Xamarin Public Jenkins (auto-signing) 536cd135cc Imported Upstream version 5.4.0.167
Former-commit-id: 5624ac747d633e885131e8349322922b6a59baaa
2017-08-21 15:34:15 +00:00

422 lines
15 KiB
C#

// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*=========================================================================
**
** Class: Complex
**
**
** Purpose:
** This feature is intended to create Complex Number as a type
** that can be a part of the .NET framework (base class libraries).
** A complex number z is a number of the form z = x + yi, where x and y
** are real numbers, and i is the imaginary unit, with the property i2= -1.
**
**
===========================================================================*/
using System;
using System.Globalization;
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Contracts;
namespace System.Numerics {
#if !SILVERLIGHT
[Serializable]
#endif // !SILVERLIGHT
public struct Complex : IEquatable<Complex>, IFormattable {
// --------------SECTION: Private Data members ----------- //
private Double m_real;
private Double m_imaginary;
// ---------------SECTION: Necessary Constants ----------- //
private const Double LOG_10_INV = 0.43429448190325;
// --------------SECTION: Public Properties -------------- //
public Double Real {
get {
return m_real;
}
}
public Double Imaginary {
get {
return m_imaginary;
}
}
public Double Magnitude {
get {
return Complex.Abs(this);
}
}
public Double Phase {
get {
return Math.Atan2(m_imaginary, m_real);
}
}
// --------------SECTION: Attributes -------------- //
public static readonly Complex Zero = new Complex(0.0, 0.0);
public static readonly Complex One = new Complex(1.0, 0.0);
public static readonly Complex ImaginaryOne = new Complex(0.0, 1.0);
// --------------SECTION: Constructors and factory methods -------------- //
public Complex(Double real, Double imaginary) /* Constructor to create a complex number with rectangular co-ordinates */
{
this.m_real = real;
this.m_imaginary = imaginary;
}
public static Complex FromPolarCoordinates(Double magnitude, Double phase) /* Factory method to take polar inputs and create a Complex object */
{
return new Complex((magnitude * Math.Cos(phase)), (magnitude * Math.Sin(phase)));
}
public static Complex Negate(Complex value) {
return -value;
}
public static Complex Add(Complex left, Complex right) {
return left + right;
}
public static Complex Subtract(Complex left, Complex right) {
return left - right;
}
public static Complex Multiply(Complex left, Complex right) {
return left * right;
}
public static Complex Divide(Complex dividend, Complex divisor) {
return dividend / divisor;
}
// --------------SECTION: Arithmetic Operator(unary) Overloading -------------- //
public static Complex operator -(Complex value) /* Unary negation of a complex number */
{
return (new Complex((-value.m_real), (-value.m_imaginary)));
}
// --------------SECTION: Arithmetic Operator(binary) Overloading -------------- //
public static Complex operator +(Complex left, Complex right) {
return (new Complex((left.m_real + right.m_real), (left.m_imaginary + right.m_imaginary)));
}
public static Complex operator -(Complex left, Complex right) {
return (new Complex((left.m_real - right.m_real), (left.m_imaginary - right.m_imaginary)));
}
public static Complex operator *(Complex left, Complex right) {
// Multiplication: (a + bi)(c + di) = (ac -bd) + (bc + ad)i
Double result_Realpart = (left.m_real * right.m_real) - (left.m_imaginary * right.m_imaginary);
Double result_Imaginarypart = (left.m_imaginary * right.m_real) + (left.m_real * right.m_imaginary);
return (new Complex(result_Realpart, result_Imaginarypart));
}
public static Complex operator /(Complex left, Complex right) {
// Division : Smith's formula.
