023 characters are written at once. */
/* Assumes that all arguments have been converted to something of the */
/* same size as long, and that the format conversions expect something */
/* of that size. */
void GC_printf(format, a, b, c, d, e, f)
GC_CONST char * format;
long a, b, c, d, e, f;
{
char buf[1025];
if (GC_quiet) return;
buf[1024] = 0x15;
(void) sprintf(buf, format, a, b, c, d, e, f);
if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack");
#ifdef NACL
WRITE(GC_stdout, buf, strlen(buf));
#else
if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed");
#endif
}
void GC_err_printf(format, a, b, c, d, e, f)
GC_CONST char * format;
long a, b, c, d, e, f;
{
char buf[1025];
buf[1024] = 0x15;
(void) sprintf(buf, format, a, b, c, d, e, f);
if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack");
#ifdef NACL
WRITE(GC_stderr, buf, strlen(buf));
#else
if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed");
#endif
}
void GC_err_puts(s)
GC_CONST char *s;
{
#ifdef NACL
WRITE(GC_stderr, s, strlen(s));
#else
if (WRITE(GC_stderr, s, strlen(s)) < 0) ABORT("write to stderr failed");
#endif
}
#if defined(LINUX) && !defined(SMALL_CONFIG)
void GC_err_write(buf, len)
GC_CONST char *buf;
size_t len;
{
if (WRITE(GC_stderr, buf, len) < 0) ABORT("write to stderr failed");
}
#endif
# if defined(__STDC__) || defined(__cplusplus)
void GC_default_warn_proc(char *msg, GC_word arg)
# else
void GC_default_warn_proc(msg, arg)
char *msg;
GC_word arg;
# endif
{
GC_err_printf1(msg, (unsigned long)arg);
}
GC_warn_proc GC_current_warn_proc = GC_default_warn_proc;
# if defined(__STDC__) || defined(__cplusplus)
GC_warn_proc GC_set_warn_proc(GC_warn_proc p)
# else
GC_warn_proc GC_set_warn_proc(p)
GC_warn_proc p;
# endif
{
GC_warn_proc result;
# ifdef GC_WIN32_THREADS
GC_ASSERT(GC_is_initialized);
# endif
LOCK();
result = GC_current_warn_proc;
GC_current_warn_proc = p;
UNLOCK();
return(result);
}
# if defined(__STDC__) || defined(__cplusplus)
GC_word GC_set_free_space_divisor (GC_word value)
# else
GC_word GC_set_free_space_divisor (value)
GC_word value;
# endif
{
GC_word old = GC_free_space_divisor;
GC_free_space_divisor = value;
return old;
}
#ifndef PCR
void GC_abort(msg)
GC_CONST char * msg;
{
# if defined(MSWIN32)
(void) MessageBoxA(NULL, msg, "Fatal error in gc", MB_ICONERROR|MB_OK);
# else
GC_err_printf1("%s\n", msg);
# endif
if (GETENV("GC_LOOP_ON_ABORT") != NULL) {
/* In many cases it's easier to debug a running process. */
/* It's arguably nicer to sleep, but that makes it harder */
/* to look at the thread if the debugger doesn't know much */
/* about threads. */
for(;;) {}
}
# if defined(MSWIN32) || defined(MSWINCE)
DebugBreak();
# else
(void) abort();
# endif
}
#endif
void GC_enable()
{
LOCK();
GC_dont_gc--;
UNLOCK();
}
void GC_disable()
{
LOCK();
GC_dont_gc++;
UNLOCK();
}
/* Helper procedures for new kind creation. */
void ** GC_new_free_list_inner()
{
void *result = GC_INTERNAL_MALLOC((MAXOBJSZ+1)*sizeof(ptr_t), PTRFREE);
if (result == 0) ABORT("Failed to allocate freelist for new kind");
BZERO(result, (MAXOBJSZ+1)*sizeof(ptr_t));
return result;
}
void ** GC_new_free_list()
{
void *result;
LOCK(); DISABLE_SIGNALS();
result = GC_new_free_list_inner();
UNLOCK(); ENABLE_SIGNALS();
return result;
}
int GC_new_kind_inner(fl, descr, adjust, clear)
void **fl;
GC_word descr;
int adjust;
int clear;
{
int result = GC_n_kinds++;
if (GC_n_kinds > MAXOBJKINDS) ABORT("Too many kinds");
GC_obj_kinds[result].ok_freelist = (ptr_t *)fl;
GC_obj_kinds[result].ok_reclaim_list = 0;
GC_obj_kinds[result].ok_descriptor = descr;
GC_obj_kinds[result].ok_relocate_descr = adjust;
GC_obj_kinds[result].ok_init = clear;
return result;
}
int GC_new_kind(fl, descr, adjust, clear)
void **fl;
GC_word descr;
int adjust;
int clear;
{
int result;
LOCK(); DISABLE_SIGNALS();
result = GC_new_kind_inner(fl, descr, adjust, clear);
UNLOCK(); ENABLE_SIGNALS();
return result;
}
int GC_new_proc_inner(proc)
GC_mark_proc proc;
{
int result = GC_n_mark_procs++;
if (GC_n_mark_procs > MAX_MARK_PROCS) ABORT("Too many mark procedures");
GC_mark_procs[result] = proc;
return result;
}
int GC_new_proc(proc)
GC_mark_proc proc;
{
int result;
LOCK(); DISABLE_SIGNALS();
result = GC_new_proc_inner(proc);
UNLOCK(); ENABLE_SIGNALS();
return result;
}
#if !defined(NO_DEBUGGING)
void GC_dump()
{
GC_printf0("***Static roots:\n");
GC_print_static_roots();
GC_printf0("\n***Heap sections:\n");
GC_print_heap_sects();
GC_printf0("\n***Free blocks:\n");
GC_print_hblkfreelist();
GC_printf0("\n***Blocks in use:\n");
GC_print_block_list();
GC_printf0("\n***Finalization statistics:\n");
GC_print_finalization_stats();
}
#endif /* NO_DEBUGGING */