double a = left.m_real;
double b = left.m_imaginary;
double c = right.m_real;
double d = right.m_imaginary;
if (Math.Abs(d) < Math.Abs(c)) {
double doc = d / c;
return new Complex((a + b * doc) / (c + d * doc), (b - a * doc) / (c + d * doc));
} else {
double cod = c / d;
return new Complex((b + a * cod) / (d + c * cod), (-a + b * cod) / (d + c * cod));
}
}
// --------------SECTION: Other arithmetic operations -------------- //
public static Double Abs(Complex value) {
if(Double.IsInfinity(value.m_real) || Double.IsInfinity(value.m_imaginary)) {
return double.PositiveInfinity;
}
// |value| == sqrt(a^2 + b^2)
// sqrt(a^2 + b^2) == a/a * sqrt(a^2 + b^2) = a * sqrt(a^2/a^2 + b^2/a^2)
// Using the above we can factor out the square of the larger component to dodge overflow.
double c = Math.Abs(value.m_real);
double d = Math.Abs(value.m_imaginary);
if (c > d) {
double r = d / c;
return c * Math.Sqrt(1.0 + r * r);
} else if (d == 0.0) {
return c; // c is either 0.0 or NaN
} else {
double r = c / d;
return d * Math.Sqrt(1.0 + r * r);
}
}
public static Complex Conjugate(Complex value) {
// Conjugate of a Complex number: the conjugate of x+i*y is x-i*y
return (new Complex(value.m_real, (-value.m_imaginary)));
}
public static Complex Reciprocal(Complex value) {
// Reciprocal of a Complex number : the reciprocal of x+i*y is 1/(x+i*y)
if ((value.m_real == 0) && (value.m_imaginary == 0)) {
return Complex.Zero;
}
return Complex.One / value;
}
// --------------SECTION: Comparison Operator(binary) Overloading -------------- //
public static bool operator ==(Complex left, Complex right) {
return ((left.m_real == right.m_real) && (left.m_imaginary == right.m_imaginary));
}
public static bool operator !=(Complex left, Complex right) {
return ((left.m_real != right.m_real) || (left.m_imaginary != right.m_imaginary));
}
// --------------SECTION: Comparison operations (methods implementing IEquatable<ComplexNumber>,IComparable<ComplexNumber>) -------------- //
public override bool Equals(object obj) {
if (!(obj is Complex)) return false;
return this == ((Complex)obj);
}
public bool Equals(Complex value) {
return ((this.m_real.Equals(value.m_real)) && (this.m_imaginary.Equals(value.m_imaginary)));
}
// --------------SECTION: Type-casting basic numeric data-types to ComplexNumber -------------- //
public static implicit operator Complex(Int16 value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Int32 value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Int64 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(UInt16 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(UInt32 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(UInt64 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(SByte value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Byte value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Single value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Double value) {
return (new Complex(value, 0.0));
}
public static explicit operator Complex(BigInteger value) {
return (new Complex((Double)value, 0.0));
}
public static explicit operator Complex(Decimal value) {
return (new Complex((Double)value, 0.0));
}
// --------------SECTION: Formattig/Parsing options -------------- //
public override String ToString() {
return (String.Format(CultureInfo.CurrentCulture, "({0}, {1})", this.m_real, this.m_imaginary));
}
public String ToString(String format) {
return (String.Format(CultureInfo.CurrentCulture, "({0}, {1})", this.m_real.ToString(format, CultureInfo.CurrentCulture), this.m_imaginary.ToString(format, CultureInfo.CurrentCulture)));
}
public String ToString(IFormatProvider provider) {
return (String.Format(provider, "({0}, {1})", this.m_real, this.m_imaginary));
}
public String ToString(String format, IFormatProvider provider) {
return (String.Format(provider, "({0}, {1})", this.m_real.ToString(format, provider), this.m_imaginary.ToString(format, provider)));
}
public override Int32 GetHashCode() {
Int32 n1 = 99999997;
Int32 hash_real = this.m_real.GetHashCode() % n1;
Int32 hash_imaginary = this.m_imaginary.GetHashCode();
Int32 final_hashcode = hash_real ^ hash_imaginary;
return (final_hashcode);
}
// --------------SECTION: Trigonometric operations (methods implementing ITrigonometric) -------------- //
public static Complex Sin(Complex value) {
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Sin(a) * Math.Cosh(b), Math.Cos(a) * Math.Sinh(b));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Sinh", Justification = "Microsoft: Existing Name")]
public static Complex Sinh(Complex value) /* Hyperbolic sin */
{
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Sinh(a) * Math.Cos(b), Math.Cosh(a) * Math.Sin(b));
}
public static Complex Asin(Complex value) /* Arcsin */
{
if ((value.m_imaginary == 0 && value.m_real < 0) || value.m_imaginary > 0)
{
return -Asin(-value);
}
return (-ImaginaryOne) * Log(ImaginaryOne * value + Sqrt(One - value * value));
}
public static Complex Cos(Complex value) {
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Cos(a) * Math.Cosh(b), - (Math.Sin(a) * Math.Sinh(b)));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Cosh", Justification = "Microsoft: Existing Name")]
public static Complex Cosh(Complex value) /* Hyperbolic cos */
{
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Cosh(a) * Math.Cos(b), Math.Sinh(a) * Math.Sin(b));
}
public static Complex Acos(Complex value) /* Arccos */
{
if ((value.m_imaginary == 0 && value.m_real > 0) || value.m_imaginary < 0)
{
return System.Math.PI - Acos(-value);
}
return (-ImaginaryOne) * Log(value + ImaginaryOne*Sqrt(One - (value * value)));
}
public static Complex Tan(Complex value) {
return (Sin(value) / Cos(value));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Tanh", Justification = "Microsoft: Existing Name")]
public static Complex Tanh(Complex value) /* Hyperbolic tan */
{
return (Sinh(value) / Cosh(value));
}
public static Complex Atan(Complex value) /* Arctan */
{
Complex Two = new Complex(2.0, 0.0);
return (ImaginaryOne / Two) * (Log(One - ImaginaryOne * value) - Log(One + ImaginaryOne * value));
}
// --------------SECTION: Other numerical functions -------------- //
public static Complex Log(Complex value) /* Log of the complex number value to the base of 'e' */
{
return (new Complex((Math.Log(Abs(value))), (Math.Atan2(value.m_imaginary, value.m_real))));
}
public static Complex Log(Complex value, Double baseValue) /* Log of the complex number to a the base of a double */
{
return (Log(value) / Log(baseValue));
}
public static Complex Log10(Complex value) /* Log to the base of 10 of the complex number */
{
Complex temp_log = Log(value);
return (Scale(temp_log, (Double)LOG_10_INV));
}
public static Complex Exp(Complex value) /* The complex number raised to e */
{
Double temp_factor = Math.Exp(value.m_real);
Double result_re = temp_factor * Math.Cos(value.m_imaginary);
Double result_im = temp_factor * Math.Sin(value.m_imaginary);
return (new Complex(result_re, result_im));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Sqrt", Justification = "Microsoft: Existing Name")]
public static Complex Sqrt(Complex value) /* Square root ot the complex number */
{
return Complex.FromPolarCoordinates(Math.Sqrt(value.Magnitude), value.Phase / 2.0);
}
public static Complex Pow(Complex value, Complex power) /* A complex number raised to another complex number */
{
if (power == Complex.Zero) {
return Complex.One;
}
if (value == Complex.Zero) {
return Complex.Zero;
}
double a = value.m_real;
double b = value.m_imaginary;
double c = power.m_real;
double d = power.m_imaginary;
double rho = Complex.Abs(value);
double theta = Math.Atan2(b, a);
double newRho = c * theta + d * Math.Log(rho);
double t = Math.Pow(rho, c) * Math.Pow(Math.E, -d * theta);
return new Complex(t * Math.Cos(newRho), t * Math.Sin(newRho));
}
public static Complex Pow(Complex value, Double power) // A complex number raised to a real number
{
return Pow(value, new Complex(power, 0));
}
//--------------- SECTION: Private member functions for internal use -----------------------------------//
private static Complex Scale(Complex value, Double factor) {
Double result_re = factor * value.m_real;
Double result_im = factor * value.m_imaginary;
return (new Complex(result_re, result_im));
}
}
}